
Journal of Alzheimer’s Disease Reports 7 (2023) 1095–1102
DOI 10.3233/ADR-230088
IOS Press

1095

Research Report

Associations Between Plasma, Imaging, and
Cerebrospinal Fluid Biomarkers with
Driving Behavior and Cognitive Tests:
Implications for Biomarker Usefulness
Catherine M. Roea,1, Sayeh Bayatb,c,d,1 and Ganesh M. Babulale,f,g,h,∗
aRoe Research LLC, St. Louis, MO, USA
bDepartment of Biomedical Engineering, University of Calgary, Calgary, Canada
cDepartment of Geomatics Engineering, University of Calgary, Calgary, Canada
dHotchkiss Brain Institute, University of Calgary, Calgary, Canada
eDepartment of Neurology, Washington University in St. Louis, St. Louis, MO, USA
f Institute of Public Health, Washington University in St. Louis, St. Louis, MO, USA
gDepartment of Psychology, Faculty of Humanities, University of Johannesburg, Johannesburg, South Africa
hDepartment of Clinical Research and Leadership, George Washington University School of Medicine and Health
Sciences, Washington, DC, USA

Received 29 July 2023
Accepted 5 September 2023
Pre-press 25 September 2023
Published 28 September 2023

Abstract.
Background: Declines in instrumental activities of daily living like driving are hallmarks sequelae of Alzheimer’s disease
(AD). Although driving has been shown to be associated with traditional imaging and cerebrospinal fluid (CSF) biomarkers, it
is possible that some biomarkers have stronger associations with specific aspects of driving behavior. Furthermore, associations
between newer plasma biomarkers and driving behaviors are unknown.
Objective: This study assessed the extent to which individual plasma, imaging, and CSF biomarkers are related to specific
driving behaviors and cognitive functions among cognitively normal older adults.
Methods: We analyzed naturalistic driving behavior from cognitively healthy older drivers (N = 167, 47% female, mean
age = 73.3 years). All participants had driving, clinical, and demographic data and completed biomarker testing, including
imaging, CSF, and/or plasma, within two years of study commencement.
Results: AD biomarkers were associated with different characteristics of driving and cognitive functioning within the same
individuals. Elevated levels of plasma A�40 were associated with more speeding incidents, higher levels of CSF tau were
related to shorter duration of trips, and higher CSF neurofilament light chain values were associated with traveling shorter
distances, smaller radius of gyration, and fewer trips at night. We demonstrated that plasma, like CSF and imaging biomarkers,
were helpful in predicting everyday driving behaviors.
Conclusions: These findings suggest that different biomarkers offer complementary information with respect to driving
behaviors. These distinct relationships may help in understanding how different biological changes that occur during the
preclinical stage of AD can impact various sensorimotor and cognitive processes.
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INTRODUCTION

The ATN research framework of the National Insti-
tute on Aging – Alzheimer’s Association (NIA-AA)
depends upon “positivity” of markers of amyloid,
tau, and neurodegeneration to operationalize the pres-
ence of biological Alzheimer’s disease (AD), even
among persons with normal cognition [1]. Cut-offs
to determine biomarker positivity were originally
developed by finding the numerical point that best
distinguishes a group with clinical dementia from
one with normal cognition [2]. Validation and cut-
offs for newer biomarkers, such as those derived from
blood plasma, have also relied on their strength of
association with older molecular biomarkers such
as amyloid imaging [3, 4]. In addition to being
able to distinguish clinical groups, these established
cut-offs can successfully predict time to incident
dementia among persons who are cognitively normal
[5, 6].

The predictive utility of AD biomarkers, and their
associated cut-off values, likely depends on what
is being predicted. AD impacts widespread func-
tional activities of daily living, such as driving [7,
8], which incorporates cognitive functioning. Driving
is important for maintaining mobility and inde-
pendence among older adults, and 83% of those
aged 70 and above have current driver’s licenses
[9–11]. However, traffic crashes are among the lead-
ing causes of accidental disability and death in
this age group, with almost 700 persons aged 65+
years being injured and over 20 being killed every
day in the US [12]. Being able to identify who is
likely to be an unsafe driver, and who is at risk for
future driving problems, will enable early interven-
tion and reduce disability and death among older
adults.

The relationship between AD biomarkers and cog-
nition differs based on both the specific biomarker
used and the domain of cognition examined [13, 14].
Although driving behavior has been shown to be asso-
ciated with traditional imaging and CSF biomarkers
[8, 15, 16], it is possible that, as with cognition, some
biomarkers have stronger associations with particu-
lar aspects of driving behavior than others. Further,
associations between newer plasma biomarkers and
driving behaviors are currently unknown. Blood-
based biomarkers are expected to play an important
clinical role in the future, as they are likely to be more
accessible, affordable, and acceptable to patients
compared to biomarkers derived from CSF and imag-
ing [17].

As a necessary first step in optimizing identifica-
tion and prediction of AD-related driving difficulties,
we examined the extent to which individual plasma,
imaging, and CSF biomarkers are related to spe-
cific driving behaviors among cognitively normal
older drivers. We also compared these associations
to those of the biomarkers with selected cognitive
tests.

MATERIALS AND METHODS

Participants

Data from cognitively normal participants (Clin-
ical Dementia Rating® [CDR] = 0) aged 65 years
and older who provided informed consent and were
enrolled in naturalistic driving studies were used.
Participants had a data logger installed in their per-
sonal vehicles and drove at their discretion for at
least six months between June 2, 2015 and Febru-
ary 29, 2020. The end date for driving data collection
was chosen because driving behavior for this group
began to change due to the COVID-19 pandemic
(e.g., social distancing, business and workplace shut-
downs) around March/April 2020 [18].

Participants provided written informed consent,
and all study procedures were approved by the Wash-
ington University Human Research Protection Office.
The study was conducted in accordance with the Dec-
laration of Helsinki.

Driving data collection and outcomes

The data logger (Azuga, Inc.) plugs into the OBDII
port of the participant’s vehicle and is powered by the
vehicle’s battery. Within 1 min after installation, the
data logger accesses available satellites for orienta-
tion and synchronization and begins transmitting data
via cell phone towers, to the vendor’s servers for ini-
tial storage. Data on date, time, vehicle latitude and
longitude, speed, and time are collected every 30 s
while ignition is on. The data are aggregated daily by
the vendor, and then downloaded to local, encrypted
data storage on secured servers for use by our labora-
tory. Based on our prior research [8, 16, 19, 20], we
used the following driving outcomes: total number
of trips, number of unique locations visited, average
distance travelled, average duration of a trip, average
jerk, average acceleration, number of hard braking
events per mile, number of rapid accelerations per
mile, proportion of trips with over speeding, propor-
tion of trips with under speeding, number of trips
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taken at night, radius of gyration, and straightness
index.

Biomarkers and cognitive assessments

Within two years of data logger installation, partic-
ipants completed biomarker testing. Imaging, CSF,
and plasma procedures have been described pre-
viously [21, 22]. Amyloid pathology was assessed
using positron emission tomography (PET) with
Pittsburgh Compound B or florbetapir (F-AV-45)
tracers. Mean standardized uptake value ratio with
partial volume correction via regional spread func-
tion was estimated using 30 to 60 min post-injection
as the time window using the cerebellum cortex as
the default reference region. Amyloid burden was
expressed using centiloids across the tracers.

Tau pathology was assessed using PET and 18F-
AV-1451 (previously known as T807). Data were
examined for the 80–100 min post-injection window
and were converted to standardized uptake value
ratios using the whole cerebellum as a reference. A
tauopathy value was obtained by averaging the bind-
ing potential values from the amygdala, entorhinal
cortex, interior temporal, and lateral occipital cortex
regions of interest.

Structural imaging was obtained from an MRI
based upon the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) protocol. High-resolution T1
MPRAGE was used for the assessment of brain struc-
tures to produce normalized whole brain volume and
hippocampal volume (HV) measurements. HV was
normalized to account for differences in head size.
Then the mean intracranial volume (ICV) was cal-
culated for the sample, followed by conducting a
regression analysis with ICV as the sole independent
variable and participants’ HV (the sum of right and
left HV) as the dependent variable. The �-weight was
then used to compute participants’ normalized HV
using the following equation: normalized HV = raw
HV – (�-weight × (participant’s ICV – sample mean
ICV))

For the lumbar puncture/CSF collection, approx-
imately two tablespoons (20–35 ml) of CSF were
collected at 8:00 AM following an overnight
fasting period by an experienced neurologist uti-
lizing a 22-gauge Sprotte spinal needle. Samples
were free from blood contamination, inverted to
avoid gradient effects, centrifuged at low speed,
aliquoted into polypropylene tubes, and frozen at
–80◦C. Samples were (A�42, A�40, tau, ptau181,
tau/A�42, ptau181/A�42, neurofilament light chain

[NfL]) utilizing automated electrochemilumines-
cence immunoassay (Lumipulse G1200, Fujirebio)
in the same lot to eliminate drift or batch effects.

Blood samples from each participant were col-
lected at a single session at approximately 8 AM
following overnight fasting. Plasma A�42, A�40, NfL
were measured at C2 N Diagnostics, a CLIA com-
mercial laboratory with immunoprecipitation–mass
spectrometry. All assays were performed by per-
sonnel who were blinded to the participant’s
demographic data.

Annually, participants were given a CDR and com-
pleted the Montreal Cognitive Assessment (MoCA)
screen [23], along with a brief neuropsychological
battery that included the Selective Reminding Test
(SRT) – Free Recall portion [24], Animal naming
[25], and Trailmaking A and B [26].

Statistical analyses

To compare the strength of associations, the mean
on each of the biomarker and driving variables across
the study period was computed for each participant
and then standardized such that the distribution of
each variable had a mean of 0 and a standard devia-
tion of 1. Pearson product-moment correlations were
used to examine the unadjusted Pearson correlations
between the biomarker variables and the driving and
cognitive measures. General linear models (GLM)
were used to test the biomarker-driving/cognitive
associations after adjusting for age, gender, race, and
education. The natural log of NfL was used in these
analyses because its distribution was less skewed than
raw NfL values.

RESULTS

There were 167 participants that met the inclu-
sion criteria for analyses. Each participant received
a CDR = 0 at their clinical assessment closest to
data logger installation (mean ± standard devia-
tion [SD] = 156.1 ± 125.5 days). Participants’ ages
ranged from 65.6 to 90.8 with a mean ± SD of
73.3 ± 4.9 years, a mean ± SD of 16.6 ± 2.2 years
of education, 47.3% were women, and 13.8%
were Black or African American (all other par-
ticipants were White). Driving time with the
data logger installed ranged from 0.6 to 4.7
(mean ± SD = 2.2 ± 0.9) years.

All participants had complete driving, clinical,
and demographic data available, but the number
with each biomarker type varied as follows: N = 139
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with amyloid imaging; 103 with tau imaging; 144
with normalized hippocampal volume; 125 with CSF
A�42, A�40, tau, and ptau181; 118 with CSF NfL;
and 116 with plasma A�42, A�40, and NfL. Table 1
shows the magnitude and direction of the Pearson
correlation coefficients with each of the driving and
cognitive variables. When analyses adjusted for age,
gender, race, and education, the relative strength and
direction of associations was similar, although fewer
pairings were significant at the 0.05 or 0.01 alpha
level (Table 2). This was expected, given the decrease
in statistical power with greater numbers of inde-
pendent variables in the models. Unless otherwise
specified, the findings reported going forward refer
to the adjusted analyses (Table 2).

Plasma

Both plasma A�40 and A�42, but not the ratio of
A�42/A�40, were associated with fewer trips taken
and trips of shorter distance and duration. Addition-
ally, higher levels of plasma A�40 were related to
fewer trips taken at night, and higher values of A�42
to more overspeeding. Plasma A�42/A�40 was asso-
ciated with SRT Free Recall scores, but not to any of
the driving metrics. Plasma NfL was unrelated to any
of the driving and cognitive variables examined.

Imaging

The imaging data showed that participants with
higher PET amyloid levels went to fewer unique
destinations, took fewer trips at night, had worse per-
formance on the MoCA, and had marginally worse
performance on SRT Free Recall (p = 0.06). Neither
PET tauopathy nor normalized hippocampal volume
were associated with any of the driving or clinical
measures.

CSF

Higher levels of A�40, and lower levels of A�42,
were related to larger radius of gyration driv-
ing values. Greater A�40 values were additionally
associated with shorter distances. Higher ratios of
A�42/A�40 predicted greater acceleration, higher
SRT Free Recall scores, and lower straightness values
(i.e., the ratio between the distance from the starting
point to the destination and the distance travelled to
reach the destination, ranging from 0 to 1). Straight-
ness was related to A�42/A�40, tau, ptau181, tau/A�42
and ptau181/A�42. Tau and ptau181 were also related

to shorter duration of trips. Higher NfL values were
associated with traveling shorter distances, smaller
radius of gyration and fewer trips at night.

DISCUSSION

The current study is a first attempt at understanding
the interconnectedness between traditional and novel
AD biomarkers, driving behaviors and cognition. A
key finding of the study is that plasma biomarkers,
like CSF and imaging biomarkers, are useful in pre-
dicting everyday behaviors on complex functional
tasks such as driving. More specifically, these results
show that elevated levels of plasma A�40 and/or A�42
are associated with fewer total trips and night trips,
decreased trip distance and duration, as well as more
speeding incidents. Taking a closer look at this inter-
connectivity, our findings further suggest that the
associations between plasma biomarkers and driving
behaviors differ from the relationship between these
biomarkers and cognition. In fact, it can be observed
that plasma A�42/A�40, though an effective predic-
tor of cognition [21], may not be strongly associated
with driving behaviors.

Another key finding of this study is that differ-
ent AD biomarkers are associated with different
dimensions of driving and cognitive functioning. It
has long been shown that different AD biomarkers
have varying associations with cognitive domains
and specific domains (e.g., memory, attention, and
executive function) [14]. Our results align with the
broader observation that there is not always a strong
association between cognitive performance and fluid
markers of preclinical AD. Notably, this is consis-
tent with observations from our earlier investigations
[16, 27]. As the understanding of these dynamics
expands, it could provide valuable insights into the
nuanced progression of Alzheimer’s disease and its
broader clinical manifestations. On the other hand,
our findings provide evidence that different biomark-
ers are related to different everyday driving behaviors.
For instance, elevated levels of CSF tau and NfL
(reflecting neurodegeneration) are associated with
more self-regulating driving behaviors. More specifi-
cally, higher levels of CSF tau were related to shorter
duration of trips, while higher CSF NfL values were
associated with traveling shorter distances, smaller
radius of gyration and fewer trips at night. Fur-
thermore, CSF and plasma A�42 and A�40 behave
differently with respect to driving within the same
individuals and may therefore yield complemen-
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Table 1
Pearson correlation coefficients (r2) for the relation of imaging, CSF, and plasma biomarkers with driving variables and cognitive test scores. The darker cell colors represent stronger correlations

(i.e., the darker the color the higher the correlation between the two variables)

Imaging CSF Plasma

PET amyloid PET tau nHV A�42 A�40 A�42/ A�40 tau ptau181 tau/ A�42 ptau181/ A�42 NfL A�40 A�42 A�42/ A�40 NfL

Driving Variables Number of trips –0.18 0.09 0.06 0.10 0.09 0.09 0.00 0.00 0.10 –0.13 –0.06 –0.24 0.23 0.05 0.01

Number of unique destinations 0.25 0.14 0.06 0.08 0.01 0.17 –0.05 0.10 0.16 0.17 –0.18 0.14 –0.09 0.13 0.00

Average distance –0.07 –0.15 0.11 0.11 0.23 0.10 0.19 –0.19 –0.09 –0.06 0.24 0.24 0.30 0.10 0.01

Average duration 0.12 0.15 0.01 0.00 0.26 0.15 –0.22 0.22 0.17 0.15 –0.16 0.22 0.32 0.15 0.06

Average acceleration –0.14 0.04 0.12 0.09 0.04 0.20 –0.13 0.15 0.19 0.18 0.18 0.04 0.10 0.14 –0.07

Average jerk –0.19 0.04 0.10 0.11 –0.02 0.21 –0.14 0.16 0.13 –0.20 –0.17 0.00 0.00 0.17 –0.08

Number of hard braking

instances per mile

–0.08 0.02 0.04 0.02 0.00 0.05 –0.10 –0.09 0.11 –0.09 –0.13 –0.04 0.00 0.00 0.01

Number of rapid accelerations

per mile

0.00 –0.06 0.00 0.00 –0.05 –0.06 –0.07 0.01 0.01 0.04 –0.02 0.03 0.00 –0.05 0.02

Proportion of trips with over

speeding

0.10 0.20 0.06 0.04 –0.12 0.11 0.15 0.15 0.12 –0.12 –0.11 0.17 0.23 0.10 –0.08

Proportion of trips with under

speeding

0.07 0.00 0.19 –0.07 0.00 –0.13 0.13 0.10 0.18 0.14 0.16 0.11 0.00 –0.15 0.00

Number of trips taken at night 0.25 0.12 0.00 0.10 –0.02 0.18 –0.08 –0.12 0.16 0.16 –0.20 0.21 0.14 0.10 0.01

Radius of gyration –0.02 0.17 0.06 0.20 0.27 –0.01 –0.14 –0.13 0.02 0.02 –0.25 0.00 0.06 0.12 –0.04

Straightness index –0.02 0.06 0.13 0.09 0.09 –0.14 0.24 0.30 0.25 0.25 –0.12 0.01 0.00 0.00 0.01

Cognitive Tests MoCA total score 0.19 0.00 0.18 0.13 0.06 0.18 –0.04 –0.05 0.14 –0.13 –0.03 –0.14 –0.04 0.20 0.00

SRT Free Recall 0.19 –0.01 0.13 0.20 0.03 0.29 –0.04 –0.10 0.19 0.21 –0.17 –0.13 0.05 0.29 0.00

Animal naming –0.04 0.03 0.11 0.05 0.02 0.00 0.05 –0.04 0.04 0.06 –0.04 –0.12 –0.09 0.06 0.05

Trailmaking A –0.01 0.07 –0.09 0.04 0.01 –0.05 –0.05 0.00 –0.06 –0.06 –0.06 –0.06 0.00 –0.02 –0.07

Trailmaking B 0.07 –0.06 0.00 0.07 0.09 0.00 0.00 0.02 0.00 –0.03 0.02 –0.01 0.00 0.02 –0.05

nHV, normalized hippocampal volume.
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Table 2
p-values from the general linear models (GLM) of biomarker-driving/cognitive associations after adjusting for age, gender, race, and education

Imaging CSF Plasma

PET amyloid PET tau nHV A�42 A�40 A�42/ A�40 tau ptau181 tau/ A�42 ptau181/ A�42 NfL A�40 A�42 A�42/ A�40 NfL

Driving Variables Number of trips 0.139 0.540 0.624 0.254 0.139 0.540 0.472 0.869 0.415 0.155 0.732 0.009** 0.008** 0.956 0.720

Number of unique destinations 0.031* 0.353 0.811 0.509 0.589 0.244 0.889 0.571 0.214 0.152 0.099 0.306 0.209 0.601 0.394

Average distance 0.922 0.358 0.535 0.115 0.016* 0.785 0.081 0.104 0.612 0.700 0.012* 0.000** 0.001** 0.894 0.495

Average duration 0.941 0.080 0.892 0.599 0.081 0.352 0.036* 0.031* 0.177 0.234 0.282 0.001** 0.001** 0.928 0.315

Average acceleration 0.370 0.921 0.855 0.420 0.835 0.028* 0.240 0.994 0.072 0.105 0.084 0.172 0.314 0.255 0.886

Average jerk 0.183 0.989 0.921 0.317 0.954 0.083 0.205 0.176 0.038* 0.061 0.146 0.301 0.545 0.209 0.827

Number of hard braking

instances per mile

0.306 0.983 0.994 0.826 0.528 0.609 0.120 0.112 0.170 0.208 0.169 0.365 0.328 0.923 0.838

Number of rapid accelerations

per mile

0.963 0.666 0.964 0.481 0.545 0.767 0.301 0.691 0.786 0.859 0.436 0.694 70.620 0.707 0.942

Proportion of trips with over

speeding

0.390 0.132 0.648 0.515 0.154 0.501 0.164 0.104 0.338 0.337 0.072 0.027* 0.077 0.285 0.157

Proportion of trips with under

speeding

0.979 0.753 0.084 0.601 0.667 0.553 0.362 0.760 0.147 0.266 0.348 0.658 0.501 0.578 0.553

Number of trips taken at night 0.013* 0.248 0.864 0.475 0.783 0.109 0.425 0.208 0.127 0.106 0.029* 0.067 0.028* 0.654 0.887

Radius of gyration 0.804 0.190 0.878 0.011* 0.007** 0.328 0.320 0.434 0.427 0.394 0.015* 0.432 0.503 0.637 0.752

Straightness index 0.640 0.243 0.462 0.170 0.396 –0.038* 0.006** 0.000** 0.003** 0.003** 0.206 0.988 0.907 0.831 0.921

Cognitive Tests MoCA 0.001** 0.270 0.112 0.285 0.772 0.770 0.615 0.637 0.199 0.219 0.391 0.615 0.155 0.134 0.380

SRT Free Recall 0.059 0.324 0.252 0.104 0.991 0.007** 0.699 0.287 0.850 0.042* 0.359 0.978 0.228 0.024* 0.706

Animal naming 0.297 0.729 0.427 0.380 0.762 0.600 0.482 0.811 0.659 0.393 0.962 0.602 0.307 0.371 0.170

Trailmaking A 0.814 0.753 0.871 0.997 0.331 0.504 0.998 0.843 0.645 0.662 0.945 0.597 0.738 0.726 0.520

Trailmaking B 0.209 0.624 0.373 0.297 0.099 0.784 0.467 0.551 0.882 0.835 0.936 0.680 0.793 0.944 0.243

*significant at 0.05 level; **significant at 0.01 level. nHV, normalized hippocampal volume.
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tary information. Overall, these distinct relationships
may help in understanding how different biological
changes that occur during the preclinical stage of
AD can impact various sensorimotor and cognitive
processes.

Our findings have implications for models of
AD development, as they may help in establish-
ing the timeline of the appearance of functional
changes relative to changes in biomarkers and cog-
nition. Additionally, biomarker cut-offs have been
established because they are best at discriminating
persons with symptomatic AD from those with nor-
mal cognition. However, these results indicate that the
optimal cut-off points for biomarker positivity and
negativity must be tailored to the specific outcome
being monitored and predicted. Similar to impair-
ment in cognitive processes, functional impairment
is also a defining characteristic of AD as the dis-
ease progresses. Future AD research should work to
determine the most effective cut-off values for using
biomarkers to identify and predict functional out-
comes such as driving, in order to provide a more
nuanced understanding of the AD’s impact on daily
living.

Though more work lies ahead before we can
monitor, detect, or predict AD in the preclini-
cal phase on an individual basis, the findings of
this study open up other interesting directions for
further research in the field. One future research
direction is to investigate how AD pathologies, as
reflected in different biomarkers, affect other daily
activities such as falls and gait patterns. With appro-
priate techniques and devices, we can create a novel
scheme for behavioral staging of AD across its entire
spectrum.

Finally, the findings should be considered in light
of a few limitations. First, testing these relationships
in additional samples are required to establish the
reliability of these findings. Second, the sample lacks
generalizability since the participants in this study are
almost all non-Hispanic White and primarily reside
in the St. Louis Area. Similar studies should be con-
ducted in more geographically and racially diverse
samples to establish the generalizability of these find-
ings. Additionally, although our small sample size
was effective for demonstrating that individual AD
biomarkers (plasma, CSF, and imaging) are differ-
entially related to naturalistic driving behaviors and
cognitive test scores, the application of larger sample
sizes, with increased statistical power, might uncover
associations that were not deemed significant in our
final models. For example, CSF NfL was significantly

correlated with acceleration in the unadjusted analy-
ses, but not in the GLMs.

Conclusion

The current study demonstrates that individual AD
biomarkers (plasma, CSF, and imaging) are differ-
entially related to naturalistic driving behaviors and
cognitive test scores, with some biomarkers highly
related to driving but not cognitive outcomes (e.g.,
plasma and CSFA�1-40, CSF NfL), and others related
to cognitive test scores but not driving behaviors (e.g.,
plasma A�42/A�40 ratio). The findings highlight the
need for targeted research into understanding how
different processes in AD pathology, as characterized
by different biomarkers, are associated with complex
activities of daily living and behavioral staging of
AD.
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