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Abstract.
Background: Neurological disorders, such as Alzheimer’s disease (AD), comprise a major cause of health-related disabilities
in human. However, biomarkers towards pathogenesis or novel targets are still limited.
Objective: To identify the causality between plasma proteins and the risk of AD and other eight common neurological
diseases using a Mendelian randomization (MR) study.
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Methods: Exposure data were obtained from a genome-wide association study (GWAS) of 2,994 plasma proteins in 3,301
healthy adults, and outcome datasets included GWAS summary statistics of nine neurological disorders. Inverse variance-
weighted MR method as the primary analysis was used to estimate causal effects.
Results: Higher genetically proxied plasma myeloid cell surface antigen CD33 level was found to be associated with increased
risk of AD (odds ratio [OR] 1.079, 95% confidence interval [CI] 1.047–1.112, p = 8.39 × 10−7). We also discovered the
causality between genetically proxied elevated prolactin and higher risk of epilepsy (OR = 1.068, 95% CI = 1.034–1.102;
p = 5.46 × 10−5). Negative associations were identified between cyclin-dependent kinase 8 and ischemic stroke (OR = 0.927,
95% CI = 0.896–0.959, p = 9.32 × 10−6), between neuralized E3 ubiquitin-protein ligase 1 and migraine (OR = 0.914, 95%
CI = 0.878–0.952, p = 1.48 × 10−5), and between Fc receptor-like protein 4 and multiple sclerosis (MS) (OR = 0.929, 95%
CI = 0.897–0.963, p = 4.27 × 10−5).
Conclusion: The findings identified MR-level protein-disease associations for AD, epilepsy, ischemic stroke, migraine, and
MS.
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INTRODUCTION

Neurological diseases are the leading cause of
disability and rank as the second leading cause of
death in the world [1, 2]. Given the progressive aging
of the global population, the prevalence of neuro-
logical diseases, such as Alzheimer’s disease (AD)
[3], Parkinson’s disease (PD) [4], stroke [5], and
amyotrophic lateral sclerosis (ALS) [6], is gradu-
ally increasing. Despite massive investments aimed
at finding new therapeutic strategies for neurologi-
cal disorders [1], most remain essentially intractable,
owing to a combination of complex underlying biol-
ogy and long prodromal phases.

Proteomics has revolutionized neurological
research and has boosted the discovery of suitable
biomarkers for many neurological diseases [7].
Human blood contains a dynamic flux of proteins
important for biological processes [8], including
cell signaling, tissue repair, and host defense against
external stimuli. Thus, circulating proteins are not
merely used as indicators of health status, but deep
characterization of blood proteins can inform on
pathological mechanisms and help identify clinical
intervention strategies for diseases. However, while
proteomics can very efficiently identify candidate
proteins related to disease, the translation of these
findings into practice is complicated by the redundant
functions of proteins, the plasticity of biological
pathways, and unknown factors that may influence
the course of disease or the response to therapeutic
intervention. One approach to improve the translata-
bility of proteomics data is to integrate proteomic
and genetic datasets. It helps systematically evaluate
the putative causal roles and genetic evidence in
support of disease-causing pathways [9].

Mendelian randomization (MR) is an effective
genetic approach to investigate the causal effect of
certain exposures on diseases or clinical traits [10].
This method has been widely used to prioritize tar-
gets for neurological diseases [11, 12]. In this study,
we applied a two-sample MR method to leverage
summary statistics from large-scale genome-wide
association study (GWAS) datasets to uncover causal
relationships between circulating proteins and neu-
rological diseases, including AD, PD, ALS, multiple
sclerosis (MS), epilepsy, ischemic stroke, intracra-
nial hemorrhage (ICH), subarachnoid hemorrhage
(SAH), and migraine. We identified a protein-disease
associative pair for AD, MS, epilepsy, ischemic
stroke, and migraine that warrant further study to
determine whether the identified proteins have a
causal role in disease pathology.

MATERIALS AND METHODS

Study design

We conducted a two-sample MR analysis to
explore the causal relationships between 2,994
plasma proteins and nine neurological diseases (AD,
PD, ALS, MS, epilepsy, ischemic stroke, ICH, SAH,
and migraine). It is based on 3 core assumptions:
1) genetic variants are strongly associated with the
exposure (2,994 plasma proteins); 2) the variants are
not associated with confounding factors; 3) the vari-
ants affect the outcome (nine neurological diseases)
only through their influences on the exposure of inter-
est (2,994 plasma proteins). A graphical overview of
the general MR design was shown in Fig. 1. This
study follows the guidelines for Strengthening the
Reporting of Observational Studies in Epidemiology-
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Fig. 1. The overall design of Mendelian randomization analysis in the present study. Assumption 1, the genetic variants are supposed to
be strongly associated with the risk of interest; Assumption 2, the genetic variants should not be associated with any confounding factors;
and Assumption 3, the genetic variants should affect the risk of the outcome only mediated by the exposures. IVs, Instrument variants. MR,
Mendelian randomization.

Mendelian randomization (Supplementary Table 14)
[13].

Data sources

Plasma proteins
Summary statistics for plasma proteins were

obtained from the genomic atlas of the human
plasma proteome, a large-scale GWAS of 3,301
healthy adults from the INTERVAL study [14].
The INTERVAL study is a prospective cohort study
that recruited approximately 50,000 blood donors of
European ancestry. The plasma proteome was quan-
tified using an aptamer-based, multiplexed approach
(SOMAscan assay). After strict quality control, 3,283
SOMAmers that mapped to 2,994 plasma proteins
were included in the final GWAS. The GWAS datasets
were adjusted for age, sex, duration between blood
draw and processing, and the first three principal com-
ponents of ancestry from multi-dimensional scaling
(Table 1).

Neurological diseases
For AD, PD, and ALS, we used the correspond-

ing GWAS data from the International Genomics
of Alzheimer’s Project (21,982 cases, 41,944 con-
trols) [15], the International Parkinson’s Disease
Genomics Consortium (33,674 cases, 449,056 con-
trols) [16], and the ALS Variant Server (20,806
cases, 59,804 controls) [17]. Genetic association esti-
mates for MS and epilepsy were obtained respectively
from the International Multiple Sclerosis Genetics
Consortium (47,429 cases, 68,374 controls) [18]
and the International League Against Epilepsy con-
sortium (15,212 cases, 2,9677 controls) [19]. We
extracted genetic variants of ischemic stroke from the
MEGASTROKE consortium, which included 34,217
cases and 406,111 controls [20]. For ICH and SAH,
GWAS data were derived from the FinnGen consor-
tium, which included 2,794 ICH cases and 1,338
SAH cases. We obtained summary-level data for
migraine from the International Headache Genet-
ics Consortium, including 48,975 cases and 540,381
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Table 1
Detailed information of the studies and datasets used for Mendelian randomization analysis

Phenotype Sample Size
(cases/controls)

Ancestry Consortium Adjustments

Plasma proteins 3301 European – age, sex, duration between blood draw and
processing, and the first three principal
components of ancestry from
multi-dimensional scaling

Neurodegenerative disease
Alzheimer’s disease 21982/ 41944 European IGAP age, sex, and population substructure using

principal components
Parkinson’s disease 33674/ 449056 European IPDGC age at onset (cases) or exam (controls), sex,

the first 2 eigenvectors from principal
components analysis

Amyotrophic lateral sclerosis 20806/ 59804 European AVS age, gender, and 2 to 4 principal components

Multiple sclerosis 47429/ 68374 European IMSGC age and sex

Epilepsy 15212/ 29677 Mixed ILAE age, sex, and ethnicity

Cerebrovascular diseases
Ischemic stroke 34217/406111 European MEGASTROKE age and sex
Intracranial hemorrhage 2794/203068 European FinnGen age and sex
Subarachnoid hemorrhage 1338/201230 European FinnGen age and sex

Migraine 48,975/540,381 European IHGC age and sex

AVS, ALS Variant Server; IGAP, International Genomics of Alzheimer’s Project; IHGC, International Headache Genetics Consortium; ILAE,
International League Against Epilepsy; IMSGC, International Multiple Sclerosis Genetics Consortium; IPDGC, International Parkinson’s
Disease Genomics Consortium.

controls (participants from 23andMe cohort were
not included) [21]. Participants in all studies were
of European ancestry, expecting data from the
International League Against Epilepsy consortium,
which included a small population of Asian and
African-American ethnicities. The covariates that
were adjusted for age, sex, ethnicity, and popula-
tion substructure using principal components. Further
details regarding the datasets can be found in Table 1.

Selection of instruments

Few significant SNPs for each plasma protein met
the significance threshold of 5 × 10−8 (less than 3
SNPs, mostly). Thus, we set a relatively relaxed
threshold of 1 × 10−5, which is often used in MR
analyses [12, 22, 23]. Next, the selected SNPs were
clumped for linkage disequilibrium (LD) to r2 < 0.001
within a 10 Mb window based on the 1,000 Genomes
(EUR) reference panel [24]. When no SNP was avail-
able in the outcome dataset, proxy SNPs with LD
of r2 > 0.9 were used. In addition, F-statistics was
calculated to ensure the strength of exposures and
F-statistics > 10 was considered sufficient [25].

Statistical analysis

The main analyses were performed using the
random-effect inverse-variance weighted (IVW)
method [26]. The IVW method would be con-

sidered the best causal estimation if none of the
instruments were found to have substantial hetero-
geneity nor horizontal pleiotropy [27]. To allow for
multiple testing, we used a Bonferroni-corrected sig-
nificant threshold of p < 1.52 × 10−5 (0.05 divided
by 3283 SOMAmers). p < 0.05 above the Bonferroni-
corrected threshold was suggestive of an association.

For sensitivity analyses, we used alternative MR
methods to check the validity of our results, includ-
ing weighted median, MR-Egger, and weighted mode
[27, 28]. When up to 50% of invalid SNPs, weighted
median estimates still yield consistent estimates of
causal effects [28]. The MR-Egger method was
still useful even when up to 100% of the genetic
variants were invalid [29]. In addition, we used
the Cochran’s Q statistic, MR-Egger intercept, and
MR-PRESSO global test to detect the presence of
heterogeneity, directional pleiotropy, and potential
outliers, respectively [30–32]. Cochran’s Q statistic
evaluated heterogeneity across genetic variants [33].
The MR-Egger intercept test was also conducted,
and the non-zero intercept indicated that the IVW
results might be invalid due to horizontal pleiotropy
[29]. MR-PRESSO method provided a correction test
by detecting and removing potentially pleiotropic
outliers [32]. Moreover, reverse MR analyses were
conducted to rule out false positives and power anal-
ysis were done to further ensure the robustness of the
findings.
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The main analyses were performed using
the TwoSampleMR (v.0.5.6) in R version
4.1.1 [34]. Statistical power was estimated
using the online power calculator (mRnd)
(https://cnsgenomics.com/shiny/mRnd/ [35].
We also used the PhenoScanner database (Version
2, http://www.phenoscanner.medschl.cam.ac.uk/)
[36] to see whether SNPs were associated with
potential risk factors (p < 5 × 10−8), that may affect
the neurological diseases being studied.

RESULTS

The MR-predicted causal effects of human plasma
proteins on the AD and other eight neurological disor-
ders were shown in Fig. 2. Two risk proteins and three
protective proteins were identified in the framework.

Genetically predicted plasma proteins associated
with AD

Based on IVW mode, MR estimates indicated
that each standard deviation (SD) increase of plasma
myeloid cell surface antigen CD33 was associ-
ated with an approximately 8% higher risk of AD
(odds ratio [OR] 1.079, 95% confidence interval [CI]
1.047–1.112, p = 8.39 × 10−7). Across MR-Egger,
weighted median, MR-PRESSO and weighted mode,
the effect estimates remained directionally consis-
tent and stable with p < 0.05 (Table 2). Importantly,
there was no evidence of heterogeneity or horizontal
pleiotropy in any of the analyses (p >,0.05).

Genetically predicted plasma proteins associated
with ischemic stroke or migraine

MR estimates identified one causal protective
plasma protein each for ischemic stroke and migraine.
Specially, the genetically predicted level of cyclin-
dependent kinase 8 (CDK8) was causally related
to lower risk of ischemic stroke (IVW: OR 0.927,
95% CI 0.896–0.959, p = 9.32 × 10−6), and the effect
estimate for the relationship between neuralized E3
ubiquitin-protein ligase 1 (NEURL1) and migraine
produced an OR of 0.914 (95% CI, 0.878–0.952,
p = 1.48 × 10−5, IVW mode). The statistically sig-
nificant associations were broadly stable across the
sensitivity analyses. Further, no pleiotropy or hetero-
geneity were observed using Cochran’s Q test, the
MR-Egger intercept test, or the MR-PRESSO global
test (p > 0.05).

Genetically predicted plasma proteins associated
with epilepsy or MS

MR analyses identified marginally significant
associations of two plasma proteins with the risk
of epilepsy and MS, respectively. Genetically deter-
mined prolactin was positively associated with
epilepsy risk (OR: 1.068, 95% CI: 1.034–1.102;
p = 5.46 × 10−5; IVW mode). Higher level of genet-
ically predicted Fc receptor-like protein 4 (FCRL4)
was inversely associated with the risk of MS (OR:
0.929, 95% CI: 0.897–0.963, p = 4.27 × 10−5). The
effect estimates in IVW mode were similar to those
obtained in sensitivity analyses, and there was no
evidence of heterogeneity or directional pleiotropy
(Table 2).

Genetically predicted plasma proteins associated
with PD, ALS, ICH, or SAH

The MR tried to identify potential causal rela-
tionships between plasma proteins and PD, ALS,
ICH, or SAH; however, none of these associations
approached the significance threshold when the Bon-
ferroni correction was applied (Fig. 2).

Reverse analysis between plasma proteins and
neurological diseases

Reverse MR analyses were conducted on the
aforementioned identified plasma proteins and their
associated diseases. They failed to identity signifi-
cant causality, indicating that the causal effects were
statistically robust and not false positives (Supple-
mentary Table 1).

All statistical analyses reached an estimated power
analysis of more than 85% (Supplementary Table 2).
For the IVs used for these plasma proteins, all
F-statistics were above 10 (ranging from 19.27
to 2123.37; Supplementary Tables 3–12). To test
whether the estimate was biased by potential risk
factors, we searched SNPs for each IV in Phenoscan-
ner database. As a result, in the analysis of CDK8,
rs1689804 was found to be associated with high-
density lipoprotein (HDL) (p = 9.07 × 10−9) and
HDL cholesterol (p = 1.80 × 10−8). After removing
this SNP, the effect estimates in IVW mode was
consistent with previous results (OR: 0.926, 95%
CI: 0.89–0.958, p = 1.27 × 10−5), suggesting that the
causality between CDK8 and ischemic stroke was not
affected by this factor.

https://cnsgenomics.com/shiny/mRnd/
http://www.phenoscanner.medschl.cam.ac.uk/
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Table 2
Mendelian randomization results of plasma proteins on neurological diseases

Trait nSNPs Method OR (95%CI) p Q pval Intercept
pval

Global
pval

Myeloid cell surface antigen CD33 versus AD 18 IVW 1.079 (1.047, 1.112) 8.39E-07 0.390
MR Egger 1.091 (1.043, 1.141) 2.19E-03 0.520
MR-PRESSO 1.076 (1.047, 1.105) 5.80E-05 0.460
Weighted median 1.088 (1.054, 1.124) 2.96E-07
Weighted mode 1.090 (1.053, 1.128) 2.30E-04

Cyclin-dependent kinase 8 versus ischemic stroke 28 IVW 0.927 (0.896, 0.959) 9.32E-06 0.441
MR Egger 0.964 (0.893, 1.041) 0.355 0.274
MR-PRESSO 0.927 (0.896, 0.959) 1.40E-04 0.466
Weighted median 0.927 (0.882, 0.975) 3.17E-03
Weighted mode 0.936 (0.860, 1.019) 0.139

Neuralized E3 ubiquitin-protein ligase 1 versus migraine 16 IVW 0.914 (0.878, 0.952) 1.48E-05 0.142
MR Egger 0.930 (0.828, 1.045) 0.241 0.764
MR-PRESSO 0.914 (0.878, 0.952) 5.93E-04 0.207
Weighted median 0.921 (0.876, 0.969) 1.36E-03
Weighted mode 0.920 (0.863, 0.982) 0.024

Prolactin versus epilepsy 19 IVW 1.068 (1.034, 1.102) 5.46E-05 0.240
MR Egger 1.098 (0.945, 1.277) 0.237 0.710
MR-PRESSO 1.068 (1.034, 1.102) 7.77E-04 0.312
Weighted median 1.057 (1.013, 1.101) 8.99E-03
Weighted mode 1.052 (0.985, 1.125) 0.147

Fc receptor-like protein 4 versus multiple sclerosis 18 IVW 0.929 (0.897, 0.963) 4.27E-05 0.378
MR Egger 0.935 (0.892, 0.980) 0.012 0.702
MR-PRESSO 0.930 (0.898, 0.963) 6.65E-04 0.495
Weighted median 0.939 (0.903, 0.976) 1.45E-03
Weighted mode 0.940 (0.905, 0.978) 6.41E-03

AD, Alzheimer’s disease; CI, confidence interval; IVW, inverse-variance weighted; MR-PRESSO, Mendelian randomization-Pleiotropy Residual Sum and Outlier, nSNPs, number of single
nucleotide polymorphisms; OR, odds ratio; Q pval, P-value of the Cochran Q statistic.
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Fig. 2. Volcano plot showing the causal effects of human plasma proteins on nine neurological diseases. Data are expressed as raw odds ratios
estimated by the IVW method. The red solid line represents the Bonferroni-corrected significant threshold of p < 1.52 × 10−5. The black
dotted line represents the suggestive association threshold of p < 0.05. A) Alzheimer’s disease, B) ischemic stroke, C) migraine, D) epilepsy,
E) multiple sclerosis, F) amyotrophic lateral sclerosis, G) Parkinson’s disease, H) intracranial hemorrhage, I) subarachnoid hemorrhage.

Additionally, we identified six plasma proteins that
were significantly associated with AD risk, includ-
ing leucine-rich repeat neuronal protein 1 (LRRN1),
cardiotrophin-1 level (CTP1), MAP kinase-activated
protein kinase 5 (MAPKAPK5), vacuolar protein
sorting-associated protein 29 (VPS29), Protein S100-
A13 (S100A13), and proteasome activator complex
subunit 1 (PSME1). However, the estimates for all
these associations appear to have been biased by
moderate to high pleiotropy and heterogeneity (Sup-
plementary Table 13).

DISCUSSION

Identifying suitable targets for neurological dis-
eases remains a challenging task. This study
integrated large-scale GWAS datasets from multiple
cohorts and proposes a two-sample MR framework to
identify candidate proteins and their links with nine
common neurological diseases.

We identified five protein-disease associative pairs,
and the robust statistical analysis suggested that these
relationships were unlikely to be affected by con-
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founding factors or pleiotropic effects. Among them,
increased level of CD33 was prioritized across the
models of IVW, MR-Egger, MR-PRESSO, weighted
median and weighted mode, as a genetic proxy for
higher risk of AD. The role of CD33 in AD is
increasingly recognized. The link has been identified
through GWAS, wherein rs3826656, rs3865444, and
rs12459419 were discovered as susceptibility fac-
tors for AD [37]. Further, it has been reported that
CD33, which is primarily expressed in microglia, is
higher in patients with AD [38]. CD33 could facili-
tate AD pathology by inhibiting microglia-mediated
clearance of amyloid-� [39]. Our results reinforced
the association between CD33 and AD by providing
MR-validated causality. Moreover, the current find-
ings were consistent with a recent MR study by Gu et
al. [40], in which they found that elevated CD33 pro-
tein level in plasma was causal to the development of
AD. Indeed, the GWAS datasets for exposure (CD33)
and outcome (AD) selected in our analysis were also
used by Gu and the colleagues [40]. However, our
study set a relaxed threshold during the selection of
IVs (p = 1 × 10−5 versus p = 5 × 10−8 in Gu et al.
[40]). As a result, we identified a total of 20 SNPs
(compared to 2 SNPs in Gu et al. [40]) (Supplemen-
tary Table 3) that were analyzed in our MR model to
ensure the accuracy of sensitivity analysis. Although
our study re-emphasized the role of circulating CD33
as a causal factor for AD, some studies pointed out
that the higher CD33 level could be a response to AD
pathology. For instance, factors in neuroinflammation
such as platelet derived microparticles or cytokines
are able to upregulate the expression of CD33 [41,
42].

Prolactin is a polypeptide hormone, mainly pro-
duced and secreted by the lactotroph cells of the
anterior pituitary gland [43]. It is implicated in lacta-
tion, metabolic homeostasis, maternal behavior, and
the adrenal response to stress [43]. The role of pro-
lactin has been well established for epilepsy, with
wide application in the diagnosis of epileptic seizures
[44]. The epileptic discharge is likely to excite the
hypothalamic pituitary axis, inducing secretion of
prolactin releasing hormone in the hypothalamus,
which can cause the pituitary to secrete prolactin
into serum [45]. Elevation of serum prolactin follow-
ing seizures is considered to be a surrogate marker
of epilepsy, and it is informative regarding the pro-
gression of the disorder [46]. As expected, our study
identified a positive association between circulating
prolactin and risk of epilepsy, emphasizing its impor-
tance in the disorder. However, studies have found

that prolactin can only serve a sensitive and effective
biomarker when it is measured 10 to 20 minutes after
an epileptic event [46]. Therefore, our finding of evi-
dence that prolactin may have a causative relationship
with epilepsy should be applied with caution owing to
the complexity and dynamicity of prolactin signaling
and secretion. One possible explanation is regarding
the negative feedback loop of prolactin secretion. It
has been shown that a brief period of restraint stress
in male mice results in increased circulating pro-
lactin [47], which then activates tuberoinfundibular
dopaminergic neurons. These neurons increase their
release of dopamine [48], which suppresses the pro-
duction of prolactin; thus, a self-regulated framework
is formed for prolactin secretion. Therefore, while it
is clear that prolactin is a useful adjunct to the diag-
nosis of epilepsy, its participation in the etiology of
epilepsy requires further investigation.

We also found that genetically proxied CDK8 was
negatively associated with the risk of ischemic stroke.
CDKs and their associations with ischemic stroke
stem from the findings of their reactivation in dying
neurons [49]. The deregulation of CDKs seems to
have a major role in causing neuronal death during
ischemic stroke. It has been reported that CDK4 and
CDK6 are important factors in ischemic brain that
regulate the progression from G1 to S phase in cell
cycle [50]. CDK8, however, probably participates in
ischemic stroke by regulating the mediator complex
and phosphorylating the corresponding transcription
factors [51]. Furthermore, CDK8 has been reported
to be upregulated in a hyperglycemic state [52];
and Cdk8-knockdown mice exhibited dramatically
increased lipid biosynthesis [53]. Therefore, based
on the literature and our results, we posit that CDK8
may exert neuroprotective effects against ischemic
stroke by regulating transcriptional and metabolic
programs.

Interestingly, the association between increasing
NEURL1 and lower risk of migraine fits well with
a published report demonstrating the reversed trend
between NEURL1 expression and genetic suscep-
tibility to arterial fibrillation [54]. It is believed
that reduced NEURL1 expression can increase the
incidence of arterial fibrillation by regulating the
expression of ion transporters that evoke changes in
action potential duration [55]. The implication rep-
resents an important supplement to the long-running
debate regarding the overlap between migraine and
heart problems, in which iron-related pathways
underlying the two disorders may explain why they
can co-occur. Moreover, studies have indicated that
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NEURL1 is highly expressed in brain, and it modu-
lates the integrity of neurological system through its
participation in synaptic plasticity [56]. Variations of
the NEURL1 could, therefore, contribute to differ-
ences in brain structure and connectivity associated
with migraine.

Fc receptor like proteins are members of the
immunoglobulin family, that are preferentially
expressed in B lymphocytes [57]. Specially, FCRL4+
memory B cells are important mediators in immune
responses. They express high levels of CD20 and
CD95, and express low level of CD21 [58]. Further,
FCRL4 defines atypical memory B cells, which are
involved in endoplasmic reticulum stress and IFN-�
responses in autoimmune conditions [59]. There-
fore, these findings suggest that FCRL4 should be
an active driver in MS. Interestingly, our analysis
provided considerable evidence of a negative causal
association between FCRL4 and risk of MS, which
runs counter to the current understanding of the role
of FCRL4 in autoimmune conditions. The possi-
ble explanation for the inconsistency could be the
influences of the disease stages; that is, it is likely
that immune cell phenotypes can change during the
course of MS [60]. This should be further investigated
if GWAS summary data from different MS stages
become available.

Our MR analysis identified six possible AD-
associated proteins, but none of the candidate proteins
performed satisfactorily in the detection of hetero-
geneity and horizontal pleiotropy. Although these
findings are not statistically significant, they may pro-
voke additional follow-up of the candidate proteins
to determine whether they may be relevant to the
pathogenesis of AD.

The superior performance of our study should be
mentioned. First, we used a multiplex proteomics
dataset with a relatively large sample size to explore
novel causal targets for a wide range of neurologi-
cal disorders documented in large GWAS datasets,
ensuring the precise estimation of their associations.
Second, the two-sample MR design using different
models avoided interference by confounding factors
and invalid instruments, and the bidirectional design
provided evidence that the reverse causation was
unlikely to influence our findings. Moreover, the great
power across all analyses (>85%) supported biolog-
ical credibility of our findings.

Nevertheless, our study also had several limita-
tions. First, it is important to note that the phenotypes
examined in our framework was susceptibility of
the disorder, rather than disease severity or subtype.

Therefore, the identified protein-disease causality
should be interpreted as nominating biological tar-
gets or pathways that may be regulated to alter the
risk of developing certain diseases. Though the data
may provide clues regarding disease severity or sub-
type, more specific analyses must be conducted to
draw further conclusions. Second, the activities of cir-
culating proteins are diverse and complex, especially
regarding their effects on varied cell types in different
tissue contexts. Moreover, protein-protein interaction
plays an important role in regulating neurological
diseases [8], and these could be further studied to
help identify proteins that could be repurposed to tar-
get the associations we have identified to prevent or
treat disease. Third, although we have made efforts
to ensure the quality of the included genetic vari-
ants in the analysis, pleotropic effects could not be
entirely avoided in our analysis of several possible
AD-associated proteins. Pleotropic effects could be
appropriately addressed if data were analyzed on
individual level. Fourth, we used a relatively relaxed
threshold (p = 1 × 10−5) in the selection of SNP to
include more protein targets, but more studies should
be performed to confirm these links using GWAS
with larger sample sizes. Fifth, despite participants
in the selected GWAS were all of European ancestry,
the possibility of residual confounding from other
variables cannot be completely discounted, such as
genetic (APOE) and social determinants of health
(area level deprivation, access to healthcare). In addi-
tion, null findings were observed in the analysis of
some disorders; however, MR findings assume a life-
time effect to risk factors and may overestimate the
effects on the outcome. Therefore, our findings can-
not be assumed to suggest that no suitable targets
exist for these diseases. Moreover, some effect val-
ues in our study are very small, which may limit
their use in practice and require further research.
Last, datasets in the study were mostly collected from
cohorts of patients of European descent, and it must
be noted that protein-disease associations may vary
among different ethnic groups. Our findings should
therefore be interpreted with caution in populations
of non-European ancestry.

CONCLUSION

Our findings identify five candidate protein targets
for AD, MS, epilepsy, ischemic stroke, and migraine.
Future studies are warranted to clarify the potential
mechanisms of these proteins in the associated dis-
eases.
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Zhu J, Olafsson Ö, Jakobsdottir J, Lesley SA, To J, Zhang
J, Harris TB, Launer LJ, Zhang B, Eiriksdottir G, Yang X,
Orth AP, Jennings LL, Gudnason V (2018) Co-regulatory
networks of human serum proteins link genetics to disease.
Science 361, 769-773.

[9] Suhre K, McCarthy MI, Schwenk JM (2021) Genetics meets
proteomics: Perspectives for large population-based studies.
Nat Rev Genet 22, 19-37.

[10] Emdin CA, Khera AV, Kathiresan S (2017) Mendelian ran-
domization. JAMA 318, 1925-1926.

[11] Chong M, Sjaarda J, Pigeyre M, Mohammadi-Shemirani
P, Lali R, Shoamanesh A, Gerstein HC, Paré G (2019)
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