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Abstract. According to the amyloid theory, the appearance of amyloid-� (A�) deposits represents a pivotal event in late onset
Alzheimer’s disease (LOAD). Physiologically, A�42 monomers are cleaned by capillary resorption, enzymatic catabolism,
and cerebrospinal fluid (CSF) transport. Factors that promote the oligomerization of A�42 must be specified. In vitro, these
monomers spontaneously form neurotoxic oligomers whose rate increases with time suggesting that the stasis of CSF favors the
oligomerization. In animals, experimental hydrocephalus generates CSF stasis followed by the appearance of amyloid deposits.
In normal pressure hydrocephalus, amyloid deposits are common, especially in elderly patients, and the turnover decline has the
same order of magnitude as in AD. In this disease, the effects of CSF stasis are potentiated by the decline in the ability of CSF
to inhibit the formation of oligomers. CSF originates from choroid plexus (CP). In LOAD, the functions of secretion, synthesis,
and transport of CP are impaired and this is related to morphological modifications. These impairments favor the decrease of
CSF turnover, the diminished levels of transthyretin, a sequestering protein synthesized by CP, and the oligomerization of A�42.
They are potentiated by a reduced enzymatic catabolism and a decreased capillary reabsorption of A�42, both alterations being
related to age.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive age-
related neurodegenerative disease whose incidence
increases dramatically with age. From age 65 to 90
years, the annual incidence is multiplied by 20 and rises
to 56 per 1000 person-years in patients older than 90
years [1]. Despite increasing knowledge and advances
in treatment, this disease is always fatal within a few
years.

Pathologically, AD is characterized by the coexis-
tence of two types of lesions: amyloid plaques that
consist mainly of extracellular deposits of amyloid-�
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(A�) peptide fibrils, which have several isoforms
(A�40, A�42, and N-truncated species) and intracellu-
lar neurofibrillary degeneration consisting of twisted
filaments of hyperphosphorylated tau [2]. The amy-
loid theory suggests that deposits of A�42 are the key
event of this disease and that they precede clinical signs
by several years [3–5]. This peptide can be removed
by capillaries, enzymatically degraded, or eventually
eliminated into cerebrospinal fluid (CSF) [6].

Hereditary AD is uncommon and results from muta-
tions of the amyloid-� protein precursor (A�PP) or
presenilins (PS-1 and PS-2), which cause the for-
mation of oligomers by hyperproduction of A�42,
increase of its aggregatability, or decrease of its
catabolism [7].

Late onset Alzheimer’s disease (LOAD) represents
the majority of AD cases. It is defined by onset at age
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65 years or older and appears to affect around 50% of
all people over the age of 90. It is often observed with
a strong familial clustering [7]. The natural history of
LOAD is becoming better known. Deposits of A�42
oligomers begin many years before the first clinical
signs [4]. They are neuro- and synapto-toxic and induce
the phosphorylation of tau [8]. The rate of oligomers in
brain tissue from AD patients is 12 times higher than
that of controls [9].

LOAD is a complex multifactorial disease. Age,
diabetes, hypertension, dyslipidemia, physical and
cognitive inactivity, smoking, and low educational
attainment are well known risk factors [10]. Several
hereditary risk factors have been identified including
ApoE4 gene that confers a higher risk, presumably
by impaired clearance of A�42 [11]. CLU, PICALM,
CR1, and BIN1 have been recently discovered, but
they exert modest effects on AD risk [7, 12]. Anti-
amyloid therapies are effective in transgenic mice,
but to date in humans they are disappointing, prob-
ably because the etiology is more complex and that
A� alone cannot explain all aspects of AD. The fac-
tors that promote oligomerization of A�42 and the
amyloid-independent mechanisms should be specified
to prevent and treat this dreadful disease more effec-
tively [13].

Disorders of CSF hydraulics have long been known
but their place in the pathogenesis of AD remains elu-
sive [14–17]. We propose to study the role of CSF, its
turnover, and choroid plexus (CP), which secretes the
highest amount of CSF and thus may play a key role in
the pathogenesis of this disease. Here we present the
various ideas supporting our hypothesis.

A�42 METABOLISM

A�40 and A�42 are physiological catabolytes of a
membrane precursor A�PP, expressed in many tissues
and particularly by astrocytes, neurons, and platelets.
These monomers are not neurotoxic and are found in
plasma, CSF, and interstitial fluid (ISF). In vitro, placed
in saline, they spontaneously form soluble oligomers
of 3–50 A� monomers, then soluble protofibrils, and
finally fibrils whose rate increases with time; A�42
oligomerizes more rapidly than A�40 [18, 19].

A significant proportion of A�42 comes from out-
side the brain, mainly from the platelets. The brain
capillaries can reabsorb plasma A�42 through RAGE
(receptor for advanced glycation end products) [20].
A�42 is eliminated in several ways [6]. It can be
reabsorbed in capillaries by two transporters, P-gp
(P-glycoprotein) and LRP-1 (low density lipoprotein

receptor-related protein-1), located on the luminal and
abluminal side of the cerebral endothelium [21]. It can
be locally degraded by several enzymes: neprilysin,
insulin degrading enzyme, angiotensin converting
enzyme, endothelin converting enzymes 1 and 2, and
matrix metalloproteinases 2, 3, and 9. It can be also
drained into the CSF where it forms complexes with
apolipoprotein J, �2-macroglobulin, or transthyretin
(TTR), that bind at a choroid carrier, megalin or
LRP-2, and are sent out in the blood [22]. This way
eliminates 10–15% of A�42 and seems secondary
[6].

During physiological aging, neprilysin activity rates
decrease [23]. In capillaries, the levels of LRP-1
decrease and the rates of P-gp decrease significantly
only in very old animals (30–36 months) [20]; the
expression of RAGE decreases until 9 months and
then progressively increases [24]. In CPs, the modi-
fications are different; the RAGE expression does not
vary, there is an increase in the transcription of the
A� efflux transporters (LRP-1, P-gp), and a decrease
in megalin. These opposite changes suggest a com-
pensatory role for CPs in A� clearance in aging. All
these age-related changes should alter the clearance
of A�42 and probably modify the relative importance
of each pathway [25, 26]. However, these defects are
not enough to induce AD, since nearly 60–80% of
elderly healthy controls have no overload of A�42
[27].

In AD cases, there is a strong positive microvascu-
lar RAGE immunoreactivity, suggesting that a portion
of A�42 is coming from outside the brain [28]. Using
metabolic labeling, Mawuenyega and colleagues have
measured A�42 and A�40 production and clearance
rates in the brain of AD patients and cognitively nor-
mal controls. Amyloid deposits are not primarily due
to an overproduction of A�42 or A�40 but rather to a
decrease of about 30% of the clearance [29]. In AD, the
activities of catabolytic enzymes of A�42 are modified,
but some changes seem to be in reaction to the accu-
mulation of A�42 or to compensate for the declining
activity of other enzymes. For example, the decrease
in insulin degrading enzyme and neprilysin activi-
ties might be a late-stage phenomenon secondary to
neurodegeneration [30].

CHOROID PLEXUS

CPs are small intra-ventricular organs, which form
an interface between blood and CSF. By their location,
we can distinguish two ventricular CPs located in each
lateral ventricle, one median CP located in the roof
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of third ventricle, and two CPs lying in fourth ventri-
cle. All CPs weigh approximately 3 g in humans and
contain about 100.106 cells [31].

They are composed of villi, with a central vascular
axis, covered by a cuboidal epithelium, unistratified,
ciliated, with a brush border and numerous mitochon-
dria. The epithelial cells are separated from central
vessels by a thin and regular basement membrane about
80 nm thick and a thin connective stroma. The height of
epithelial cells is about 15 �m [31, 32]. The capillaries
are large and the endothelium is fenestrated type with
pores of 30–50 nm, and it is based on a thin and regular
endothelial basement membrane about 60–70 nm thick
[32]. There are also some dendritic cells lying within
the epithelium and the stroma that suggest CPs may
actively participate in immunological brain protection
[33].

CPs are vascularized by anterior choroidal artery,
terminal branch of internal carotid artery, and poste-
rior choroidal artery, a branch of posterior cerebral
artery, which itself comes from basilar artery. These
arteries are widely anastomosed [34]. The blood flow
of CPs was measured using radioactive microspheres
and found to be approximately 4 to 7 times greater
than blood flow in the cerebrum of monkeys and dogs
[35].

The secretion of CSF is one of the first known
functions of CPs. The movement of water is a classic
osmotic movement ranging from capillaries to ventri-
cles. As in the kidney, it is regulated by two enzymes:
Na+K+ATPase and carbonic anhydrase [36]. Water
molecules are driven by ionic gradient through water
channels AQP1 located at the apical zone of cells
[37].

CP epithelial cells have an intense enzyme activity,
estimated at half that of kidney [38]. They synthe-
size and secrete many molecules with quantitative and
qualitative variations depending on species, age, and
circumstances [39]. The most abundant protein syn-
thesized is TTR, which, in vitro, is about 20% of newly
synthesized molecules and 50% of the molecules
secreted by the CP epithelial cells [40].

They are the pathway to the brain for many prod-
ucts. Over forty carriers have been described for
different types of molecules. To reach brain, folate,
glucose, amino-acids, vitamins (B6, B12, C, and prob-
ably E) are actively transported by CPs [41, 42]. They
actively reject brain-born compounds and, accordingly,
present important neuroprotective functions. For
example, they eliminate A� from CSF by a saturable
mechanism [43, 44], synthesize megalin, which trans-
ports A� and several proteins (TTR, apolipoprotein J,

etc.) [22], and secrete nutritive polypeptides and partic-
ipate in repair processes following brain trauma [45].

With aging, CPs are the site of morphological
changes. In rats, the height of epithelial cells decreases
by 20% and the epithelial basement membrane thick-
ens as the stroma [46]. In humans, epithelial cells
contain Biondi bodies (ring-like structures located
in the cytoplasm of choroid plexus epithelial cells)
and lipofucsin deposits [47, 48]. The height of cells
decreases by 10%, while the thickness of the epithe-
lial basement membrane doubles. The fibrous stroma
thickens and contains psammoma bodies (round lamel-
lar collections of calcium) and calcifications [32, 48].
The rate of calcifications increases significantly with
age; by the eighth decennia, 86% of patients have CP
calcifications [49]. The walls of arteries thicken mainly
in the media, and the elastic fibers are fragmented
[31, 48].

In old rats, choroidal enzymatic activities, includ-
ing the rates of enzymes involved in the secretion of
CSF, decrease [50, 51]. In situ hybridization analy-
ses showed that mRNA levels for Na+K+ATPase and
aquaporin 1 were significantly lowered in CP of old rats
[52], and the expression of megalin (LRP-2) decreases
[25]. Epithelial cells secrete less VEGF and neuropro-
tective properties are diminished [53].

These anatomical and enzymatic changes explain
the decrease of CSF secretion. In animals, it decreases
by half as well in rats than in sheep. In humans, it
also declines with age. In a newborn, it is 0.60 ml/min,
in adult 0.41 ml/min, and in elderly 0.19 ml/min
[54–56].

CEREBROSPINAL FLUID

Classically about two-thirds of CSF comes from CPs
and the rest comes from ISF drainage [57]. ISF is a
product of the metabolism of brain cells and brain cap-
illary endothelium. The total volume of ISF is 15–18%
of the brain weight [58]. The secretion rates of ISF
and CSF in the rat have been respectively estimated at
0.2 �l/min and 3.4 �l/min [58]. The evolution of ISF
flow in aging is unknown.

Once secreted, CSF moves through the Sylvius
aqueduct, the fourth ventricle, the Magendie foramen,
and the subarachnoid spaces surrounding brainstem.
CSF flow is partially generated by the systolic pulse
wave [57]. Some flow continues to the spinal cord, but
most of the CSF is reabsorbed in the superior longi-
tudinal sinus and the cribriform plate of ethmoid [57].
The resistance to CSF outflow increases significantly
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with aging; this is related to fibrosis of meninges and
decreased reabsorption [59].

The total volume of CSF doubles with aging accord-
ing to brain atrophy. In young adults, it is about 140 ml
and more than 300 ml in elderly [60]. The volume of
ISF is approximately 280 ml [61]. The increased vol-
ume of CSF and decreased secretion by CPs explain
the decrease in turnover with age. This latter is defined
by the volume of CSF produced in 24 hours divided
by the volume of the CSF space. In rats, it is divided
by 3 [54, 55]. In humans, in newborns, young adults,
and elderly controls, it is 6, 4.5, and 3 times a day,
respectively [56].

CSF is not a simple ultra filtrate; its composition is
different from that of plasma [41]. The level of Na+,
K+, Ca++, and HCO3

− are lower than in plasma. The
concentration of glucose is equal to 60% of that of
plasma. Folate and ascorbate levels are 3 and 4 times
higher, respectively, in CSF than in plasma indicating
an active transport [42]. The rate of proteins is low, less
than 0.5 g/l. It varies by location: it is lower in ventricu-
lar than in lumbar [61]. The case of TTR is particular as
it is synthesized exclusively by the liver and the CPs.
Serum levels are 18 times higher than those in CSF,
with a small quantity coming from plasma by transu-
dation, about 3% in the ventricular CSF and 10% in
the lumbar CSF. Ventricular rates are slightly lower
than lumbar [40]. The rate of different proteins varies
according to age. It is lower in young than in elderly
patients, and this increase is inversely proportional to
the decrease in the age-related CSF turnover [62]. TTR
levels gradually increase with age [63].

Ependymal cells lining the ventricular cavities are
not connected by tight junctions, which allows per-
manent exchanges. In animals, the levels of A�40
and A�42, measured by microdialysis in CSF and
ISF, are almost similar [64]. In physiological condi-
tions, CSF is an accessory pathway of elimination
of A�42 [6]. The rate of intra-ventricular A�42 in
healthy controls is unknown for ethical reasons.
Patients with chronic communicating hydrocephalus
have almost similar rates of ventricular and lumbar
A�42 [65].

One team of scientists challenges the classical the-
ory. Oreskovic and Klarica minimize the importance
of CP secretion [66]. They are amazed to note that
hydrocephalus can occur in a fully open and pass-
able CSF system without impaired CSF circulation
and absorption, and despite the established blockade of
CSF pathways, the development of hydrocephalus was
not always obtained. They claim that the permeability
of CNS microvessels to water is relatively high and

the huge area of CNS capillaries is 5000 times larger
than that of CP capillaries, so the role of CNS capil-
laries in the filtration and reabsorption of CSF should
be more important than that of CPs. They are surprised
that these small organs, weighing 3 g, secrete 300 ml
of CSF per day and question the validity of data on the
CSF secretion by CPs.

All this is a matter of debate: it should be remem-
bered that the CP secretion is an active process,
regulated by two enzymes [36] and that some hydro-
cephalus are not likely due to a disorder of the CSF
hydraulics. This requires further investigation. In any
case, there is a continuous mixing between ISF and
CSF by systolic pressure waves of blood circulation,
which creates a functional unit and disperses com-
ponents. The fact that AQP1 null mice had reduced
CSF production and a diminished intracranial pressure
reinforces the classical theory [67, 68].

CHOROID PLEXUS, CEREBROSPINAL
FLUID, AND ALZHEIMER’S DISEASE

CSF, an indicator of brain injury

In LOAD, CSF analysis reveals decreased levels of
A�42 and increased levels of t-tau (total tau) and p-tau
(hyperphosphorylated tau). The increase of t-tau and
p-tau reflects neuronal damage [4]. Autopsy studies
have shown that the decrease of CSF-A�42 is inversely
proportional to amyloid load which was confirmed by
using PIB PET imaging [69, 70].

Biomarker abnormalities precede clinical symptoms
[4]. The finding of low CSF A�42 levels associated with
high p-tau rates predicts the presence of AD patho-
logic features with high accuracy [71]. In patients
with amnesic mild cognitive impairment, this asso-
ciation predicts a future cognitive decline and those
who rapidly decline have lower levels of A�42 and
higher levels of t-tau and p-tau [72]. In healthy older
adults, this association correlates with a future cogni-
tive decline [73].

CSF levels of glutamate, an important neurotrans-
mitter toxic at high doses, are increased in patients with
AD [74]. Amadori products and advanced glycation
endproducts increase in the CSF of patients with AD
[75, 76]. The CSF levels of isoprostane, a non-specific
marker of lipid membrane peroxidation, increase with
the progression of cognitive decline, while the levels of
neurofilaments light chains, which reflect the degree of
neuronal degeneration and axonal loss, decrease over
time [77].
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CSF, an agent of AD

Patients with AD have significant problems of CSF
hydraulics. Before the advent of computed tomogra-
phy, scinticysternography was a valuable aid in the
diagnosis of normal pressure hydrocephalus (NPH).
After lumbar injection of a radionuclide in patients
with AD, several authors have found an intraventricu-
lar reversal flow and delayed clearance [14–17]. This
could suggest a decreased secretion of CSF by CPs,
and actually this secretion, measured by the method of
Massermann, is divided by 2 compared to age-matched
controls. In AD the CSF-turnover decreases and is less
than 1.5 time a day; it might even be around 0.75 time
a day [59, 78]. Furthermore a substantial proportion of
AD patients have very low CSF pressure [79].

The subarachnoid injection of kaolin in rats gener-
ates hydrocephalus by altering CSF reabsorption, the
resulting CSF stasis being followed by the appear-
ance of amyloid deposits and an increase in p-tau and
dendritic impairment. This accumulation appears only
when the kaolin injection is applied in aged rats (12
months) and not in neonatal or young rats (3 months).
This fact suggests a change in the process of clearance
with age [26].

There are several human diseases in which the
turnover is decreased. Particularly in idiopathic NPH,
the turnover is lowered to 1.5 times a day as in AD
[59]. Phase magnetic resonance imaging enables the
quantification of CSF flow and may be of value for
differentiating NPH from AD. Although these two
diseases are characterized by a lowered turnover, ven-
tricular and aqueductal CSF oscillations are much
higher in NPH than in AD and healthy controls, and this
hyperdynamic aspect suggests different mechanisms in
CSF hydraulic disturbance [80].

Lesions of AD are common in NPH [81–86]. How-
ever, amyloid deposits are not specific for idiopathic
NPH and are also found in secondary NPH. In a
series of 433 patients with idiopathic or secondary
NPH, Leinonen and collaborators found such amyloid
deposits in 186 patients (43%) on brain biopsies [86].

Biologically, this condition is characterized by lower
rates of A�42, and higher t-tau in CSF [87, 88]. The
decrease of A�42 levels reflects the brain seques-
tration [69]. Ventricular levels of A�42 are lowered
in idiopathic or secondary NPH, surgical hydro-
cephalus communicating or not communicating. In
these pathologies, A�42 decrease is not specific for
idiopathic NPH and seems rather related to decreased
turnover [65]. In patients with NPH, AD lesions
increase with aging: Bech found AD lesions in 22%

of patients with an average age 64 years, Savolainen in
31% of patients with an average age of 66 years, and
Golomb in 41% of more older patients (m = 77 years)
[84–86]. Silverberg found AD lesions in 75% of very
old patients with idiopathic NPH [59].

All those studies show that the CSF stasis, as well
in humans as in animals, promotes amyloid deposits
mainly in aging. This confirms indirectly the important
compensatory role of CSF and CPs in A�42 clearance
when the abilities of enzymatic catabolism or capillary
clearance are reduced [25, 26]. In contrast, increased
CSF turnover could have protective effects against
amyloid deposits [89]. The long term consumption of
caffeine increases Na+K+ATPase and CSF production
in Sprague-Dawley rats [90]. In transgenic mice, long-
term administration of caffeine reduces A� deposits
probably by the decreased expression of presenilin
1 and �-secretase, but the effects on CSF secretion
are unknown and needed to be investigated by further
studies [91].

In patients with AD, the turnover decline has the
same order of magnitude as in idiopathic NPH, but the
effects of CSF stasis are potentiated by the decline in
the ability of CSF to inhibit the formation of oligomers
[18]. Indeed, in vitro, A�42 monomers placed in saline
form spontaneously oligomers within a few hours. This
oligomerization is greatly reduced when the saline
is replaced by CSF of control subjects; however, it
decreases very little when it is replaced with the CSF
of patients with AD. The CSF of healthy controls
seems to contain some elements that inhibit the for-
mation of oligomers [18, 92] and effectively the rates
of A�42 binding proteins are reduced in the CSF from
AD, especially the CSF levels of cystatin C, beta-
trace, and TTR, three molecules synthesized by CPs
[63, 93].

The CSF levels of vitamin E decrease [94]. The
reduced CSF/plasma ascorbic acid ratio predicts a cog-
nitive decline [95]. These vitamins are carried by CPs
and are two major CSF scavengers of free radicals.
These decreases could explain reduced antioxidant
properties of CSF [94]. The CSF levels of folate
and vitamin B12, two vitamins carried by CPs,
decrease significantly [96, 97]. These vitamins are
involved in many brain metabolisms and particu-
larly in methylation processes. Folate depletion could
explain the increase of brain homocysteine levels and
secondarily the production of highly toxic 4-hydroxy-
2-nonenal [98]. In vitro, folate deficiency induces an
increase in p-tau immunoreactivity [99]. The decrease
in turnover increases the contact time between pro-
teins and glucose which promotes the glycation of
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proteins, including TTR, and increases oxidative stress
[75, 100].

CPs and AD patients

In LOAD, CP changes are known since 1976 [101].
The CP morphological changes related to aging are
significantly accentuated: epithelial atrophy is more
important, epithelial cells lose 30% of their height, and
the thickening of the epithelial basement membrane
is increased. The fibrosis of stroma can reach several
tenths of microns and is almost always accompanied by
calcifications, mainly at glomus [32, 101]. The percent-
age of cells containing Biondi bodies increases [102].

Immunofluorescence studies also show that megalin
synthesis is reduced and there is an intracellular accu-
mulation of A� which could disturb megalin-mediated
transport and protein synthesis [22]. An increase of
oxidation markers has been demonstrated in Western
blots performed on CP homogenates of patients with
advanced AD, indicating an oxidative damage related
to AD progression [103]. It should be noted that CSF
TTR levels are not reduced in patients with Down syn-
drome, a disease characterized by amyloid deposits
secondary to hyperproduction of A�42; this confirms
that A� deposits are not responsible for the declining
of TTR rates [104].

These anatomical changes have been described in
patients who died after a long development of LOAD;
they could be the consequence of this disease and
late onset. In fact, there are many direct and indirect
arguments for a primary involvement. Experimentally
the CP features due to a mechanical obstruction of
CSF flow are different. CPs from hydrocephalic dogs,
examined one month post kaolin injection, show a
flattened epithelium without stroma fibrosis or thick-
ened basement membranes [105, 106]. In humans, the
disturbances of CSF hydraulic visualized by scinticis-
ternography, the decrease of turnover and pressure of
CSF have been described in patients with mild demen-
tia [14–16, 59]. The CSF levels of TTR and cystatin
C, two molecules synthesized and secreted by CPs,
and CSF vitamin B12 and folate levels, two molecules
transported by CPs, are reduced at initial diagnosis
of AD [63, 93, 96, 97, 104]. This suggests an alter-
ation of the CP functions of synthesis, secretion, and
transport for many years before death. These abnor-
malities, potentiated by reduced enzymatic catabolism
and capillary clearance of A�42 related to age, and,
risk factors that decrease the A�42 catabolism, such as
the ApoE4 gene, promote a favorable environment for
A�42 oligomerization.

Theoretically, it is logical to suspect a modification
of the genes involved in the secretion of CSF [107]. It is
interesting to know that a transgenic CP hypofunction
promotes amyloid deposits: A�PPswe+/+ transgenic
mice harboring a hemizygous deletion of TTR have
A� deposits earlier and larger than A�PPswe+/+
mice without deletion of TTR [108]. In fact, up to
now, genome-wide association studies have not shown
genetic risk factors among these genes [12, 109]. As
in kidney, the anatomical changes (fibrosis and calci-
fications of stroma, thickened basement membranes)
suggest the involvement of environmental factors
such as vascular risk factors (diabetes, hypertension,
dyslipidemia).

CONCLUSION

A�42 is physiologically eliminated by three ways:
enzymatic degradation, capillary reabsorption, and
drainage into CSF where it is reabsorbed by CPs. Dur-
ing aging, these three ways are affected but this is not
enough to cause amyloid deposits in the majority of
cases.

In vitro A�42 monomers form spontaneously
neurotoxic oligomers within a few hours, and in exper-
imental conditions the decreased turnover of CSF by
stasis favors the occurrence of amyloid deposits.

In some human diseases characterized by CSF
decreased turnover amyloid deposits are common,
especially in the elderly. In surgical hydrocephalus,
this decline in turnover is due to a disturbance of the
hydraulic and/or reabsorption of CSF, and in the case
of AD that suggests an impairment of secretion by CPs.

In AD, CP modifications are numerous: epithelial
atrophy, fibrosis and calcifications of stroma, and thick-
ened basement membrane. These abnormalities mod-
ify CP functions: synthesis, secretion, cleaning, and
transport. The changes in CP result in lower turnover
and CSF stasis, reduced levels of TTR and megalin;
they induce altered A� clearance, increase CSF pro-
tein glycation, oxidative stress, ascorbate and folate
deficiency, and tau phosphorylation. All these argu-
ments suggest that LOAD may be due to a decreased
CSF turnover related to a choroid plexopathy.
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[33] Serot JM, Béné MC, Foliguet B, Faure GC (2010)
Monocyte-derived IL-10-secreting dendritic cells in choroid
plexus epithelium. J Neuroimmunol 105, 115-119.

[34] Wolfram-Gabel R, Maillot C, Koritké JG, Laude M (1987)
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