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Abstract. Oxidative stress and loss of cellular Ca2+ homeostasis are closely linked and are common denominators in the
pathophysiology of many neurodegenerative diseases and acute disorders of the nervous system. Mitochondria are major targets
of oxidative stress and abnormal intracellular Ca2+, as both can cause bioenergetic failure through synergistic activation of the
mitochondrial inner membrane permeability transition pore. Opening of this molecularly ill-defined pore causes both collapse of
the membrane potential, which drives oxidative phosphorylation, and release of small metabolites, including pyridine nucleotides
and glutathione, which are necessary for energy metabolism and defense against oxidative stress. Expression of genes coding for
many antioxidant defense proteins is regulated by the Nrf2 transcriptional activating factor. Translocation of this protein from
the cytosol to the nucleus is stimulated by oxidative stress and by specific agents that either react with cysteine sulfhydryl groups
present on the protein KEAP1, that normally binds and restricts Nrf2 translocation, or that stimulate serine phosphorylation of
Nrf2. Recent evidence indicates that mitochondria are a target of the cytoprotective gene expression induced by Nrf2 and that this
pathway can increase resistance to redox-regulated opening of the permeability transition pore. Pharmacologic stimulation of the
Nrf2 system and its protection against mitochondrial bioenergetic dysfunction may therefore constitute a powerful mechanism
for both pre-conditioning against neurodegeneration and for post-conditioning against neural cell death associated with acute
neurologic injury.
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OXIDATIVE STRESS AND MITOCHONDRIAL
DYSFUNCTION IN NEURODEGENERATION

Figure 1 summarizes many of the known targets of
reactive oxygen and nitrogen species (ROS/RNS) that
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are located at mitochondria or that are extramitochon-
drial but have strong secondary effects on mitochondri-
al bioenergetic or apoptotic activities. The most acute
influence of ROS/RNS on mitochondria is mediated
by oxidative modifications of proteins present in the
electron transport chain (ETC) [1,2], other metabolic
proteins, e.g., pyruvate dehydrogenase aconitase and
α-ketogluatarate dehydrogenase [3–5], and the inner
membrane permeability transition pore (PTP) [6,7].
Oxidation of cardiolipin, a phospholipid primarily lo-
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Fig. 1. Mitochondrial targets of reactive oxygen and nitrogen species
and their effects on mitochondrial bioenergetic and apoptotic activi-
ties.

cated in the mitochondrial inner membrane, can al-
so cause rapid mitochondrial functional alterations, in-
cluding stimulated release of mitochondrial apoptotic
proteins [8,9]. Oxidation of mitochondrial mRNA can
limit the expression of any one of the 13 polypeptides
coded for by the mitochondrial genome, resulting in
delayed bioenergetic impairment [10]. Metabolic de-
pression and increased ROS production by the ETC al-
so occurs in response to mitochondrial DNA oxidation,
which is associated with neurodegenerative disorders
and normal aging [11]. Finally, ROS/RNS are known to
stimulate the activity of poly-ADP ribose polymerase 1
(PARP1) and the expression of P53, which in turn can
cause release of mitochondrial apoptotic proteins and
poly-ADP ribosylation of mitochondrial proteins [12–
15].

Several lines of evidence support the hypothesis that
oxidative stress and associated mitochondrial bioener-
getic dysfunction and activation of apoptosis are com-
mon etiological factors in many neurodegenerative dis-
eases and acute disorders of the central nervous system
(CNS) [16]. Descriptive experimental support includes
the findings that mitochondrial morphology is altered,
that metabolic activities are depressed, and that mi-
tochondrial pro-apoptotic proteins are released to the
cytosol prior to the death of neurons and other brain
cells in both animal and cell culture models of neurode-
generation [17–22]. Biochemical markers of oxidative
stress often exhibit close tempero-spatial relationships
with these indicators of mitochondrial dysfunction [10,
23–25]. Moreover, agents or conditions that either
decrease the production of reactive oxygen or nitro-
gen species (ROS/RNS) or increase their detoxification
both ameliorate the mitochondrial functional anomalies
and provide protection against subsequent cell death

and neurologic impairment. Such agents include novel
antioxidants that are both lipophilic and that have a net
positive charge, enabling them to be selectively accu-
mulated within energized mitochondria, which possess
a negative inside membrane potential [26,27].

One fundamental environmental factor that influ-
ences mitochondrial oxidative stress is oxygen. For ex-
ample, hyperoxic reperfusion immediately after global
cerebral ischemia increases oxidative protein and lipid
oxidation, impairs mitochondrial respiration and cere-
bral energy metabolism, exacerbates delayed neuronal
death, and worsens neurologic outcome [28–30]. In
contrast to interventions utilizing exogenous antioxi-
dants, avoiding unnecessary hyperoxia under condi-
tions where cells are particularly vulnerable to oxida-
tive stress likely improves outcome by reducing the
production of ROS/RNS, due to simply restricting the
concentration of O2 available for reactions that pro-
duce superoxide and nitric oxide [31]. Remarkably, hy-
poxia can also promote mitochondrial oxidative stress
when the concentration of O2 is below the level neces-
sary for sustaining normal respiration. Hypoxic oxida-
tive stress is promoted by nitric oxide, which competes
with O2 at cytochrome oxidase, the terminal reaction
of the ETC. This form of respiratory inhibition causes
a reduced shift in the oxidation/reduction state of ETC
redox centers capable of reducing O2 to superoxide,
increasing the production of this free radical and its
metabolites, resulting in oxidative stress, even at very
low O2 levels [32].

In addition to the correlative evidence provided by
comparisons between markers of oxidative stress, mi-
tochondrial dysfunction, and cell death or neurologic
outcome, genetic manipulation of proteins involved in
both the production and detoxification of ROS/RNS
and important mitochondrial targets of oxidative stress
has provided independent evidence for their pathophys-
iological importance. For instance, overexpression of
certain mitochondrial uncoupling proteins appears to
both reduce production of ROS and provide neuropro-
tection [33–36]; however, a direct link between respi-
ratory uncoupling and these two activities has not been
proven conclusively [37]. Stronger molecular mecha-
nistic evidence comes from knockouts and overexpres-
sion of the mitochondria-specific manganese superox-
ide dismutase (MnSOD). Genetically modified mice
that overexpress or are deficient in MnSOD display re-
sistance or vulnerability, respectively, to both oxidative
stress and neurodegeneration in models of Alzheimer’s
and Parkinson’s diseases and stroke [38–41]. An exam-
ple of a critically important mitochondrial target of ox-
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idative stress is the inner membrane permeability tran-
sition pore [42], as discussed in more detail below. Ge-
netically modified mice that do not express cyclophilin
D (CyD), a protein that promotes activation of the PTP,
exhibit attenuated brain injury in models of stroke and
multiple sclerosis [43,44]. Moreover, cells from CyD
knockout mice are much more resistant to death in-
duced by hydrogen peroxide than those from wild-type
animals, indicating a role for CyD and the PTP in cell
death induced by oxidative stress [43].

Examples of how experimental manipulation of
genes that code for antioxidant enzymes or mitochon-
drial targets of oxidative stress can influence neurode-
generation are surpassed by the number of antioxidant
and other cytoprotective genes that are both induced by
endogenous oxidative stress and by exposure of cells or
animals to certain drugs and environmental conditions.
A master regulator of this system is the transcriptional
activating factor, Nrf2.

THE Nrf2/ARE SYSTEM

Nrf2/ARE regulation

Nuclear factor erythroid 2-related factor 2 (Nrf2) is
a nuclear transcription factor that belongs to the “cap-
‘n collar” family that share a conserved basic leucine
zipper (bZip) structure [45]. Under normal conditions,
Nrf2 is kept inactive by being bound to Kelch like ECH-
associated protein (KEAP1). KEAP1 is localized in
the cytosol where it is bound to the actin cytoskele-
ton and targets Nrf2 for proteosomal degradation by
being a Cul3-based E3 ligase adaptor. In the pres-
ence of ROS/RNS or certain electrophilic organic com-
pounds, specific cysteine residues on KEAP1 are oxi-
dized, causing a conformational change in KEAP1 and
the release of Nrf2 into the cytosol. Oxidative stress
also activates specific protein kinases, e.g., protein ki-
nase c (PKC), which serine phosphorylate Nrf2, facili-
tating dissociation from KEAP1 and enabling transport
of Nrf2 into the nucleus [45]. Electrophiles can also
oxidize critical cysteine sulfhydryl groups present on
Nrf2, masking the nuclear export signal sequence and
allowing Nrf2 to remain within the nucleus long enough
to activate gene transcription [46]. Within the nucleus,
Nrf2 forms heterodimers with sMAF proteins that also
stabilize nuclear retention. These heterodimers bind
to antioxidant response element (ARE) sequences and
recruit transcriptional enzymes and other proteins to
these locations [47]. Since an ARE sequence is locat-

ed proximal to the Nrf2 gene, Nrf2 activation acts in
a positive, feed-forward manner [48]. To prevent con-
tinuous transcriptional activation of this and many oth-
er genes, nuclear tyrosine kinases phosphorylate Nrf2,
stimulating its translocation out of the nucleus back to
the cytosol [49].

Transcriptional regulation by Nrf2

While Nrf2 is widely known for its regulation of
phase II detoxification enzymes, it has transcription-
al control over many genes that include an ARE se-
quence in their promoter region. Some of the common-
ly known genes it regulates include NAD(P)H:quinone
oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1),
glutathione S-transferases (GST), glutathione synthet-
ic enzymes, antioxidant enzymes, and NADPH regen-
erating enzymes, e.g., glucose-6-phosphate dehydro-
genase and malic enzyme [50]. In various proteomic
studies, Nrf2 has been shown to control genes involved
in immunity, membrane transport, cell adhesion, cell
cycle, and energy metabolism, among others [51]. Nu-
merous kinases and phosphatases are also under the
regulation of Nrf2, including mitogen activated pro-
tein kinase (MAPK), serine kinases, and tyrosine phos-
phatases [51]. Several Nrf2-regulated genes code for
important regulators of cellular energy metabolism, in-
cluding the mitochondrial enzymes pyruvate dehydro-
genase lipoamide β and pyruvate dehydrogenase ki-
nase. Nrf2 also exerts control over aquaporin, multiple
classes of ATPases, chloride, potassium, and calcium
and folate channels [50,51].

INDUCTION OF THE Nrf2/ARE PATHWAY

Pharmacologic activation of the Nrf2/ARE pathway

This field of research was spawned by the observa-
tion that when mice were fed chow containing both
carcinogens plus the electrophilic preservative butylat-
ed hydroxyanisole (BHA), they were protected from
stomach cancer that was induced by the carcinogens
in the absence of BHA [52]. Subsequently, it was de-
termined that this inducible xenobiotic response was
mediated by phase II detoxification enzymes and that
the Nrf2/ARE pathway was responsible for inducing
the expression of genes coding for these proteins [48].
This discovery led to the search for and identification
of compounds that could safely activate the Nrf2/ARE
pathway of gene expression [53].
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Fig. 2. Activation of Nrf2/Antioxidant Response Element (ARE) pathway of gene expression. Two primary mechanisms of activation include
oxidation of specific cysteine sulfhydryl groups on KEAP1, e.g., by reaction with sulforaphane, and serine phosphorylation of Nrf2 by enzymes
including protein kinase c (PKC) and phosphatidlyinositol 3-kinase (PI3K).

Electrophilic activation

Sulforaphane is a compound derived from a glucosi-
nolate found in cruciferous vegetables such as broc-
coli and kale in the Brassica genus. When these foods
are consumed, the salivary enzyme myrosinase con-
verts the inactive glucosinolate, glucoraphanin, into its
active isothiocyanate form, sulforaphane (see Fig. 2).
The central carbon of its electrophilic cyanate group, –
N=C=S, reacts with nitrogen, sulfur, and oxygen based
nucleophilies [54]. Following rapid uptake of sul-
foraphane into tissues and cells, this cyanate group re-
acts rapidly with three critical cysteines, C151 C273

C288, on KEAP1, causing a conformational change that
reduces its affinity for Nrf2. Nrf2 is released into the cy-
toplasm, enters the nucleus, and activates ARE-driven
genes [55]. While traditional focus has been on KEAP1
as the redox sensor mediating Nrf2 translocation, Nrf2
itself may be the key redox sensor and thus control its
own nuclear translocation. Central to this model is a
single cysteine, C183, present within the nuclear export
signal sequence located in the transactivation domain
(NESTA) of Nrf2. Experiments using expression of a
GFAP-tagged, truncated Nrf2 containing the NESTA

demonstrate dose-dependent translocation of the pro-
tein by SFP. When this cysteine is mutated to an ala-
nine, the protein is unable to translocate to the nucle-
us, thus identifying C183 as a critical redox sensor on
Nrf2. In summary, SFP oxidatively modifies KEAP1
and reduces its affinity for Nrf2. Nrf2 released into
the cytosol is then oxidized by sulforaphane, promot-
ing its entry into the nucleus [46]. Other electrophilic
compounds that appear to act by the same mechanism
as that of sulforaphane include carnosic acid [56] and
curcumin [57].

Activation of Nrf2 by phosphorylation events

In addition to redox modulation of KEAP1 and Nrf2,
phosphorylation of Nrf2 facilitates its stabilization and
translocation into the nucleus [45]. Treatment of vari-
ous cell lines with either tert-butyl hydroquinone (tB-
HQ) [58] or plumbagin [59], a pigment extracted from
the Plumbaginaceae family of flowering plant that con-
tains anti-microbial properties, results in activation of
the PI3K/AKT signaling cascade, causing phosphory-
lation and activation of Nrf2 [59]. If PI3K inhibitors
wortmannin or LY294002 are present, Nrf2 transloca-
tion is abrogated [59,60]. PKC mediates phosphory-
lation of Nrf2 at serine 40 [61]. While phosphoryla-
tion of serine 40 is not required for translocation of
Nrf2 into the nucleus, it plays a critical yet still un-
defined role in the interaction between KEAP1 and
Nrf2 [61]. One model states that phosphorylation of
Nrf2 is absolutely required for release of Nrf2 from
KEAP1 [61]. An alternative model contends that phos-
phorylated free Nrf2 is unable to bind KEAP1 there-
fore stabilizing Nrf2 and contributing to the increase
of free Nrf2 in the cytoplasm [48,62]. Beyond cyto-
plasmic stabilization of Nrf2, PKC contributes to Nrf2
nuclear retention by phosphorylating GSK3β thus in-
hibiting the GSK3β/Fyn signaling cascade, which is
responsible for nuclear export of Nrf2 [62].

ROLE OF Nrf2 IN NEUROPROTECTION

Acute CNS injury

Several different animal models of acute brain injury
have demonstrated neuroprotection by pharmacologic
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activation of the Nrf2/ARE pathway of gene expres-
sion. In a rat model of intracerebral hemorrhage (ICH)
using extravasated blood, post-hemorrhagic adminis-
tration of sulforaphane is followed by translocation of
Nrf2 to the nucleus, an increase in mRNA levels for
superoxide dismutase 1 (SOD1), GST and NQO1, and
an improvement in neurologic outcome [63]. Using
the same ICH model in mice, post-treatment with sul-
foraphane resulted in improvements in wild-type ani-
mal’s neurological deficit score while Nrf2 knockout
mice had a worse score and sulforphane no longer
had any neuroprotective affects [63]. In a separate
ICH model where collagenase is used, Nrf2 knock-
out mice exhibit increased brain injury, worse neu-
rological outcome, and increased evidence of oxida-
tive stress, compared to Nrf2 wild-type mice [64]. In
a rat focal ischemic stroke model, sulforaphane post-
treatment reduces brain infarct volume and increas-
es the levels of both HO-1 mRNA and protein [65].
Nrf2 knockout mice display an increase in infarct vol-
ume and worsened neurologic outcome, compared to
wild-type mice [66,67]. Neuroprotection following is-
chemic stroke has also been demonstrated by adminis-
tration of carnosic acid, which also activates the Nrf2
pathway [56].

Intraperitoneal administration of sulforaphane to rats
or mice after traumatic brain injury results in an in-
crease in mRNAs for various phase II response en-
zymes and reduced impairment of memory and cogni-
tion [68–70]. Importantly, Nrf2 knockout mice do not
demonstrate improved outcome when treated with sul-
foraphane [70]. Preliminary results also indicate neu-
roprotection by sulforaphane post-treatment in a large
animal model of acute brain injury. Specifically, in-
travenous administration of sulforaphane at 1 mg/kg
to adult beagles at 30 min after cardiac arrest and re-
suscitation reduces hippocampal neuronal death and
improves neurologic outcome [71]. In vitro experi-
ments suggest that the neuroprotective effects of sul-
foraphane may target both neurons and glia. Pre- or
post-treatment of cortical astrocytes or hippocampal
neurons with sulforaphane increases Nrf2-regulated ex-
pression of NQO1, HO-1, among other genes, and re-
duced delayed cell death following transient O2 and
glucose deprivation [72,73]. In an organotypic culture
model of spinal cord injury, results indicate that phar-
macologic activation of the Nrf2 pathway prevents mo-
tor neuron cell death, upregulates Nrf2 and HO-1 mR-
NA levels, reduces toxic extracellular levels of gluta-
mate, and preserves mitochondrial ultrastructure [74].

The success of this approach in various in vivo and
in vitro models is likely due to the multiple antioxidant

and other cytoprotective genes that are induced. This
strategy thus represents a novel “combination thera-
py” approach and may therefore be more effective or
broadly applicable than the use of antioxidant drugs
that normally target only one or a few specific ROS
or RNS. Taken together, these findings demonstrating
neuroprotection by sulforaphane post-treatment as well
as pre-treatment in different models of acute CNS in-
jury provide optimism that pharmacologic activation of
the Nrf2/ARE system will eventually be translated to
effective clinical therapeutic interventions.

Neurodegenerative diseases

Neuroprotection through upregulation of the Nrf2
pathway of cytoprotective gene expression is also appli-
cable to neurodegenerative diseases. Alzheimer’s dis-
ease (AD) is characterized histologically by amyloid-
β (Aβ) plaques and neurofibrillary tangles in vari-
ous brain locations. In an in vitro model of AD cy-
topathology, treatment of differentiated NT2N neurons
with 4-hydroxynonenal induces formation of Aβ tan-
gles. When these cultures are pre-treated with the
pro-oxdiant, tert-butyl hydroquinone, Nrf2 is activat-
ed, followed by decreased Aβ formation and caspase
3 activation [75]. In a transgenic mouse AD mod-
el expressing mutated human amyloid-β protein pre-
cursor and presenilin 1 genes, intra-hippocampal in-
jections of lentiviruses containing the Nrf2 gene re-
sult in elevated HO-1 gene expression and improved
spatial learning memory [76]. In a mouse cytotox-
in (malonate) model of Huntington’s disease, neuro-
protection is observed by intrastriatal implantation of
astrocytes with activated Nrf2-mediated gene expres-
sion [77]. Pretreatment of either dopaminergic cell
lines or nigrostriatal co-cultures with sulforaphane pro-
vides neuroprotection against Parkinson’s disease neu-
rotoxins, e.g., 6-hydroxydopamine [78,79]. Mecha-
nisms of neuroprotection in these models may include
the increased expression of NQO1, which prevents
ROS production that is catalyzed by the semiquinone
fraction of the increased pool of quinones generated by
aberrant dopamine metabolism, and increased levels of
glutathione GSH, which detoxify peroxides and protect
against oxidation of protein sulfhydryl groups [79]. In
a MPTP mouse model of Parkinson’s disease, overex-
pression of Nrf2 in astrocytes prevents neuronal death
and reduces inflammation [80]. In a mouse model of
amyotrophic lateral sclerosis, overexpression of Nrf2
in astrocytes improves neuronal survival and slows dis-
ease progression [81]. Additional evidence for the im-
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portance of Nrf2 in maintaining resistance to neurode-
generation comes from models where outcome is wors-
ened by knockout of Nrf2 gene expression, e.g., in
the malonate model of Huntington’s disease [77], the
MPTP model of Parkinson’s disease [80,82], and in a
kainate-induced status epilepticus mouse model [83].
The experimental evidence therefore strongly supports
an important role of Nrf2 and its regulation of cytopro-
tective gene expression in both resistance to neurolog-
ical disorders and in response to exogenous agents that
can protect against or slow the progression of neurode-
generative diseases.

Nrf2-REGULATED ANTIOXIDANT DEFENSE
SYSTEMS

All tissues possess redundant antioxidant defense
systems for detoxifying the ROS and RNS that are con-
stantly present and that play important roles as intra-
cellular and transcellular regulatory signals. Consid-
erable effort has been made to characterize these sys-
tems in the brain, knowing that oxidative stress plays
a major role in most forms of both acute CNS injury
and in chronic neurodegenerative disorders. It was
recognized early during these investigations that the
gene expression for many of the antioxidant associat-
ed proteins is upregulated in response to oxidative and
other forms of stress. For instance, HO-1 and SOD2
gene induction occurs rapidly following focal cerebral
ischemia [84,85]. These observations taken together
with those demonstrating stress-induced increased ex-
pression of anti-apoptotic genes, e.g., Bcl-2, led to the
concept of genomic preconditioning against brain in-
jury, using levels of stress that are sufficient to activate
cytoprotective gene expression but that are also below
the threshold for inducing significant cell dysfunction
or death.

It now appears that at least some if not many of the
genes that are induced in the brain following both toxic
and sub-toxic levels of stress may be activated via the
Nrf2/ARE system [61]. Products of these genes include
SOD1 (cytosolic), SOD2 (mitochondrial), and SOD3
(extracellular) [86,87] and the peroxide detoxifying en-
zymes glutathione peroxidase [88] and catalase [89,90].
Nrf2 also mediates induction of glutamate-cysteine lig-
ase catalytic subunit (GCLC) and glutamate-cysteine
ligase, modifier subunit (GCLM), both of which are
necessary for glutathione biosynthesis [91]. NAD(P)H
is critical to antioxidant detoxification as it provides the
reducing power needed to keep glutathione reduced.

Malic enzyme (ME) and hexose monophosphate shunt
dehydrogenases are the primary producers of cytoso-
lic NADPH and are induced by Nrf2 in the small in-
testine but their induction has yet to be reported for
brain [50]. Another gene subject to Nrf2 control is
HO-1, which catalyses the catabolism of heme to car-
bon monoxide (CO), biliverdin and iron [92]. Upreg-
ulation of HO-1 [65] leads to increased bilirubin lev-
els, a product of oxidized biliverdin, which is a po-
tent antioxidant. The CO created by HO-1 indirectly
activates the AKT signaling pathway that potentiates
Nrf2 cytoprotection by at least two mechanisms: First,
it prevents the phosphorylation of GSK-3β, promoting
nuclear retention of Nrf2 and therefore transcription
of Nrf2 driven genes [92]. Secondly, it promotes the
translocation of nuclear respiratory factor 1 (Nrf1) to
the nucleus which in turn stimulates the transcription
and translation of Tfam, that stimulates transcription
replication of the mitochondrial genome, promoting
mitochondrial biogenesis [92]. Finally, NQO1, which
is perhaps the most commonly used marker of Nrf2 ac-
tivated gene expression, directly reduces semiquinones
to hydroquinones, which inhibits superoxide produc-
tion catalyzed by semiquinone radicals and provides
the fully reduced quinones that function as free radical
scavengers [93].

MITOCHONDRIAL ANTIOXIDANT DEFENSES
AND POTENTIAL REGULATION BY Nrf2

The majority of ROS that are produced the in the
mitochondria are a byproduct of the respiratory chain
and specific dehydrogenases, e.g., α-ketoglutarate de-
hydrogenase [94–99]. The primary species generated
is the superoxide radical O−

2 . As shown in Fig. 3, un-
der normal conditions, the O−

2 is converted to H2O2

by SOD2. Another important source of mitochon-
drial H2O2 is monoamine oxidase [100,101]. H2O2

is further converted to H2O, by catalase, and glu-
tathione or thioredoxin peroxidases at the expense of
either reduced glutathione (GSH) or reduced thiore-
doxin (TrxSH). GSSG or TrxS− are reduced by their
respective glutathione or thioredoxin reductases, using
NADPH as the electron donor [102]. The NADPH
pool in the mitochondria is maintained mostly through
the activities of several enzymes, including transhy-
drogenase, mitochondrial malic enzyme (ME3), and
NADP+-selective isocitrate and glutamate dehydroge-
nases.
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Fig. 3. Redox regulation of the mitochondrial permeability transition pore (PTP). Opening of the PTP is promoted by elevated intramitochondrial
Ca2+ and by conditions that promote protein sulfhydryl oxidation, including the presence of peroxynitrite (ONOO−) and hydroxyl radical (OH.)
and a relatively low ratio of reduced to oxidized glutathione (GSH/GSSG). The glutathione redox state is determined by the balance between
its reduction by the NADPH-dependent glutathione reductase (GR) and its oxidation, e.g., by glutathione peroxidase (GPX). Intramitochondrial
NADP+ is reduced to form NADPH by several enzymes including the inner membrane potential-driven transhydrogenase (TH) and cell-type
selective isoenzymes, including malic enzyme 3 and NADP+-dependent isocitrate dehydrogenase glutamate dehydrogenase. The presence of
elevated peroxides, including hydrogen peroxide (H2O2 ) generated e.g., by mitochondrial superoxide dismutase (SOD2) promote PTP opening
by shifting the mitochondrial redox state, including that of glutathione, to a more oxidized level. PTP opening is subject to pharmacological
inhibition, e.g., by the interaction of cyclosporin A with cyclophilin D, a protein that regulates but is not equivalent to the PTP.

Oxidative stress occurs within the mitochondria, as
it does in other cellular locations, when the rate of
ROS production and ROS detoxification are unbal-
anced. Increased production of toxic superoxide and
consequently hydrogen peroxide can exceed their rate
of detoxification, resulting in toxic metabolites, e.g.,
peroxynitrite and hydroxyl radical, that can cause mi-
tochondrial dysfunction through the oxidation of vari-
ous proteins, lipids and nucleic acids as described ear-
lier (see Fig. 1). However, growing evidence sug-
gests that protection against ROS accumulation can oc-
cur through increased expression of mitochondrial an-
tioxidant enzymes, e.g., SOD2, or proteins responsible
for the biosynthesis of glutathione and for the reduc-
tion of NADP+. Levels of SOD2 and mitochondrial
glutathione peroxidase and reductase and glutathione
are elevated by treatment of aortic smooth muscle
cells and cardiac myocytes with sulforaphane [103] or
dithiolethione, another organosulfur compound [104].
While these effects have not yet been reported for mi-
tochondria present within neurons or the CNS, pre-
liminary results from our lab support this hypothesis
and demonstrate that mitochondria from the brains of
rats treated with sulforaphane are resistant to t-butyl

hydroperoxide-induced opening of the PTP [71]. Possi-
ble explanations for this indirect effect of sulforaphane
include increased expression of mitochondrial enzymes
that reduce NADP+ to NADPH [105] and increased
expression of the anti-apoptotic mitochondrial protein,
Bcl-2. Cardiac Bcl-2 levels are elevated in rats main-
tained on a high broccoli diet [106]. Moreover, we have
shown that mitochondria within Bcl-2 overexpressing
neural cell lines are resistant to PTP opening [107].
Irrespective of the mechanism by which sulforaphane
inhibits PTP opening, this effect could contribute to the
cytoprotective effects of this drug and others that act
through the Nrf2/ARE system, since PTP opening con-
tributes to bioenergetic failure and cell death in many
models of acute and chronic neurodegeneration and in
cell death that occurs in the cardiovascular, renal, and
other systems [108–110].

SUMMARY

Mitochondria are both important producers of
ROS/RNS and very sensitive to damage caused by these
molecules either directly or through the oxidative stress
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associated with their metabolism. Exogenous antiox-
idants, including those that are targeted to mitochon-
dria, can increase mitochondrial resistance to oxidative
damage and consequently provide neuroprotection for
neurologic disorders and diseases. Another approach,
which is also showing great promise, is pharmacologic
activation of endogenous antioxidant gene expression,
including that which is controlled by the Nrf2/ARE
system. Preliminary evidence indicates that this strate-
gy can protect mitochondria against oxidative damage
and bioenergetic dysfunction; however, the molecular
mechanisms responsible for this defense have yet to be
elucidated.
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