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Abstract. The goal of this study was to identify the optimal combination of magnetic resonance imaging (MRI), ['®F]-
fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) biomarkers to predict conversion
from amnestic mild cognitive impairment (aMCI) to Alzheimer’s disease (AD) dementia within two years, for enriching clinical
trial populations. Data from 63 subjects in the Alzheimer’s Disease Neuroimaging Initiative aMCI cohort who had MRI and
FDG-PET imaging along with CSF data at baseline and at least two years clinical follow-up were used. A Bayesian classifica-
tion method was used to determine which combination of 31 variables (MRI, FDG-PET, CSF measurements, apolipoprotein E
(ApoE) genotype, and cognitive scores) provided the most accurate prediction of aMCI to AD conversion. The cost and time
trade-offs for the use of these biomarkers as inclusion criteria in clinical trials were evaluated. Using the combination of all
biomarkers, ApoE genotype, and cognitive scores, we achieved an accuracy of 81% in predicting aMCI to AD conversion.
With only ApoE genotype and cognitive scores, the prediction accuracy decreased to 62%. By comparing individual modalities,
we found that MRI measures had the best predictive power (accuracy =78%), followed by ApoE, FDG-PET, CSF, and the
Alzheimer’s disease assessment scale-cognitive subscale. The combination of biomarkers from different modalities, measuring
complementary aspects of AD pathology, provided the most accurate prediction of aMCI to AD conversion within two years.
This was predominantly driven by MRI measures, which emerged as the single most powerful modality. Overall, the combi-
nation of MRI, ApoE, and cognitive scores provided the best trade-off between cost and time compared with other biomarker
combinations for patient recruitment in clinical trial.
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INTRODUCTION

Patients clinically diagnosed with amnestic mild
cognitive impairment (aMCI) have an increased risk
of progressing to a clinical diagnosis of Alzheimer’s
disease (AD) [1] and might thus benefit from dis-
ease modifying treatments. Currently, however, the
efficiency of clinical treatment trials on pre-demented
subjects is limited by the heterogeneity of clinically-
defined aMCI cohorts, with only approximately 12%
of patients with aMCI converting to AD annually [1].
The remainder improve, remain stable (possibly due
to not having underlying AD pathology), or fail to
survive long enough to progress to AD [2]. Identi-
fication of a subpopulation of aMCI subjects with a
higher likelihood of progression to clinical AD within
a relatively short time frame (e.g., 1-3 years) would
provide clinical study populations enriched for immi-
nent dementia and probably AD pathology and hence
with a more consistent disease trajectory than might
be selected based on clinical criteria alone. Reliable
identification of such study populations is expected to
improve the detection of disease modifying treatment
effects in clinical trials in the aMCI population.

A number of biochemical and imaging biomarker
measurements have been shown to be strongly asso-
ciated with AD pathology and disease progression.
These include: 1) decreased cerebrospinal fluid (CSF)
concentrations of amyloid-B1-42 (APs2) isoforms
purportedly reflecting central nervous system deposi-
tion of amyloid pathology, and increased CSF total
tau (tTau) and tau phosphorylated at threonine 181
(p-Tau;g;) presumably reflecting neuronal injury with
microtubule disassembly and development of neurofib-
rillary tangles; 2) loss of brain volume globally or
in specific regions of interest as determined by struc-
tural magnetic resonance imaging (MRI) and assumed
to reflect parenchymal atrophy; and 3) diminished
resting brain glucose metabolic rate measured using
['8F]-fluorodeoxyglucose positron emission tomog-
raphy (FDG-PET). Combined CSF A4z, tTau, and
p-Tau;g; measures, especially when combined as ratios
like the tTau:AB4; ratio [3, 4] have been shown to be
associated with AD pathology [5-7], disease stage [3,
4, 8, 9], subsequent cognitive decline [10], and cen-
tral amyloid load as determined by amyloid imaging

[3]. Anatomically-localized MRI measures have been
shown to correlate with disease stage [11], neuronal
density [12], postmortem Braak stage [13], and clini-
cal scales [14, 15]. Volumetric loss in selected regions
of interest, notably the hippocampus and medial tem-
poral lobes, and volumetric expansion of the ventricles
are among the most accurate MRI-based markers of
disease stage [16—18]. Finally, FDG-PET measures
characterize progressive hypometabolism as a function
of disease stage [19, 20].

Moreover, a number of recent studies have indi-
cated that these biomarker measures may individually
be associated with, and predictive of, progression from
aMCT to clinically diagnosed AD dementia. This opens
the possibility of using such biomarkers to enrich or
stratify the population of clinical trials targeting a pro-
dromal subpopulation of aMCI subjects at a high risk
of progression to AD dementia [21, 22]. Indeed, sev-
eral groups have shown, in a variety of independent
subject cohorts, that measurements derived from struc-
tural MRI data [17, 18, 23-27], CSF samples [4, 10,
28-30], and FDG-PET [31, 32] can be predictive of
subsequent progression from aMCI to AD. Moreover,
apolipoprotein E (ApoE) genotype, in particular the e4
allele, has also been shown to be predictive of disease
progression [32, 33].

Each of the above biomarkers measures a different
aspect of the underlying pathology and may thus be
complementary in their ability to predict subsequent
clinical decline. All can be included in clinical tri-
als (and are already, although most commonly to date
as outcome rather than screening measures). More-
over, use of these methods in combination has also
begun to be explored; MRI has been shown to improve
the diagnostic prediction of CSF [34, 35] and FDG-
PET biomarkers to improve upon the predictive power
of ApoE genotype alone [31]. More recently, multi-
modality models, using a combination of MRI, CSF,
FDG-PET, and cognitive functions, have been built
to compare AD or aMCI with normal subjects and
track disease progression in aMCI [36—40]. Promising
results were shown by building classification models
in AD and normal and testing the resulting models
in aMClI to predict which patients will progress to AD
[36, 39, 40]. However, variable selections were seldom
conducted to compare the predictive performance of
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individual biomarkers and logistic considerations for
using these combinations of modalities in clinical trial
were not discussed.

In the present study, we examined the predicative
performance of a larger set of biomarkers: MRI, FDG-
PET, and CSF measures along with ApoE genotype and
baseline cognitive performance. Specifically, the ques-
tions we sought to answer in this work were: 1) For the
purpose of identifying aMCI subjects who will immi-
nently progress to clinically-diagnosed AD dementia,
which combination of the above biomarker, genetic and
clinical variables provides the most predictive power?;
2) To what extent do the imaging and CSF biomarkers
improve patient enrichment over a selection strategy
based on cognitive scores and genotype alone?; 3)
Since the acquisition of imaging and CSF data imposes
logistical constraints (e.g., site selection) and addi-
tional cost, what are the time/cost versus prediction
accuracy trade-offs associated with biomarker-driven
enrichment.

To address these questions, we employed a Bayesian
classification framework to automatically identify
most predictive biomarkers across multiple modalities
by directly comparing aMCI patients progressed to AD
with those remained stable within the follow-up time.
‘We also compared the predictive power and enrichment
performance of different modalities (MRI, FDG-PET,
CSF, ApoE genotype, cognitive tests) using the classifi-
cation models built with the Bayesian method. Finally,
we built a logistical model to examine the time/cost
benefits of using different enrichment strategies in
aMCI clinical trials.

MATERIALS AND METHODS

Data

We analyzed Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) data released in June 2010
(http://www.loni.ucla.edu/ADNI). ADNI is a five-year
multi-site program funded by a public-private part-
nership including the National Institute on Aging
(NIA), Food and Drug Administration (FDA), phar-
maceutical companies, and non-profit organizations
to investigate the relationship of neuroimaging, bio-
logical, clinical, and neuropsychological assessments
to disease progression in AD. 800 subjects were
recruited: approximately 200 elderly controls, 400 with
aMCI, and 200 with AD. Subjects were followed for
2-3 years and assessed every 6 to 12 months. aMCI
subjects had Mini-Mental State Examination (MMSE)
scores between 24—-30, a memory complaint, objective

memory loss measured by education adjusted scores on
Wechsler Memory Scale Logical Memory II, a Clinical
Dementia Rating (CDR) of 0.5, absence of signifi-
cant levels of impairment in other cognitive domains,
essentially preserved activities of daily living, and an
absence of dementia. At each visit, aMCI subjects were
assessed whether or not they clinically progressed to
AD, remained aMCI, or regressed to normal. Using
data measured on these aMCI patients in ADNI, we
evaluated the best combination of baseline biomarkers
for predicting progression to AD within 2 years.

Biomarker measures

We considered a total of 31 numeric variables,
comprising biomarker measures generated by the
ADNI-funded laboratories for structural MRI, FDG-
PET, and CSF, along with ApoE genotype, ADAS-
Cog, and MMSE clinical scales (see Supplementary
Table 1; available online: http://www.j-alz.com/
issues/32/vol32-2.html#supplementarydata02).

Since multiple research laboratories were funded to
analyze the structural MRI data in the ADNI study,
and several of these generated closely related measures
(e.g., hippocampal volume, cortical parcellation), we
used the set of variables from the laboratory that per-
formed well in a comparative power analysis. For each
MRI measurement, we calculated the number of sub-
jects needed to detect a 25% reduction of the annual
percentage volume change in AD subjects, with 80%
power and 5% significance [41]. In a simple setting
where we have only one placebo and one treatment
arm, the number of subjects per arm, denoted by n, can
be calculated by:

_ 20%(Z1—ap2 — Zp)?
(dy — dp)?

(D

where dj, and d; denote the average percentage change
in the placebo and treatment groups, o denotes the stan-
dard derivation (assuming equal variance), o denotes
the type I error rate (e.g., «=0.05), 3 denotes the
statistical power (e.g., 3=0.8), and Z, is the cumula-
tive normal distribution statistic at significance level x.
Based on this power analysis, we selected the MRI
volumetric measurements generated by the University
of California, San Diego (UCSD) for this study [41].
This analysis yielded the 14 volumetric MRI (vMRI)
variables listed in Supplementary Table 1.

Different from the MRI images, which were
analyzed by multiple labs for a variety of neuroanatom-
ical structures using different methods, the analysis
of FDG-PET images has mainly yielded summary
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Table 1
Summary of the subset of ADNI subjects used for analysis. Only
2-year change of MMSE is significantly different between aMCI
converter and non-converters using 2-sided student’s #-test

Converter Non-converter
# of subjects 25 38
Age 74.00 (5.57) 74.82 (7.16)
Gender (Male) 16 17
ADAS-Cog (11 item) 20.36 (5.40) 18.03 (5.90)
2 year change of ADAS-Cog 3.35 (5.00) 1.80 (4.33)
(11 item)
MMSE 26.60 (1.87) 27.29 (1.54)
2 year change of MMSE* 2.95(3.37) -0.89 (2.21)
# of ApoE &4 carrier 15 17

*p-value < 0.05.

statistics for a few regions-of-interest (ROIs). There-
fore, we included 6 variables generated and recom-
mended by all three ADNI funded analysis laboratories
[42, 43] as listed in Supplementary Table 1.

Finally, we included all three CSF measurements
(AB42, tTau, and p-Tau;g;) generated by the ADNI
biomarker core, along with ApoE genotype, ADAS-
Cog, and MMSE scores (see Supplementary Table 1).
Information about the acquisition and measurements
of MRI, FDG-PET, CSF, ApoE genotype, ADAS-Cog,
and MMSE can be found in ADNI procedure manual
(http://www.loni.ucla.edu/ADNI).

MCI subjects

To determine the optimal combination of all the
above biomarkers to predict aMCI to AD conversion,
we used the aMCI subjects from ADNI who had base-
line measurements across all modalities as well as
two-year clinical follow-up. Subjects with other, non-
AD related underlying pathologies (e.g., frontal lobe
dementia, Parkinson’s disease) were excluded. Since
only a subset of the subjects had CSF and FDG-PET
measurements, we had in total 63 aMCI subjects avail-
able for the combined biomarker analysis. Of these, 25
subjects converted to AD within 2 years and 38 subjects
did not (summary in Table 1, a full list of subject IDs is
provided in Supplementary Table 2). Table 1 summa-
rizes the demographic, clinical, and ApoE genotype
profiles of the aMCI cohort split into converter and
non-converter groups. The 2-year MMSE change was
significantly different between the two groups (2-sided
Student’s #-test, p <0.05).

Amyloid imaging was not included, as only about
12% of ADNI subjects had their first amyloid scan
taken approximately one year after baseline. The num-
ber of aMCI patients with PIB-PET measurements and
a two-year follow-up was considered too small for

reliable modeling. The conversion rate in this ADNI
aMCI sub-population is 43% in 2 years, which is con-
sistent with the overall conversion rate (44%) in the
whole ADNI aMCI population. It is noted the ADNI
aMCI conversion rate is higher than what has been
reported in other studies [1].

Bayesian approach for biomarker selection

Given the 31 biomarker measures across multiple
modalities, it is crucial to select the biomarkers that
best separate the converters from the non-converters
in order to obtain a parsimonious model that avoids
over-fitting to noise in the data. In the present study,
we adopted a Bayesian approach, predictive Auto-
matic Relevance Determination (pred-ARD) [44], to
jointly select measurements that are predictive of the
aMCI progression and to train the classifier. Com-
pared to other classification methods (e.g., support
vector machines), where variables have to be selected
separately from the classification task, this Bayesian
method couples the task of variable selection with
classification, and jointly selects predictive variables
from all the available input measurements. Addi-
tional technical details on the Bayesian classification
algorithm, pred-ARD, are provided in Supplementary
Materials.

Before applying this method, we first reduced the
number of variables by eliminating measurements that
were highly correlated with others. We grouped the
full set of 31 variables into binary clusters using their
correlation coefficients. For the purpose of removing
highly redundant variables, only one variable in each
cluster was retained to form a reduced variable set.
Finally, since each variable has different range and unit,
we normalized each variable to have a zero mean and
variance of 1 across the 63 subjects.

After applying the pre-ARD method to the input
variables, we obtain a classification model, where only
variables relevant to separating converters from non-
converters have nonzero weights. Moreover, we can
rank the importance of these selected variables by using
their corresponding weights in the classifier. The larger
the magnitude of the weight, the more significant the
variable is for distinguishing aMCI converters from
non-converters. Finally, we can use the resulting clas-
sification model to directly predict the probability of
conversion for a new patient. The higher the predicted
conversion probability, the more likely the patient will
convert to aMCI within the given follow-up time. For
calculating sensitivity and specificity, we used 50%
as cut-off in this study (i.e., subjects with predicted
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conversion probability >50% are classified as convert-
ers and subjects with conversion probably <50% are
classified as non-converters). We revisit the question
of cut-off selection in the Supplementary Materials.
Because of the limited number of subjects in this
study, we used Leave One Out (LOO) cross-validation
to calculate the prediction accuracy of the classifica-
tion method. That is, we built n classification models,
using n-1 subjects each time and using the resulting
classifier to classify the n-th (left-out) subject as a con-
verter or non-converter. The average LOO prediction
accuracy across all n=63 subjects is reported for the
cross-validation tests shown in this paper.

Logistical impact of biomarker-based enrichment
on clinical trials

The use of biomarker-based screening in clinical
trials involves additional cost and time. In this work,
we also modeled the logistical impact of using these
biomarkers as inclusion criteria in a clinical trial based
on their prediction accuracies estimated using this
Bayesian method.

For the purpose of comparing different enrichment
options, we considered a clinical trial with a dura-
tion of y years and 2 arms of aMCI patients who
have an annual aMCI to AD conversion rate of r.. We
wish to determine the number of patients that must
be screened and enrolled to achieve the desired sta-
tistical power. If Se and Sp are the sensitivity and
specificity of the baseline biomarkers for predicting
the aMCI to AD conversion, then out of Ny aMCI
patients screened, Se x r. * Y *x Ny + (1 — Sp) x (1 —
re * ¥) * Ny patients will be classified as converters
in y years. However, if we enroll all these predicted
converters, only Se xr. *y * Ny are true positives
(will convert to AD), whereas (1 — Sp) * (1 — r¢ *
y) * Ny are false positives (will not convert). We fur-
ther assumed these patients are randomized equally
into the placebo and treatment arms, and the patients
who will convert have a non-zero change of the pri-
mary endpoint responding to the treatment, while

drop-out rate as ry, and we assumed that we only use
patients who complete the last visit to calculate effi-
cacy. Using Equation (1), the total number of patients
needed to detect a given effect size with a specific type
I error rate and statistical power is:

N A Sexrexy+(1—=Sp)x(1—rcxy)
Sexrexy

2

To recruit these N patients, the number of patients
we need to screen is

N
N. =
P Sexrexy+(1—Sp)x(1—rexy)
A ! 3)
~ Sexrexy

Equation (3) shows that the number of patients to be
screened is inversely proportional to the sensitivity of
the screening criteria.

Using Equations (2) and (3), we can compare the
number of patients we need to screen and enroll
for achieving a certain statistical power using differ-
ent combinations of biomarkers as inclusion criteria,
and evaluate the cost-benefit of different screening
strategies. Furthermore, we can estimate the addi-
tional time needed for screening Ny patients, if we
assume a constant patient recruitment rate. Since N;
is inversely proportional to the product of sensitivity,
yearly conversion rate, and the length of the clinical
trial (Equation (3)), the length of screening process pri-
marily depends on the sensitivity of different screening
strategies, when everything else is held equal.

Using the estimated prediction accuracies, we can
calculate the logistical impact of using inclusion cri-
teria in a clinical trial based on different biomarkers
as compared with the scenario where no biomarker
screening strategies are used. We denoted by N,,,_piomk
the number of subjects needed to obtain a certain sta-
tistical power in a clinical trial when no additional
biomarker screening were used. The number of sub-
jects Npiomk needed to achieve the same power using a
biomarker screening strategy can be calculated using
Equation (2) as:

Seno_piomk * (Sepiomk * re * Y + (1 — Sppiomi) * (1 — re x y))

Npiomk =

Nyo_biomk (4)

Sepiomk * (Seno_piomk * Te * ¥ + (1 — Spuo_piomi) * (1 — 1¢ % y))

the patients who will not convert have no treatment
response. For simplicity, we also assumed that the
change in the primary endpoint has the same variance
in the converters and non-converters, and in the treat-
ment and placebo groups. Finally, we denote the yearly

where Se and Sp are the sensitivity and specificity,
rc is the yearly aMCI to AD conversion rate, and y is
the number of years of clinical trial. Using Equation
(4), we can compare the cost in recruiting different
number of subjects under different biomarker screen-
ing strategies. Further, we can compare the differences
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Table 2
Variables separating aMCI patients that converted to AD in 2 years
and aMCI patients that remained stable, ranked by their predictive
power (mean weight) in the classification model

Rank Variable Modality
1 RMIDTEMP RINFTEMP MRI

2 LFUSIFORM MRI

3 RFUSIFORM MRI

4 ApoE 44 ApoE

5 VENTRICLES MRI

6 X2SDSIGPXL X3SDSIGPXL FDG-PET
7 AVEASSOC AVEFRONT FDG-PET

in screening time by calculating the number of patients
needed to be screened using Equation (3). In this study,
our comparison scenario (with no additional biomarker
screening) was based on a 2-year clinical trial in aMCI
patients with a yearly conversion rate of 15%. In this
case, the sensitivity is 100% and specificity is 0% since
we accept all aMCI patients in the trial. Based on an
ongoing clinical trial in AD patients, the cost of fol-
lowing a patient for y = 2 years was estimated to be
$22,000 per person, the cost of acquiring and analyzing
MRI, FDG-PET, CSF, and ApoE data was estimated
to be $4000, $8000, $700, and $120 per acquisition,
per subject, respectively. These values are approxi-
mate, but indicative, and include both acquisition and
analysis costs.

RESULTS

Prediction accuracy based on single biomarker
variables

We first evaluated individual biomarkers to estimate
their predictive power for aMCI to AD conversion.
In this step, we built the classification model sepa-
rately for each of the 31 baseline variables by turning
off the variable selection function in the pred-ARD
algorithm. We then ranked the individual biomarkers
by their LOO classification accuracy (supplementary
Figure 1). Several of the top ranked biomarkers were
derived from volumetric MRI. The highest accuracy
was around 69% by using the right middle tempo-
ral lobe volume. Although the aMCI converters had
on average small hippocampus at baseline, this mea-
surement alone only provided an accuracy of about
63%. The ApoE genotype was ranked the sixth, with
an accuracy of 63%. p-Taujg; provided the best pre-
diction accuracy (57%) among the CSF measurements,
compared with tTau (55%) and AB4; (54%).

Prediction accuracy based on combinations of
biomarker modalities

We then tested the prediction performance using
all biomarkers across all modalities. The dimension-
ality of input variables was first reduced by removing
redundant variables, as described in the Methods. In
this step, we grouped the 31 original input variables
into 22 groups of one or two members. Variables
grouped together were: left and right entorhinal cortex,
right middle temporal cortex and inferior tempo-
ral cortex, left middle temporal cortex and inferior
temporal cortex, left and right inferior lateral ventri-
cle, left and right hippocampus, X2SDSIGPXL and
X3SDSIGPXL, AVEASSOC and AVEFRONT, tTau
and p-Tau;g;, and TOTAL11 and TOTALMOD (refer
to Supplementary Table 1 for variable names). We used
the first variable in each of these groups (ranked alpha-
betically based on variable name) in our analysis.

In this combination study, we first applied the mod-
els to all 22 variables from all modalities. As aresult, a
combination of 7 was selected by the pred-ARD model
to best predict aMCI to AD conversion within 2 years
(Table 2). The temporal lobe volumetric measurements
were ranked the highest among all the input variables,
indicating that these were most predictive of the aMCI
to AD conversion. Atrophy in the fusiform gyrus and
enlargement in the lateral ventricle were also associ-
ated with higher risk of aMCI to AD conversion. ApoE
&4 homozygotes also had a higher risk of converting
to AD. Ranked by modality, MRI measurements had
most predictive power, followed by ApoE genotype
and FDG-PET measurements. This result was con-
sistent with the ranking of individual measurements
shown above.

With the combination of all biomarker modalities,
we obtained an overall prediction accuracy of 81%
(sensitivity = 80%, specificity =81%) in cross valida-
tion. This performance was better than any single
biomarker or variable alone (supplementary Figure 1).
We note, however, that the top 7 features selected
in this combined analysis were not the same as the
top 7 ranked features in the single biomarker analysis
(see above). In fact, the prediction accuracy was only
76% when we used the combination of the top 7 fea-
tures shown in supplementary Figure 1. These results
demonstrated that the classification algorithm can
automatically select the best combination of biomark-
ers that predict the conversion from complementary
aspects.

Next, we applied the classification model to sub-
sets of variables corresponding to the MRI, FDG-PET,
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Fig. 1. Classification Accuracy by the combination of biomarker modalities (bars arranged by the order in the legend).

Table 3

Summary of ADAS-Cog and MMSE changes in subjects with estimated conversion probability >50% in the cross validation using different
screening strategies. All 63 subjects are included when there is no additional enrichment (last row)

Modalities N 2 year ADAS-Cog 2 year MMSE
change, mean (SD) change, mean (SD)

Biomarker MRI, FDG-PET, CSF 29 5.38 (6.29) -2.89 (3.24)
combination (in MRI, CSF 29 4.76 (5.55) -2.15(3.37)
addition to ApoE, MRI 27 4.94 (6.36) -3.04 (3.14)
ADAS-Cog, MMSE) CSF 17 4.26 (4.54) —1.18 (2.43)
ApoE, ADAS-Cog, MMSE 19 4.31(4.97) -1.53 (2.62)
No Enrichment 63 3.36 (5.86) -1.67 (2.87)

and CSF modalities to understand the added value
of each modality (gain in classification accuracy).
In this test, the ApoE genotype and cognitive test
scores were always included since they are typically
available for clinical trials. As shown in Fig. 1, we
found that most of the increased predictive power
obtained with biomarker data was due to the MRI mea-
sures, with FDG-PET and CSF measures providing
incremental improvement in classification accuracy.
Moreover, most of the increased accuracy was driven
by increased sensitivity to clinical progression, with
smaller improvements in specificity.

Distribution of prediction probability and
cognitive score trajectories

Obtaining faster progression and more homoge-
neous clinical trajectory is one of the main reasons
for considering the enrichment strategy discussed in
this paper. Given the noise in the clinical instru-
ments as well as the biomarkers, it must be shown

that an enriched population indeed demonstrates the
desired qualities. To validate the use of these proposed
biomarkers, we calculated the 2-year change of cog-
nitive scores for patients that were predicted to be
converters using the different combination of biomark-
ers. The cognitive scores we considered in this test
include the ADAS-Cog (13 item: 0—85) and MMSE.
In Table 3, we list the mean 2-year change of these
scores in patients who were predicted to have >50%
probability to convert to AD in 2 years. Compared
with the no enrichment scenario, where all 63 subjects
were considered to be converters, patients selected with
additional screening have more aggressive progres-
sion (more change of ADAS-Cog and MMSE scores
in 2 years). Furthermore, among different enrichment
strategies, the addition of biomarkers can help to select
sub-population with faster progression compared with
only ApoE genotype, ADAS-Cog, and MMSE. How-
ever, as shown in Table 3, adding CSF alone did not
result in a subgroup of faster progressors in terms
of the ADAS-Cog and MMSE changes, compared
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Table 4

Cost and time estimates for enrichment using different combinations of biomarker-based screening in a two-year clinical trial in aMCI patients
(with a probability cut-off of 50%). Cost and time saving estimates are calculated relative to the number of subjects needed to achieve a certain

statistical power when no enrichment strategy is used

Modalities Se  Sp Number of Number of Screening  Trial Total ~ Additional Screening Additional
(%) (%) subjects  subjects cost cost cost cost (%) duration screening
screened  enrolled ($10,000) ($10,000) ($10,000) duration
(when
T=2 years)
Biomarker MRI, FDG-PET, CSF 81 80 1.23N 0.47N 1.58N 1.04N  2.62N 19 1.23T 0.47
combination (in MRI, CSF 80 79 125N 0.48N 0.60N 1.06N  1.67N —24 1.25T 0.50
addition to ApoE, MRI 76 79  1.32N 0.49N 0.54N 1.09N 1.63N —26 1.32T 0.63
ADAS-Cog, CSF 40 82 2.50N 0.62N 0.2IN 1.35N  1.56N -29 2.50T 3.00
MMSE)
ApoE, ADAS-Cog, 52 68 1.92N 0.73N 0.02N 1.6IN 1.63N —26 1.92T 1.85
MMSE
No Enrichment 100 O N 0 2.2N 2.2N 0 T 0

with other enrichment strategies. However, as shown
in previous results, CSF did increase the overall
aMCI to AD prediction accuracy due to the improve-
ment in specificity (i.e., identifying the non-converters
correctly).

In Supplementary Figure 2, we plot the histogram
of the predicted conversion probabilities for 63 sub-
jects using different enrichment strategies. With only
ApoE genotype, ADAS-Cog, and MMSE, the pre-
dicted conversion probability is centered around 50%,
which indicates weak predictions. By contrast, with the
addition of biomarkers, the conversion probability is
distributed around either the top (75-100%) or the bot-
tom (0-25%) quartiles, and is statistically significantly
different from the borderline probability (50%) using
student’s r-test (p < 10~20). These results demonstrate
that, compared with only ApoE and cognitive scores,
the biomarker data enabled stronger predictions about
the disease progression.

Logistical implications of biomarker-driven
inclusion criteria for clinical trials

For clinical trials, baseline cognitive tests and geno-
type information would typically be available as
routine. However, the acquisition of CSF and imaging
biomarker data involves additional cost and logistical
constraints. For the purposes of enriching a clinical
trial in a prodromal AD population for likelihood of
imminent progression, it is therefore critical to under-
stand the added value of each modality in a practical
sense.

As shown in Table 4, the overall cost in each scenario
was a trade-off between the additional cost of screen-
ing more patients and the cost saved by recruiting and

maintaining fewer patients in the trial. Using vVMRI, in
addition to ApoE genotype, ADAS-Cog, and MMSE,
we needed to screen about 32% more patients com-
pared with the no-screening scenario, but enroll only
about 49% of the patients into the 2-year trial. As a
result, the overall cost is reduced by 26%. Taking out
MRI from this combination did not change the cost
saving because the increase in trial cost (due to the
reduction of prediction accuracy) is balanced out by
the saving in screening, due to the low cost of ApoE
genotyping ($120/patient). In contrast, although the
combination of all the modalities gave the best pre-
diction accuracy (81%), the high cost of FDG-PET
made this combination the most expensive strategy.
The least expensive strategy was the combination of
CSF with ApoE genotype, ADAS-Cog, and MMSE
(29% cost reduction) because of the lower cost of
the CSF biomarkers compared with MRI and FDG-
PET imaging. When compared with screening based
on genotype and cognitive testing alone, the inclusion
of MRI, CSF, or both in the screening stage did not
markedly alter the overall trial cost.

However, by increasing the number of patients
screened, all the biomarker-based enrichment strate-
gies would lengthen the trial due to an increased time
required for screening. The increased screening time
was determined mainly by the prediction sensitivity. In
Table 4, we listed the additional screening time assum-
ing we need 2 years to recruit N subjects, which made
the total time to be 4 years (with 2 years trial period).
Since MRI measurements mainly improved the diag-
nostic sensitivity, strategies involving MRI were less
time-consuming. Indeed, all strategies involving MRI
reduced the screening duration in comparison to
screening without any biomarkers. For example, using
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MRI, ApoE, ADAS-Cog, and MMSE required only
0.63 year of additional screening time, in contrast to
an additional 1.85 years if only ApoE, ADAS-Cog, and
MMSE were used. Although we have similar cost sav-
ings using both strategies (26%), the addition of MRI
resulted in an overall trial duration that was shorter
by 1.22 years. In contrast, the least expensive strategy
(CSF, ApoE, ADAS-Cog, and MMSE) required the
longest screening time (3 additional years) because
of the low sensitivity (40%) associated with this
combination.

DISCUSSION

We identified a set of biomarker measures for
the purpose of identifying aMCI subjects who will
progress to clinically-diagnosed AD dementia within
2 years, an approach that has the potential to enable
more efficient clinical treatment trials. We found the
most accurate (81%) and sensitive (80%) set of mea-
sures to be a combination of MRI, FDG-PET summary
measures, and CSF (AB42, p-Tauig;, tTau) biomarkers
along with ApoE genotype and cognitive scores.

Although the performance of this combination was
better than any single modality alone, it was driven
predominantly by MRI volumetric measurements
(accuracy 78%, sensitivity 76%). Of the individual
measurements within each modality, vVMRI mea-
surements in the temporal lobe were the strongest
individual predictors, followed by ApoE genotype and
the measurement of hypometabolic activity from FDG-
PET (Table 3). When practicalities such as time and
cost were factored in, a more parsimonious combi-
nation of MRI, ApoE genotype, and cognitive tests
provided a sensitivity of 76%, specificity of 79% and
overall cost savings of 26% with only a 30% increase
in screening duration. We found that the differences
in prediction performance were driven predominantly
by differences in sensitivity, with all measures yielding
similar specificity of ~80%.

In contrast, cognitive scores alone yielded an accu-
racy of 62% and a sensitivity of only 52% in predicting
imminent dementia. This may in part reflect the fact
that both the MMSE and ADAS-cog scales are opti-
mized for AD populations, with aMCI subjects near
the ceiling and floor of each scale, respectively.

The finding of increased prediction accuracy using
a combination of biomarker measures reflects their
association with different aspects of the underlying
pathology and the different temporal relationships
between the biomarker changes and disease trajectory

[45]. Our results are consistent with a number of
other published studies examining combinations of
biomarker modalities for the prediction of short term
conversion from aMCI to AD. In an independent
analysis based on a different subset of ADNI data,
MRI was shown to provide superior predictive power
to FDG-PET in the same subjects [46]. In studies
in which CSF and MRI biomarkers were examined
together, medial temporal lobe atrophy was found to
improve the progression prediction accuracy obtained
by CSF biomarkers alone (74%) to 84% in a sample
of 24 MCI subjects [34]. In a study of 192 aMCI and
98 AD subjects from ADNI, a structural abnormality
index (“STAND”) atrophy pattern score—dominated
by changes in the temporal lobes [23]—was found to
be a stronger predictor of short-term future cognitive
change (~2 years) than CSF measures with a hazard
ratio for time to conversion of 2.6 [15].

MRI measures

The accuracy of MRI measures for predicting aMCI
to AD conversion in a short period of time (2 years)
in the present study is consistent with other pub-
lished findings. Hippocampal measures were found
to be related to increased risk of progression to AD
in a community sample of 80 subjects [18] and in
a referral sample of 190 subjects from the ADCS
Vitamin E Donepezil trial [27]. In a 1.5 year study,
the accuracy in distinguishing between aMCI subjects
who developed dementia and subjects who remained
stable was 70-80% based on MRI analyzed using
deformation-based morphometry [47]. Cortical thick-
ness measures in N=49 referral subjects with a
CDR-SB score of 0.5 provided an accuracy of 74%
(sensitivity 83%, specificity 65%) in predicting pro-
gression in an average follow-up time of 2.5 years [26].
Finally, McEvoy and colleagues recently demonstrated
that using MRI atrophy profiles to distinguish “AD-
like” from “normal-like” subjects in an enrichment
strategy based on baseline atrophy rates can substan-
tially increase the statistical power to detect a treatment
effect [25].

The volumetric MRI measurements used in this
paper were analyzed by UCSD using a well-validated
software package along with careful human curation
[41]. Different image processing methods and proce-
dures will result in slightly different numeric values
and may thus affect the resulting classification accu-
racy in conversion prediction. This and the different
population samples may explain in large part the differ-
ences in sensitivity, specificity and accuracy reported
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between the above studies. Nevertheless, the reported
accuracy values of 70-80% are consistent with the
present report.

FDG-PET measures

In the present study, both FDG-PET measurements
and ApoE genotype were found to be strong pre-
dictors of aMCI to AD progression. In a previous
study of 30 MCI patients, FDG-PET was shown
to have a better prediction performance (sensitiv-
ity 92%, specificity 89%) compared with ApoE &4
(sensitivity 75%, specificity 56%) [31]. The superior
performance of FDG-PET measurements (compared
with ApoE) in the other dataset may be due to differ-
ences in both the subject sample and image analysis
methods.

CSF biomarkers

Over 100 separate publications have reported the
association of abnormally low A4, high tTau and
p-Tauig;, or changes in various ratios derived from
these three parameters with both neuropathologically
confirmed and clinically-defined probable AD demen-
tia. Abnormal, AD-like, CSF neurochemical profiles
tend to occur early among individuals presenting
with MCI who subsequently manifest AD dementia.
Numerous previous studies supported the use of CSF
biomarkers for AD diagnosis [4, 8, 28-30, 48, 49]
and reported MCI to AD conversion prediction accura-
cies of 85-95%, although with better performance for
substantially longer follow-up times.

Longitudinal analyses of AD patients suggest that
decreases in CSF AB4> occur early and more abruptly
than observed increases in CSF tTau and p-Tau;g;.
The AD-associated decrease in CSF A4, also occurs
considerably earlier than disease-associated abnormal-
ities in FDG-PET, structural MRI, and cognitive and
behavioral changes. This early manifestation of CSF
neurochemistry changes in the AD disease process is
a probable factor in our finding that CSF measures
did not provide as sensitive a prediction for aMCI to
AD dementia progression within a 2 year time win-
dow when compared to structural MRI and FDG-PET.
The latter modalities may reflect later stage disease
processes with more rapid changes close to the aMCI
to AD stages [45]. As a result, CSF biomarkers were
noted to be poorer predictors for imminent progression
from aMCI to AD dementia relative to structural MRI
and FDG-PET.

Logistics and trade-offs for clinical trials

The main aim of this study was to examine the
relative utility of different biomarker modalities (and
combinations thereof) to predict short-term conversion
from aMCI to clinical AD dementia for the purpose
of enriching clinical treatment trials. These biomark-
ers can thus be used at screening to enroll only aMCI
patients who are predicted to convert to AD within
the specified time frame. The rationale for such an
enrichment strategy has several aspects: 1) imminent
converters are more likely to have the underlying AD
pathology at which a disease-modification treatment
is targeted; 2) the study population will represent a
more homogeneous sample of a particular stage in
the disease trajectory, hence increasing the power of
clinical outcome measures; and 3) the possibility of
using conversion events as an endpoint. However, the
acquisition of biomarker data has associated costs in
both time and monetary terms. The overall benefit
of using biomarker-based enrichment is a trade-off
between saving in trial cost, additional screening time
and potentially reduced trial duration due to fewer sub-
jects needing to be maintained in the trial. Using the
proposed logistical model, we have shown that the
additional screening time is determined only by the
predication sensitivity of these strategies. Using costs
and parameters taken from an ongoing Phase III clin-
ical trial, we thus also compared this trade-off and
consider the logistical impact of different biomarker
strategies to screen patients in a putative clinical
trial.

In the present context, a biomarker strategy is most
efficient when the acquisition cost is low and the
prediction accuracy is high. Although MRI was the
strongest aMCI to AD conversion predictor, it is only
beneficial when the prediction accuracy is high enough
to compensate for the increased cost ( $4000/patient).
Based on our classification results and trial simu-
lations, using enrichment based on structural MRI
along with ApoE genotype and cognitive tests would
require the enrollment of approximately half the num-
ber of subjects that would be needed if no additional
screening beyond the ADNI aMCI entry criteria were
used. An additional 32% of subjects would need to be
screened, increasing the enrollment period and length-
ening the trial overall, but the overall trial costs would
be reduced by 26%. Using CSF measures instead of
structural MRI resulted in even greater cost savings
(29%), despite the lower prediction accuracy, due to the
lower unit cost for the CSF measures ( $700/patient).
However, the lower prediction sensitivity resulted in
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a much longer expected enrollment and overall trial
duration. In contrast, the use of a combination of
MRI, FDG-PET, ApoE genetotype, and cognitive tests,
yielding the highest prediction accuracy (81%) and an
optimally enriched trial population, would increase the
overall trial cost (~19%) because of the high costs
associated with both MRI and FDG-PET imaging,
despite the smallest increase in trial duration compared
with all other biomarker combinations. Overall, based
on the prediction estimates obtained in the present
study, we found that the combination of MRI, ApoE
genotype, and cognitive tests performed well in terms
of cost saving (26% compared with no enrichment) and
relatively modest increase in screening time. Indeed,
if our model were applied to genotype and cognitive
test screening data alone, the trial duration would actu-
ally be increased with no compensatory overall cost
savings, compared with the inclusion of MRI.

Importantly, we note that although these results were
derived based on certain assumed values related to the
trial setup, cost structure, and annual aMCI to AD
conversion rate, the mathematical framework we intro-
duced for this analysis is quite general. It can be applied
with any defined parameter values to assess the impact
of biomarker-based enrichment strategies on both cost
and time. The intensive use of biomarkers in clinical
trials also brings other logistical issues. For example,
many patients, site investigators, and IRBs in some
countries do not accept the lumbar puncture proce-
dure required to obtain CSF. If CSF sample collection
is a required part of a clinical study, the inability or
unwillingness to conduct lumbar puncture may thus
constrain site selection. Similarly, the requirement for
imaging data requires the involvement and coordina-
tion of suitable imaging sites within traveling distance
of the clinical centers.

Limitations

In the ADNI study, while almost all subjects had
1.5T MRI at multiple time points, only about 50% of
subjects had CSF biomarker data and 50% had FDG-
PET scans. Accordingly, the biomarker data available
at the time of the present analysis comprised only
63 aMCI subjects with all three of these modalities
available and that had been followed for 2 years sub-
sequent to their first (baseline) measurements. The
observations made in this study, such as the increase of
prediction power by using multiple modalities and the
ranking of different modalities in predicting aMCI to
AD conversion, need to be further validated in larger
datasets. We further note that while this performance

may prove useful for enriching populations for clini-
cal trials, it is not yet robust enough for general clinical
use.

CONCLUSIONS

Using a Bayesian classification method, we found
that a combination of structural MRI and FDG-PET
imaging, CSF measurements, and ApoE genotype
provided better prediction accuracy (81%; sensitiv-
ity 80%) of aMCI to AD conversion than any single
modality alone. This performance was primarily driven
by vMRI measurements (accuracy 78%, sensitivity
76%). However, the overall utility of using these
biomarkers as an enrichment strategy for clinical trials
also involves consideration of the impact on both cost
and trial duration. Based the ADNI dataset, we found
that a more parsimonious combination of vVMRI mea-
sures, ApoE genotype, and cognitive tests provided
both considerable cost saving and a short screening
time compared with other screening strategies.
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