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Abstract. In this paper, we present a statistical hypothesis test for detecting a change point over the course of cognitive decline
among Alzheimer’s disease patients. The model under the null hypothesis assumes a constant rate of cognitive decline over
time and the model under the alternative hypothesis is a general bilinear model with an unknown change point. When the
change point is unknown, however, the null distribution of the test statistics is not analytically tractable and has to be simulated
by parametric bootstrap. When the alternative hypothesis that a change point exists is accepted, we propose an estimate of its
location based on the Akaike’s Information Criterion. We applied our method to a data set from the Neuropsychological Database
Initiative by implementing our hypothesis testing method to analyze Mini Mental Status Exam scores based on a random-slope
and random-intercept model with a bilinear fixed effect. Our result shows that despite large amount of missing data, accelerated
decline did occur for MMSE among AD patients. Our finding supports the clinical belief of the existence of a change point during
cognitive decline among AD patients and suggests the use of change point models for the longitudinal modeling of cognitive
decline in AD research.
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1. Introduction

1.1. Background

Although cognitive decline is common in human ag-
ing, previous research shows that the processes of cog-
nitive decline are different among normal aging people
versus people who develop dementia. For those who
develop dementia, it is believed that accelerated decline
in cognitive function will occur at a certain time point
during their course of cognitive decline [6]. A “change
point” may be defined as the time when the baseline
rate of cognitive decline accelerates and a more rapid
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rate of cognitive decline occurs. Because it is presumed
that this acceleration in cognitive decline occurs before
the diagnosis of dementia, it is of research interest to
study whether and when it happens during the natu-
ral history of Alzheimer’s disease. Determine whether
a change point exists is important for selecting more
accurate models for the complex pattern of cognitive
decline among different patient populations. More ac-
curate models of cognitive decline are valuable for de-
signing clinical trials in AD. If a change point does
exist long before AD diagnosis, then the estimation of
its location is useful for early detection of the onset of
AD.

Statistical models for longitudinal data are essential
tools for modeling cognitive decline. General discus-
sion of longitudinal modeling of the course of cogni-
tive decline can be found in [3,15]. Applications of
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random effects models to evaluate longitudinal pattern
of cognitive decline can be found in [11,13]. For the
accelerated decline, longitudinal models with change
points are good candidates for modeling purposes. The
so-called trilinear model proposed in [15] has a built-in
idea of change point(s) at different stages of cognitive
decline. An application of the trilinear approach in
an AD trial can be found in [4]. Several researchers
have also introduced mixed effects models with change
points. Hall [9] used linear mixed model to estimate the
time point at which the rate of decline starts to acceler-
ate in persons who developed dementia. Using a profile
likelihood approach, Hall concluded that the average
change point for the Buschke Selective Reminding test
occurs about 5.1 years before a clinical diagnosis of
dementia. Belisle [2] applied a hierarchical Bayesian
model with a random change point for each individual
and found that change point models are better fit than
simple linear mixed models.

Although several authors have studied the problem
of change point in cognitive decline, all the previous
works assumed that a change point exists and focused
on the estimation of the change point. In this paper, we
answer the question whether there is indeed a change
point by developing a statistical hypothesis test to de-
tect a change point over the course of cognitive decline
among AD patients before the diagnosis of AD. Then
we propose an estimate of the change point location if
its existence is confirmed by the hypothesis test. Our
approach is based on general linear models which allow
very flexible covariance structures for longitudinal ob-
servations. This model includes the linear mixed model
as a special case. Our test does not assume that either
a change point exists or its location is known. When
the change point location is unknown, the test statis-
tics is defined as the largest likelihood ratio statistics
among those corresponding to all possible change point
locations. However, due to the inherent complexity of
the test statistics, it is not analytically tractable when
the change point is unknown. Therefore parametric
bootstrap method is applied to simulate the probability
distribution of the test statistics. If the change point
is confirmed, the estimation of its location is based on
the Akaike’s Information Criterion (AIC). We applied
this method to a data set from the Neuropsychological
Database Initiative (abbreviated as NDI) to demonstrate
our testing and estimation procedures.

1.2. The NDI study

The Alzheimer’s Disease Centers’ Neuropsycholog-
ical Database Initiative is a collaborative effort on the

part of sixteen federally funded ADCS to merge the
diagnostic and neuropsychological data obtained from
normal and cognitively impaired individuals into a sin-
gle large, multi-center database. The database is in-
tended to serve as a resource for investigators planning
clinical trials to prevent Alzheimer’s disease (AD) and
cognitive decline associated with aging. The assem-
bled database contains clinical and neuropsychologi-
cal data on commonly collected instruments from over
4,000 normal individuals and 800 patients with Mild
Cognitive Impairment (MCI). Previous analyses have
shown that in this cohort, approximately 2% of normals
developed a diagnosis of AD after 4 years of follow-up
whereas almost 10% developed MCI.

Within the NDI database, we located a subset of 92
patients with definitive diagnosis of AD. The mean age
was 76.9 with standard deviation of 9.39. Number of
years of education was 14.07 with a standard deviation
of 3.24. The cognitive decline as measured by a battery
of neuropsychological tests. In this paper, we will ex-
amine the Mini Mental Status Exam which is the most
popular mental status test. Large amount of missing
values is common for data from Alzheimer’s disease
patients. Among the 92 AD patients, we selected those
who had at least three measurements of MMSE. There
are 47 of these patients and their longitudinal measure-
ments are presented in Fig. 1.

The origin is set at 0 where the diagnosis of AD is
confirmed. The number of−1,−2, −3, . . . , −12 are
the number of years before AD. The maximum follow
up time is 12 years in this subset of AD patients. As
we can see, there is heavy missingness in the data.
However, some individuals show accelerated decline to
AD diagnosis.

2. Method

2.1. The model of the underlying cognitive decline
processes

We assume that a sample of n individuals is ob-
served annually fork years before the diagnosis of
AD. We let 0 represent the time that AD is diag-
nosed. Lett = −k,−(k − 1), . . . ,−1.0 be the num-
ber of years before AD. All individuals are observed
at the same time points. The complete observation
for the ith individual isCi = (yi1, yi2, , . . . , yi,k+1)T ,
i.e., yis is observedk + 1 − s years before the di-
agnosis of AD. Note that the superscriptT means
the transpose of a vector or a matrix. Assume that
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Fig. 1. Cognitive Decline on the Mini Mental Status Exam Score.

Ci ∼ Nk+1(µ,
∑

(ϕ)), whereϕ is the vector of un-
known parameters for the variance-covariance matrix.
Also assume that for the ith individual onlyn i obser-
vations are recorded:Yi = (yit1 , yit2 , . . . , yitnj )T .
Let Ji be ani × (k + 1) matrix of 0’s and 1’s such
that Yi = JiCi, thenYi ∼ Nnj(Jiµ,

∑
i), where

i = 1, 2, . . . , n and
∑

i = J
∑

(ϕ)JT
i . Throughout

the paper, we assume that the missing data are missing
completely at random (MCAR) in the sense of Little
and Rubin, see [12].

We assume that the progression of they
′
its on time

t follows a linear relationship. This assumption is rea-
sonable since cognitive decline tends to be slow and can
be approximated by linear trend. In particular, it has
been well documented in the AD literature that decline
in MMSE scores is nearly linear, apart from plateaus,
see [1] and the references therein.

The null hypothesisH0 assumes that the rate of cog-
nitive decline is constant over the time period from−k
to 0 years. The alternative hypothesisH1 assumes that
the rate of progression of they

′
its accelerates some-

where between−(k − 1) and−1 years before AD.
Mathematically, if we writeCi = µ + εi, then under

H0: µ = T
(
β0

β1

)
, where

T =




1 −k
1 −(k − 1)
. . . . . .
1 −1
1 0


 and εi =




εi1

εi2

. . .
εi,k+1


 ,

i = 1, 2, . . . , n

We assume that theε
′
is are iidN(0,

∑
(ϕ)). Under

H0, the model forYi is

Yi = JiT
(
β0

β1

)
+ ei (1)

whereei = Jiεi ∼ Nni(0,Ji

∑
(ϕ)JT

i ).
The alternative hypothesis is that there is a change

point in the rate of cognitive decline which indicates a
bilinear model for expectation ofC i. Assume that the
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change point of rate of decline occursτ years before
the diagnosis of AD, where0 < τ < (k − 1), the
corresponding model forCi is

Ci = T1

(
θ0

θ1

)
+ T2

(
γ0

γ1

)
+ εi

(2)

= (T1 T2)




θ0

θ1

γ0

γ1


 + εi

whereT1 =




q −k
1 −(k − 1)

......
1 −(τ + 1)
0 0


 ,T2 =




0 0
1 −τ
. . .

1 −1
1 0


 ,

andεi =




εi1

εi2

. . .
εi,k+1


 , i = 1, 2, . . . , n. Here, the bold

0s in T1 andT2 are vectors of 0s with appropriate
dimensions.

We assume that theε′is are iidN(0,
∑

(ϕ)).
We restrict the parameters to satisfyθ0 − τθ1 =

γ0 − τγ1 to guarantee that the mean ofC is continuous
over time. Therefore, we have underH1,

Ci ∼ N


Xτ


 θ0

θ1

γ1


 ,

∑
(ϕ)




where

Xτ =




1 −k 0
1 −(k − 1) 0
. . .
1 −(τ + 1) 0
1 −τ 0
1 −τ 1
. . .
1 −τ τ




The model forYi underH1 is

Yi = JiXτ


 θ0

θ1

γ1


 + ei

whereei = Jiεi ∼ Nnj (0,Ji

∑
(ϕ)JT

i ).

2.2. Hypothesis test when the location of the change
point is known

Whenτ is known, both models underH0 andH1 can
be estimated by maximum likelihood method. Since

the linear model underH0 is nested in the bilinear
model underH1, a likelihood ratio test can be used
to testH0 againstH1. The likelihood ratio statistics
Wτ = −2 logΛ(τ) can be computed, whereΛ(τ) is
the ratio of the two likelihoods corresponding toH0

andH1 respectively, evaluated at the MLEs of the pa-
rameters. More specifically, letL0, L1 be the like-
lihood function underH0 and the likelihood function

underH1, respectively. Let

(
β̂0

β̂1

)
and

∑̂0
=

∑
(ϕ̂0)

be the MLEs underH0 with
∑̂0

i = Ji

∑̂0
J t

i and
 θ̂0

θ̂1

γ̂1


 and

∑̂1
=

∑
(ϕ̂1) be the MLEs underH1 with

∑̂1

i = Ji

∑̂1
JT

i , it can be shown that

Wτ = −2 logΛ(τ) (3)

= −
n∑

i=1


Yi − JiXτ


 θ̂0

θ̂1

γ̂1







T (∑̂1

i

)−1


Yi − JiXτ


 θ̂0

θ̂1

γ̂1





 +

∑n

i=1
(Yi

− JiT

(
β̂0

β̂1

))T ∑̂0

i

(
Yi − JiT

(
β̂0

β̂1

))

+
∑n

i=1

[
log

∣∣∣∣
∑̂0

i

∣∣∣∣−log
∣∣∣∣
∑̂1

i

∣∣∣∣
]

UnderH0, Wτ has an asymptoticχ2
1 distribution.

Thus, a sizeα test rejectsH0 if Wτ > χ2
1,a.

2.3. Hypothesis test when the location of the change
point is unspecified

When τ is unknown, a sizeα test rejectsH0 if
max1�τ�k−1{Wτ} > c wherec is a critical value such
that Pr(max1�τ�k−1{Wτ} > c|H0) = α. In general,
the distribution of the test statisticmax1�τ�k−1{Wτ}
underH0 has no closed form, and therefore has to
be simulated. We propose to simulate its distribu-
tion by parametric bootstrap method. In the first step,
we estimate the general linear model (1) underH0 by
maximum likelihood method using the original sam-
ple. Second, generate bootstrap samples using the gen-
eral linear model (1) with the MLEs of the param-
eters as their true values. In the bootstrap samples,
the missing data mechanism is simulated in this way:
the missing data matrix ’sJi’s was first obtained from
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the original sample and then applied to each boot-
strap samples to obtain the “observed” values. Third,
for each bootstrap sample, calculateW ∗

τ for all possi-
ble values ofτ between 1 and(k − 1) using the bi-
linear model corresponding toH1 and then compute
max1�τ�k−1{Wτ}. Fourth, the empirical distribution
of max1�τ�k−1{W ∗

τ } underH0 is an approximation
to the distribution ofmax1�τ�k−1{Wτ}. For a spec-
ified α, the critical valuec can be determined from
that empirical distribution. The fifth step is to compute
max1�τ�k−1{Wτ} using the bilinear model underH1

and the original sample and then compare it toc.

2.4. Estimation of the location of the change point
when is accepted

When H1 is accepted, we denote


 θ̂0j

θ̂1j

γ̂ij


 and

∑̂1j
=

∑̂1
(ϕ̂ij) as the MLEs of


θ0

θ1

γ1


 and

∑1 when

the change point is located atj. Let
∑̂1j

i = Ji

∑̂1j
JT

i ,
and for1 � j � k, let

L

(
θ̂0j , θ̂1j , γ̂1j ,

∑̂1j)
= −

n∑
i=1

ln
∣∣∣∣
∑̂1j

i

∣∣∣∣

−
n∑

i=1


Yi − JiXj


 θ̂0j

θ̂1j

γ̂1j







T

(∑̂1j

i

)−1

Yi − JiXj


 θ̂0j

θ̂1j

γ̂1j







We propose to estimate the location of the unknown
change pointτ by τ̂ where is such that

L

(
θ̂0τ̂ , θ̂1τ̂ , γ̂1τ̂ ,

∑̂1τ̂)
= (4)

max
1�τ�k−1

L

(
θ̂0τ , θ̂1τ , γ̂1τ ,

∑̂1τ)

Our estimator is similar to the profile likelihood es-
timates proposed by Hall [5] under the mixed model
framework although our model contains a more general
family of variance-covariance matrices. The choice of
our estimator is consistent with choosing the minimum
AIC (Akaike’s Information Criterion) since the num-
ber of unknown parameters are the same for different
change point locations.

3. Implementation

Our proposed hypothesis test is valid for general
linear models with arbitrary variance-covariance ma-
trix

∑
(ϕ). For the actual implementation of this hy-

pothesis testing method, we used a random intercept,
random slope model with a bilinear fixed effect part
containing an unknown change pointτ . This model
family is rich enough to capture the slow linear trend
of cognitive decline and possible occurrence of accel-
erated decline as well as the heterogeneity in base-
line measurements and rate of decline between and
within individuals. The main advantage of this simpli-
fied approach is that the complicated likelihood ratio
test statistics can be extracted directly from standard
software for fitting mixed models such as SAS PROC
MIXED or SPLUSlme. Note that all the model fitting
must use ML (maximum likelihood estimation) instead
of REML (restricted maximum likelihood estimation).

To be more specific, we use a random intercept and
random slope model with a bilinear fixed effect part
with a change point atτ . The model underH1 can be
written as

yis = (θ0 + θ1t)I(t � −τ − 1) + (γ0 + γ1t)

I(t � −τ) + ai + bit + δis

wheret = −(k + 1 − s) andI(A) is the an indicator
function whose value is 1 if the eventA is true and
0 if A is false. The vectors(ai, bi)T are random ef-
fects reflecting the heterogeneity of the intercepts and
the slopes for individuals. We assume they have an
arbitrary covariance structure, i.e.,(

ai

bi

)
∼ N(0,Π)

Also, the serial correlation over time is modeled
by assuming that(δi1, δi2, . . . , δik+1)′ follows another
normal distribution with a zero mean vector and a first-
order autoregressive covariance matrixΩ. All these
assumptions give a specific case of model (2) in which
εis = ai + bits + δis with∑

(ϕ) = TΠT ′ + Ω.

When τ is known, define another variableX =
I(t � −τ − 1), then the bilinear model becomes

yis = γ0 + γ1t + (θ0 − γ0)X + (θ1 − γ1)tX

+ai + bit + δis

Note that under the constraint that the mean of the
bilinear model is continuous over time, there are only
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three free parameters among(θ0, θ1, γ0, γ1) since they
must follow the constraint ofθ0 − θ1τ = γ0 − γ1τ .
What is particularly important is that the null hypothe-
sisH0(no change point) is equivalent toH0 : γ1 = θ1,
i.e., the regression coefficient corresponding to the in-
teraction term of timet andX should be 0. Thus the
hypothesis test for the existence of a change point is
converted to testing a regression coefficient in a mixed
effects model, which can be easily done by likelihood
ratio test in SAS PROC MIXED or SPLUS function
lme.

4. Results and discussion

4.1. Hypothesis testing on a unknown change point
for MMSE

We applied our method on MMSE score to detect if
a change point exists in the data. First we estimated the
mean vector of MMSE starting from the diagnosis of
AD back to 12 years prior to diagnosis using the linear
model of no change point and the original sample. The
estimated mean vector is

The first row is the number of years prior to diagnosis
of AD, the second row is the raw mean MMSE from
observed data and the third row is the estimated MMSE
scores from the mixed model. The raw mean MMSE
scores showed a change point at year 6 before AD.
However, there were a lot of missing values which
makes the raw means not reliable. From the estimated
mean vector, it is obvious that the linear model of no
change point does not fit the data well as the predicted
mean of MMSE exceeds 30 starting from 6 years before
AD.

In order to statistically test the hypothesis that there
is no change point in the decline of MMSE score against
the alternative that some unknown change point occurs
before the diagnosis of AD, we use bootstrap method
to approximate the test statistic , where W is given by
(3). The description of the parametric bootstrap pro-
cedure is described in the METHOD section. Figure 2
shows the histogram of the bootstrap distribution of
the likelihood ratio statistics based on 1000 bootstrap
samples.

The critical value c is approximated by the 95%
percentile of this bootstrap distribution and is found
to be 6.70. The likelihood ratio statistics corre-
sponding to the bilinear mixed models underH1 over
visit 1 to 11 is max1�τ�11{Wτ} = 31.96. Since
max1�τ�11{Wτ} > c, the null hypothesis of no

change point is rejected at approximatelyα = 0.05.
The likelihood reaches its maximum at the 5 years be-
fore AD. This is in agreement with the estimated mean
vector of MMSE which has a component of 30.38 at
the year 6.

5. Discussion

Our hypothesis testing approach shows that there is
a change point in the mixed effects model for the longi-
tudinal trajectories of MMSE scores, which is a widely
used mental status screening test. We have detected
this change point despite of the large amount of miss-
ing data, which indicates the effect of accelerated de-
cline is quite significant. In this sense, our analyses
provide statistical support for this widely held clinical
belief that there is an accelerated cognitive decline dur-
ing the course of Alzheimer’s disease progression. Our
hypothesis testing favors the bilinear model instead of
the simple linear model also indicates that it is not ap-
propriate to evaluate treatment effect based on linear
rate of decline for Alzheimer’s disease patients. There-
fore, longitudinal modeling of cognitive decline in AD
patients should incorporate change points.

The strength of our model include (a) it is a longi-
tudinal model which is desirable for modeling changes
in cognitive decline (b) it is more general than the tri-
linear model [3] because the slopes of the bilinear fixed
effects are arbitrary other than flat during the initial and
final stages of the trilinear model. (c) it does not as-
sume the change point is known which is a contribution
to the previous change point modeling of AD data (d)
it partially addressed the missing data problem under
small sample size.

There are several limitations of our method (a) to
simplify notation, we assumed that the repeated mea-
sures are made at exactly same time points in our
demonstration. The entire procedure, however, can be
extended easily to accommodate unequally spaced pa-
tient visits with appropriate adjustments in design ma-
tricesT , T1 andT2 in model (1) and (2). (b) We are
limited on the case of a unique change point of cog-
nitive decline before the diagnosis of AD but the sim-
ilar methodology should be explored for the situation
of multiple change points (c) Another limitation of our
method is the assumption of linear and bilinear model
underH0 andH1. Although the linear and bilinear as-
sumptions are always locally appropriate based on the
theory of Taylor’s expansion, their validity needs to be
verified for the whole course of cognitive decline before
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Table 1
Raw and Estimated Mean MMSE Scores

Time 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12

Raw Mean MMSE 22.02 25.34 26.89 27.16 27.91 27.82 29.00 28.20 27.67 27.50 25.00 25.00 27.00
Estimated Mean MMSE 23.32 24.50 25.68 26.85 28.03 29.21 30.38 31.56 32.74 33.91 35.09 36.27 37.44

0 2 4 6 8 10 12

0
1

00
20

0
30

0

1   τ   k−1
max {Wτ}<_ <_

Fig. 2. Empirical distribution ofmax1�τ�k−1{Wτ} for MMSE using 1000 bootstrap samples.

the diagnosis of AD which may be intrinsically nonlin-
ear for some cognitive test scores. (d) The assumption
of MCAR for the missing data is likely to be invalid
for data in Alzheimer’s disease research. We are only
able to obtain consistency for the change point location
estimate when the model is linear, the data is balanced
and missing data are MCAR. On the other hand, there
seems to be no consensus approach on the missing data
issue in AD research in the literature. In general, miss-
ing data in AD research is a challenging problem that
requires more investigations. (e) We assumed normal
distributions for both the response and the random ef-
fects. Many cognitive test scores such as MMSE are
on ordinal scales. Therefore, generalization of our re-
sults to more general type of response variables should
be explored. The estimates on the fixed effects in ran-
dom effects models, however, are not sensitive to de-
parture of their random effects distributions from nor-
mality, Butler and Louis [5], Verbeke and Lesaffre [14]
(f) A difficult problem with cognitive testing scores is
the ceiling and floor effect [7,8]. Item response theory
(IRT) can partially address the ceiling effect of MMSE.

In practice, IRT has been incoporated into MMSE test
for online screening, Ashford [1]. However, we have
not seen work on incorporate IRT into mixed models
of AD data. We defer such effort to future research.

Our test is useful for determining if a change point
exists for the mean curve of an “average person” within
a specified sample. It is sometimes also of interest to
predict the location of a change point for each indi-
vidual. Dementia of an individual change point can
be determined by using a Bayesian approach, see [1,
6]. We point out that it is analytically difficult to de-
velop hypothesis tests similar to ours for the problem
of random change points. This is based on the fact
that the distribution of the observed vector of cognitive
function over time is mathematically intractable due to
the nonlinear nature of the change point in model (2)
when the location of the change point is assumed to be
random. Therefore, the maximum likelihood estima-
tion cannot be done. Although large-scale computer
simulations can be used to approximate the distribution
of the observed vector of cognitive function over time,
we feel that a Bayesian approach is more appropriate.
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Our future work include (a) carry out this hypoth-
esis test on other neuropsychological tests to detect
change points on different instruments and cognitive
domains. From our preliminary findings, we believe
that the change point can be detected on at least some of
the cognitive test scores. Furthermore, the accelerated
declines on different cognitive domains are different.
Those cognitive tests with change points located at the
early stage of AD are more useful for detecting the
disease onset in AD trials (b) generalize our method to
handle ceiling and floor effect, more general response
variables, multiple change points, multivariate change
points and more general missing data mechanism.

Acknowledgement

Participants in the Alzheimer’s Disease Centers’
Neuropsychological Database Initiative include: R.S.
Doody, J. Liao, E. Teoh, Baylor College of Medicine;
P.K. Ogrocki, M. Patterson, D. Geldmacher, K. Her-
rup, Case Western Reserve University; K.A. Welsh-
Bohmer, L. Chang, D. Schmechel, Duke – Bryan
Alzheimer’s Disease Research Center;

J. Green, H. Wood, J. Cellar, A. Levey, Emory Uni-
versity School of Medicine; J. Brandt, M. Corrada, C.
Kawas, Johns Hopkins University School of Medicine;
G.E. Smith, M. Plevak, R. Cha, R. Petersen, Mayo
Clinic, Rochester; R. Mohs, C. Green, K. Ware, D.
Marin, L. Negroni, Mount Sinai School of Medicine;
N. Johnson, M. Mesulam, K. Hoyne, S. Weintraub,
Northwestern University Medical School; S.H. Ferris,
A. Kluger, E. Sinaiko, New York University School of
Medicine; D. Howieson, R. Guariglia, J. Kaye, Ore-
gon Health Sciences University; F.A. Schmitt, D. Wek-
stein, M. Mendiondo,R. Kryscio, C. Smith, W. Markes-
bery, University of Kentucky; J. Saxton, P. Ketchel,
S. Dekosky, University of Pittsburgh; M. Papka, C.
Casaceli, E. Johnson, C. Irvine, R. Kurlan, P. Coleman,
University of Rochester Medical Center; K. Saine, M.
Cullum, J. Reisch, J. Smith, M. Weiner, R. Rosenberg,
University of Texas, Southwestern Medical Center; M.
Storandt, E. Grant, J. Morris, Washington University;
M. Grundman, D. Salmon, H.T. Kim, A. Schultz, A.
Wehling, A. Wade, A. Gamst, R. Thomas, L.J. Thal,
University of California, San Diego.

This study was supported by grants AG05131 and
AG10483 from National Institute on Aging.

References

[1] J.W. Ashford, http://www.medafile.com/index.html.
[2] P. Belisle and L. Joseph, Wolfson DB and Zhou XJ. Bayesian

estimation of cognitive decline in patients with Alzheimer’s
Disease,The Canadian Journal of Statistics 30(1) (2002), 37–
54.

[3] J.O. Brooks III; Helena Chumra Kraemer; Elizabeth Decker
Tanke and Jerome A. Yesavage. The Methodology of Studying
Decline in Alzheimer’s Disease,Journal of American Geri-
atric Society 41 (1993), 623–628.

[4] J.O. Brooks III, J.A. Yesavage, A. Carta and D. Bravi, Acetyl
L-carnitine slows decline in younger patients with Alzheimer’s
diseases: a reanalysis of a double-blinded placebo-controlled
study using the trilinear approach,Int Psychogeriatr 10 (1998),
193–203.

[5] Butler and Louis, Random effects models with nonparametric
prior, Statistics in Medicine 11, 1981–2000.

[6] H. Eugene Rubin, Martha Storandt, Philip Miller, A. Dorothy
Kinscherf, A. Elizabeth Grant and C. John, Morris and
Leonard Berg, A Prospective Study of Cognitive Function and
Onset of Dementia in Cognitive Healthy Elders,Archive of
Neurology 55 (1998), 395–401.

[7] R.L. Frolich, T. Dierks, E.M. Martin and K. Maurer, Differen-
tial validity of psychometric tests in dementia of the Alzheimer
type,Psychiatry Research 44(2) (Nov. 1992), 93–106.

[8] D.R. Galasko, R.L. Gould, I.S. Abramson and D.P. Salmon,
Measuring cognitive change in a cohort of patients with
Alzheimer’s disease,Statistics in Medicine 15–30;19(11–12)
(June, 2000), 1421–1432.

[9] C.B. Hall, R.B. Lipton, M. Sliwinski and W.F. Stewart, A
Change Point Model for Estimating the Onset of Cognitive De-
cline in Preclinical Alzheimer’s Disease,Statistics in Medicine
19 (2000), 1555–1566.

[10] C.B. Hall, Jun Ying, Lynn Kuo, Martin Sliwinski, Herman
Buschke, Mindy Katz and Richard B. Lipton, Estimation of
Bivariate Measurements Having Different Change Points, with
Application to Cognitive Ageing,Statistics in Medicine 20
(2001), 3695–3714.

[11] L. Joseph, D.B. Wolfson, J.O. Brooks III, J.A. Morris, J.R.
Tinklenberg and J.A. Yesavage, Taking Account of Between-
Patient Variability When Modeling Decline in Alzheimer’s
Disease,American Journal of Epidemiology 149(10) (1999),
963–973.

[12] R. Little and D.B. Rubin,Statistical Analysis with Missing
Data, New York : Wiley, c1987.

[13] D.X. Rasmusson, K.A. Carson, R. Brookmeyer, C. Kawas and
J. Brandt, Predicting Rate of Cognitive Decline in Probable
Alzheimer’s Disease,Brain and Cognition 31 (1996), 133–
147.

[14] G. Verbeke and E. Lesaffre, The effect of misspecifying the
random effects distribution in linear mixed models for longi-
tudinal data,Computational Statistics and Data Analysis 23
(1997), 541–556.

[15] J.A. Yesavage and J.O. Brooks III, On the importance of longi-
tudinal research in Alzheimer’s disease,Journal of American
Geriatric Society 39 (1991), 924–944.


