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Abstract. Alzheimer’s disease (AD) and stroke are two interrelated neurodegenerative disorders which are the leading cause
of death and affect the neurons in the brain and central nervous system. Although amyloid-3 aggregation, tau hyperphospho-
rylation, and inflammation are the hallmarks of AD, the exact cause and origin of AD are still undefined. Recent enormous
fundamental discoveries suggest that the amyloid hypothesis of AD has not been proven and anti-amyloid therapies that
remove amyloid deposition have not yet slowed cognitive decline. However, stroke, mainly ischemic stroke (IS), is caused
by an interruption in the cerebral blood flow. Significant features of both disorders are the disruption of neuronal circuitry
at different levels of cellular signaling, leading to the death of neurons and glial cells in the brain. Therefore, it is necessary
to find out the common molecular mechanisms of these two diseases to understand their etiological connections. Here, we
summarized the most common signaling cascades including autotoxicity, ApoE4, insulin signaling, inflammation, mTOR-
autophagy, notch signaling, and microbiota-gut-brain axis, present in both AD and IS. These targeted signaling pathways
reveal a better understanding of AD and IS and could provide a distinguished platform to develop improved therapeutics for
these diseases.

Keywords: Alzheimer’s disease, Apolipoprotein E, excitotoxicity, glucose, insulin, ischemic stroke, microbiota-gut-brain
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INTRODUCTION wide. Extracellular amyloid-B (Ap) aggregation,
intracellular tau hyperphosphorylation, and inflam-
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AD in 2025 and it will increase to 13.8 million by
2060 [6]. In addition, cerebral amyloid angiopathy
(CAA) a major contributor to AD pathogenesis is
defined by the deposition of AP in the walls of small
leptomeningeal, cortical arteries, and cortical cap-
illaries. The chief clinical appearances of CAA are
lobar intracerebral hemorrhage (ICH) and cognitive
impairment. CAA is the predominant vascular lesion
in AD and more prevalent in strokes especially in
ischemic stroke (IS) which is caused by cerebral
blood flow interruption that induces severe neural
injuries leading to death. Every year globally around
15 million elderly people are affected by stroke [7,
8]. The impaired AP clearance could accelerate IS
and this might make the brain more susceptible to
AD pathology. The association between AD and IS
seems to be strong in the presence of common vas-
cular risk factors. In addition, common risk factors
such as diabetes, hypertension, and hyperlipidemia
may contribute to both AD and IS.

Epidemiological studies indicate that AD patients
have a higher incidence of stroke than normal peo-
ple [9]. Also the occurrence of dementia is fifty
times higher after a major stroke but the widespread
dementiarisk is substantially reduced after a transient
ischemic attack or minor stroke [10]. Cross-sectional
epidemiological studies have reported that within
three months after an IS incidence, one-fourth of
elderly patients meet the criteria for dementia [11].
Another population-based study indicated that the
increased risk of dementia might be started five years
before the onset of stroke and would reach the max-
imum in one year after the stroke, also the risk
continued for more than eleven years [12]. Therefore,
it is intricate to disclose the occurrence of dementia
as pre- and post-stroke or vice-versa.

In AD and IS, loss of neuronal cell bodies and
axons cause pathological changes in the neuronal cir-
cuitry. Microglia and astrocytes are also drastically
changed after IS and AD. Ramified microglia can be
converted to archaeocytes or amoebocytes [13—15]
and accelerate the production of reactive oxygen
species (ROS) and pro-inflammatory cytokines [16].
These substances disrupt the blood-brain barrier
(BBB) permeability and also release a variety of neu-
rotoxic elements all over the brain [17]. AD and IS
cause cerebral neuropathological changes such as
cellular excitotoxicity, mitochondrial dysfunctions,
neuroinflammation, BBB impairment, neuronal cell
death, and eventually severe neurological deficits.
Several signaling pathways become stimulated or
deactivated during these pathophysiological shifts

[18]. Therefore, it is essential to better understand
the pathophysiological association between AD and
IS. Hence the present review provides the common
targeted signaling pathways between AD and IS, also
proposing the therapeutic strategies for these diseases
(Fig. 1).

EXCITOTOXICITY IN AD AND STROKE

Excitotoxicity is known as neuronal cell death by
the deleterious effects of excitatory amino acids, defi-
ciency of glucose and oxygen, disruption of oxidative
phosphorylation, and deprivation of energy in the
brain [21]. It creates an ionic imbalance, calcium
(Ca’*) overload, and finally cell membrane depo-
larization which triggers the excessive secretion of
glutamate (Fig. 2). Excitotoxicity creates harmful
events on neuronal cells such as dysregulation of
calcium homeostasis, free radical formation, increas-
ing oxidative stress, mitochondrial dysfunction, and
stimulation of several transcription factors and gene
expression [17]. Therefore, excitotoxicity is recom-
mended as a common main contributing aspect to the
initial stage of AD and IS.

Association between excitotoxicity and AD

Glutamate is the key excitatory neurotransmit-
ter involved in perception and cognition. The
excess glutamate and glutamatergic receptor activa-
tion can cause neuronal dysfunction and cell death.
Glutamate-mediated neurotoxicity is associated with
AD pathology. Continuous activation of N-methyl-
D-aspartate (NMDA) receptors causes an enormous
influx of Ca*? and boost in synaptic “noise,” which
diminishes the long-term potentiation process, neu-
ronal plasticity, and neuronal damage [19, 26].
Disturbance of glutamate homeostasis can be pro-
voked by energy deficits, free radical formation, and
dysregulation of other signaling pathways [26]. Lit-
erature also proposed that there is a relationship
between A3 production and NMDA receptors activa-
tion, AR activates NMDARSs, whereas activation of
NMDARSs enhances AP and tau protein production
in AD [24, 25] (Fig. 2). Glutamatergic dysfunction
was observed in postmortem AD brains [27] and
in epidemiological studies [28]. Therefore, the most
favorable action should be essential to restore the
concentration of glutamate for the maintenance of
synaptic plasticity and ongoing neurodegeneration.

In recent years, AD pathology has spread in mul-
tiple dimensions including the pathogenic role of the
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Fig. 1. A brief summary of the contributing factors present in both Alzheimer’s disease (AD) and ischemic stroke (IS). Excessive glutamate
secretion from astrocytes cause extrasynaptic NMDA activation leading to AD [19, 20] and IS [21-23] pathologies. Cell signaling systems
mainly PI3K/Akt, mTOR-autophagy, and Notch signaling pathway are involved in AD and IS; oxidative stress due to mitochondrial
dysfunction and excessive ROS production; NFkB and NLRP1/3 inflammasome are involved in neuroinflammation; and microbiota-gut-
brain-axis is dysregulated by blood-brain-barrier (BBB) break down and gut dysbiosis due to the reduction of small chain fatty acids (SCFAs)
producing bacteria. NMDA receptor, N-methyl-D-aspartate receptors; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; mTOR,
mammalian target of rapamycin; ROS, reactive oxygenated species; NFkB, Nuclear factor-«B; NLRP, nucleotide-binding oligomerization

domain like receptor pyrin domain-containing protein.

nonneuronal cells such as astrocytes, and microglia.
In normal physiological conditions, astrocyte plays
important role in several cerebral functions such as
the development and maintenance of the BBB [23],
promotion of neurovascular coupling [29], the attrac-
tion of cells through the release of chemokines [23],
K™ buffering [30], uptake of glutamate [31], and
GABA by specific transporters [32], control of pH
in the brain [33]; and their dysfunction promote neu-
rodegeneration in AD [34]. By the deposition of A in
the AD brain, astrocytes become activated and cause
detrimental consequences including the reduction of
the glutamate uptake due to low expression of re
uptake transporters, altered ions homeostasis (K and
Ca™), increased the release of cytokines and inflam-
matory mediators and reduced levels of aquaporins
[35].

Over-accumulation of extracellular glutamate dur-
ing AP aggregation causes neurotoxicity in AD
pathogenesis [25]. In AD, morphological alteration of
astrocytes causes modifications in K neurovascular
regulation by downregulation of rectifying K* chan-
nels (Kir) 4.1 which causes irregular cerebral blood
flow. Disruption of gliotransmission by enhancing
calcium signaling in astrocytes is altered by Af3

accumulation [23]. This calcium/gliotransmission
alteration could underlie an important role of astro-
cytes in AD pathology. These alterations cause
the over-expression and overstimulation of a7
subunit-containing nicotinic acetylcholine receptors
(7anAChR), purinergic receptor P2Y 1, metabotropic
glutamate receptor 5 (mGluR5), and changes in
Ca’t homeostasis which increases the levels of
glutaminase and glutamine in the astrocyte of the
hippocampal regions. It increases internal Ca’* lev-
els and finally stimulates hemichannels to release
more glutamate and led to the downregulation of
glutamate transporter (GLT1) in astrocytes causing
glutamate excitotoxicity in AD [36]. In addition,
long-term exposure to ABj—42 can cause GLT-1
loss in astrocytes that are mediated by numerous
inflammation-related transcriptional processes [37].

Furthermore, aquaporins 4 (AQP4) controls vari-
ous functions of astrocytes. AQP4 plays an important
role in the clearance of AP [38]. About 55-65%
of AP clearance was decreased in AQP4 knockout
mice [39]. Increasing A accumulation and memory
deficits were found in the AQP4 deleted 12-month-
old APP/PS1 mice [40]. From the postmortem AD
brain, it was found that loss of perivascular AQP4
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Fig. 2. Schematic representation of excitotoxicity pathway in Alzheimer’s disease (AD) and ischemic stroke. In AD, AR deposition reduces
the blood flow in the brain and causes excitotoxicity by the excess secretion of glutamate. In addition, activation of extrasynaptic N-methyl-
D-aspartate receptors (NMDA) accelerates the production of Af and tau protein in AD [24, 25]. Similarly, in ischemic stroke reduced blood

flow in the brain causes neuronal cell death.

localization and its low expression level might be
reduced A3 disaggregation and A3 clearance in AD
[41]. Literature indicated that deficiency of AQP4
leads to the downregulation of GLT1 which affects
synaptic plasticity and memory [42]. Using GLT1
expression regulators such as ceftriaxone rescues hip-
pocampal memory deficit in AQP4 knockout mice
via GLT-1 activation [43]. Therefore, AQP4 can be a
molecular target for AD treatment.

Another important innate immune cell of the cen-
tral nervous system (CNS), microglia contribute to
the AP clearance through phagocytosis and degrada-
tion of AB. M2 microglia secretes anti-inflammatory
cytokines and growth factors which have a neuro-
protective effect. In AD progression, Af triggers
microglial activation (M1 microglia) which secretes
pro-inflammatory cytokines and reduces the efficacy
of AP clearance, causing inflammation in AD [44].

Association between excitotoxicity and stroke

Cerebral blood flow is substantially diminished
immediately after IS. As a result, the availability

of glucose and oxygen in the neuronal tissues are
reduced too. Deprivation of energy creates mito-
chondrial dysfunction, induces oxidative stress, and
eventually triggers ROS production. Insufficiency
of energy simultaneously contributes to the ionic
imbalance of Na®™, K, and Ca?* concentration,
causing cellular depolarization and glutamate secre-
tion. Excessive glutamate activates NMDA receptors
initiating cell toxicity and serious damage to the
CNS [45] (Fig. 2). Enhanced Ca2t influx disturbs
ionic homeostasis, resulting Ca?* overload in mito-
chondria and cytosol [46]. These events trigger the
production of free radicals, lipases, kinases, phos-
phatases, endonucleases [47] and stimulate calpain
[48], mitochondrial dysfunction and oxidative stress,
and finally neuronal cell death [49].

Glutamate has an important role in ischemia-
induced excitotoxicity. Astrocytes dynamically con-
trol synaptic transmission and trigger excitotoxicity
by the secretion of glutamate in stroke [22]. The
mechanism of astrocytic glutamate secretion has
been mysterious. Some researchers believe that glu-
tamate transporters such as EAAT1 (also known
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as GLAST) and GLT-1 (known as EAAT2) are
downregulated which increases glutamate concen-
tration, and leads to cell death via excitotoxicity
in ischemia or reperfusion injury conditions [50].
During post-cerebral injury, more excitotoxicity was
found in mutated GLT-1 gene knockout mice than in
their wild-type counterparts [51]. Other researchers
suggested that astrocytic Swelll subunit containing
volume-regulated anion channel release glutamate,
regulate synaptic transmission, and contribute to the
excitotoxicity in stroke [52]. Furthermore, another
glutamate transporter, EAAT4, is highly expressed
following brain injury [53]. Under conditions of
ischemia, the excessive influx of Nat into astrocytes
triggers cell death by the overload of Ca®* through
a reversed activity of the cell membrane Nat -Ca®*+
exchanger [54].

Like AD, AQP4 also plays a significant in IS. In the
early stage of a stroke, APQP4 prevents the swelling
of astrocytes, leads to decrease water inflation in the
brain, and decreases BBB destruction, inflammation,
and neuronal death [55]. After 1-hour post-stroke, the
expression of AQP4 is rapidly increased in perivas-
cular endfeet of astrocytes. Upregulated AQP4
promotes water uptake, emerges cellular damage,
disrupts BBB, and finally, shifts vasogenic edema
to hemorrhagic conversion [56]. Brain edema was
reduced after IS in AQP4-deficient mice [57]. There-
fore, inhibition of AQP4 may contribute to a novel
therapeutic option for stroke treatment.

Additionally, microglia have a ramified morphol-
ogy in homeostatic conditions. During all stages of
IS, microglia are activated and can produce both
detrimental and neuroprotective mediators. After
instant IS, microglia (M1) immediately shift towards
the lesion site and aggravate tissue injury by pro-
ducing pro-inflammatory cytokines and cytotoxic
substances. On the other hand, microglia (M2)
also engulf debris and produce anti-inflammatory
cytokines and growth factors, maintaining a suitable
microenvironment for new neural circuity [58].

In addition, there is a dynamic interaction between
microglia and other cells like astrocytes, neurons,
oligodendrocytes, and endothelial cells in the neu-
rovascular unit. This dynamic interaction plays a
significant role in continuing acute injury and post-
stroke recovery. After IS, microglia are activated
earlier and promote the activation of astrocytes.
Astrocyte activation accelerates pro-inflammatory
cytokines and damages oligodendrocytes in ischemic
white matter injury. It also disrupts BBB integrity
and damage blood vessels. M2 microglia normalize

endothelial cell proliferation and help angiogenesis
in a biphasic manner in the brain [59, 60]. Therefore,
M1/M2 microglial activation has significant trans-
lational value to boost the defensive role and /or
diminish the adverse effect of stroke.

APOLIPOPROTEIN E IN AD AND STROKE

Apolipoprotein E (ApoE) is a main lipid trans-
porter that has a fundamental role in the development,
maintenance, and repair of CNS. It also controls var-
ious crucial signaling pathways in the brain. ApoE
is mostly expressed by astrocytes and microglia,
and it plays dynamic roles in AD and stroke patho-
genesis [61] (Fig. 3). Three major isoforms namely
ApoE2, ApoE3, and Apo4 are encoded by three dif-
ferent alleles namely APOE €2, APOE €3,and APOE
€4, located on chromosome 19. Three isoforms are
structurally and functionally different due to the sub-
stitution of a single amino acid residue. ApoE4 is
involved in the neurodegeneration in AD and IS while
ApoE2 and ApoE3 are protective in nature [62].

Association between ApoE4 and AD

APOE &4 is a major threat for late-onset AD and
increases the risk of AD by 3-fold [63]. Although the
exact mechanism of APOE &4 in the onset of AD
progression is not fully revealed, numerous evidence
suggests that ApoE4 influences AP aggregation
and deposition in AD. The isoform ApoE4 impairs
synaptic function, causes neurotoxicity, tau hyper-
phosphorylation, and neuroinflammation which are
the contributing factors in the onset of AD [64]
(Fig. 3). The molecular mechanism of ApoE4
remains unclear. Recently, it was found that ApoE4
quickens the BBB disruption by the activation of
cyclophilin A-matrix metalloproteinase-9 (CypA-
MMP-9) in aged APOE knock-in mice crossed with
5xFAD. The reduced level of cerebral blood flow
deficits the behavioral activity and causes neuronal
loss in this mouse model [65], suggesting more
research work will be needed to understand the role
of ApoE4 in AD.

Association between APOE &4 and stroke

Several studies revealed the connection between
APOE gene polymorphisms and the possibility of
developing a stroke. APOE &4 allele increases choles-
terol levels, amyloid deposition in blood vessels,
development of hypertension, hypometabolism of
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Fig. 3. Schematic representation of APOE isoform-dependent effects on the common features of Alzheimer’s disease (AD) and stroke.
Specifically, APOE4 carriers are more susceptible to produce more plaques and tangles, and to have advanced insulin resistance, mitochondrial
dysfunction, neuroinflammation, and synaptic deficits. The APOE4 isoform is also responsible for decrease metabolism of glucose, lipid,
cholesterol, autophagy, AR clearance across the blood-brain barrier (BBB), and a gradual loss of A uptake and clearance by microglia

causing neurodegenerative diseases such as AD and ischemic stroke.

glucose, and insulin resistance which are underly-
ing triggers for ischemic cerebrovascular disorders
[66] (Fig. 3). It is well documented that carriers of
the &4 allele show an increased risk of ICH but &2
allele carriers are not at risk of having ICH in the
future. Recent research indicated that the occurrence
of the APOE &4 allele significantly increases the risk
of IS in the populations from rural Eastern India [67],
China [68], and Korea [69], and deteriorates cogni-
tive function [70]. However, the influence of ApoE4
in pre-and post-stroke is not clear. Some researchers
believe that ApoE4 quickens dementia progression
after stroke [65]. Though the interaction between
ApoE4, AB, and tau pathways after transient IS in
the cerebrovascular system, and their contribution to
cognitive impairment in the development of dementia
remains uncertain [65].

PHOSPHATIDYLINOSITOL
3-KINASE/AKT (PI3K/AKT) SIGNALING
IN AD AND STROKE

Hypometabolism of glucose is one of the remotest
factors responsible for the onset of AD and IS and

is linked with PI3K/Akt signaling pathway. Dysreg-
ulated PI3K/Akt signaling may have a vital role in
impaired cognition such as in AD [71] and IS [17].
In aged people with no dementia, PI3K/Akt signaling
maintains both the volume and function of the brain
and protects the brain from atrophy and slow the pro-
gression of associated complications [72]. Therefore,
an impaired PI3K/Akt signaling pathway may cause
neurodegenerative diseases such as stroke and AD
(Fig. 4).

Association between PI3K/Akt signaling and AD

Abundant evidence suggests that impaired brain
insulin signaling and dysregulation of brain glucose
metabolism may lead to cognitive deficits in AD [71].
Recently, we found the insulin signaling proteins
IRB, IGF-1, IRS-1, IRS-2, p-Akt (Ser473), and Akt
were noticeably decreased in AD rats. The downreg-
ulation of PI3K/Akt signaling was conveyed by the
activation of glycogen synthetase kinases 3 (GSK3),
phospho-GSK3 (Tyr216), total GSK3p and cyclin-
dependent kinase 5 (Cdk5) has been identified as
important candidates for irregular tau hyperphospho-
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Fig. 4. Regulation of PI3K/Akt signaling in Alzheimer’s disease (AD) and ischemic stroke (IS). In both of the diseases, PI3K/Akt signaling
is dysregulated by the reduced protein expression levels of insulin signaling related proteins such as IR, IRS, PI3K, PIP2, and Akt. The
downstream signaling proteins such as GSK3 is over activated and Cdk5/p25 pathway leads to tau hyperphosphorylation in AD. In AD and IS,
insulin resistance in the brain diminishes the glucose receptor GLUT4, and due to impaired PI3k/Akt signaling pathway, the glucose receptors
such as GLUT 1, 2, and 3 may reduce in the brain, causing the decrease of glucose metabolism. In addition, lower levels of glucose reduce
UDP-GIcNAc concentration via the hexosamine biosynthetic pathway (HBP) and subsequently diminished tau O-GlcNAcylation. Reduced
O-GlcNAcylation helps in tau hyperphosphorylation, tau oligomerization and ultimately neurofibrillary tangles are produced in AD [73]. Akt,
protein kinase B; CdK 5, cyclin-dependent kinase 5; Fructose-6-p, fructose-6-phosphate; GIcNAc, B-N-acetylglucosamine; Glucosamine-
6-P, glucosamine-6-Phosphate; GLUT, glucose transporter; GSK3, glycogen synthetase kinases 3; HBP, hexosamine biosynthetic pathway;
HIF-1, hypoxia inducible factor-1; IGF, insulin growth factor; IR, insulin receptor; IRS, insulin receptor substrate; m-TOR, mammalian target
of rapamycin; NFTs, neurofibrillary tangles; OGA, O-GlcNAcase; OGT, O-GIcNAc transferase; P, phosphate group; p70S6K, ribosomal
protein S6 kinase with a molecular weight of 70 kD; PI3K, phosphatidylinositol 3-kinase; PIP2, phosphatidylinositol (3,4)-bisphosphate;

TCA, tricarboxylic acid cycle; UDP, uridine diphosphate.

rylation. The levels of phospho-GSK3 at Ser9 and
phospho-GSK3 at Ser21 were significantly decreased
in AD. The PI3K-Akt signaling molecules are nega-
tively connected with the tau hyperphosphorylation at
Ser396, Ser202/Thr205, and CdkS5 and to its cofactors
p35 and p25 in the brain. The downregulation of Akt
decreases the expression of main glucose transporters
such as GLUT3 and GLUT4. The overactivation
of GSK3f increases the tau hyperphosphorylation
and decreases the microtubule-binding activity of tau
of a sporadic AD rat model [71, 73, 74] (Fig. 4).
It has also been recommended that impaired brain
insulin signaling may lead to the reduction of IRS-
1 and PI3K phosphorylation, downregulation of
O-GlcNAcylation, overactivation of GSK3(, and
acceleration of tau hyperphosphorylation in 3xTg-
AD mice before the onset of peripheral insulin
resistance, whereas Tg2576 mice show dysregula-
tion of these signaling proteins after the onset of
peripheral insulin resistance. These inconsistencies
may be specific to the tau pathology that develops in

3xTg-AD mice [75]. Reducing CNS insulin signaling
dysfunction in patients with mild cognitive impair-
ment or early-stage AD may support a decrease in
peripheral insulin resistance [76]. Analysis of post-
mortem human AD brain revealed that the protein
expression of IRS, IGFs, and glucose receptors are
significantly diminished [77]. Therefore, it is sug-
gested that impairment of glucose metabolism is due
to both pre-and post-peripheral insulin resistance,
causing A3 and tau pathologies.

Association between PI3K/Akt signaling and
stroke

PI3K/Akt signaling pathway is directly involved
in the neuroprotection against ischemic brain dam-
age and displays a critical role in promoting neuronal
survival after IS [17]. Decreased level of phosphory-
lation of GSK3f on Ser9 was found in the penumbra
cortex in IS rat brain [78]. The expression levels of
p70S6K on Thr389 reduced at 1, 4, and 24 h of reper-
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fusion, while the levels of total p70S6K remained the
same at 1 and 4 h of reperfusion and then declined
at 24 h of reperfusion [79]. The consequences sug-
gest that cell survival pathways by Aktl and p70S6K
signaling are suppressed after ischemia, which may
donate to the progression of neuronal cell death after
ischemic stroke (Fig. 4). Protein expression of p-Akt
and total Akt were also reduced after 24 hours of
cerebral ischemia in male rat brains [80]. Therefore,
PI3K/Akt signaling pathways is broadly considered
to play a critical role in the neuroprotective effect
against ischemic brain injury.

Hyperglycemia is an indicator of IS, contributing
to a significant increase in brain ischemia [81, 82].
Considerable evidence demonstrates that glucose
transporters mainly GLUT1 and GLUT3 are impor-
tant to maintain energy homeostasis, especially in
IS patients [83]. In the post-ischemic condition after
day-1, the expression of GLUT1 mRNA increases
at 175% and returns to the normal level by day 3
[84]. During ischemia, the cerebral glucose level is
lower than normal [85]. Three days after ischemic
stroke, the expression of mRNA of GLUT3 protein
starts improving but is still below the normal level,
causing neuronal death [85]. Therefore, increasing
the expression of GLUT3 and regulating the brain
glucose metabolism during pre and post-ischemic
cerebral injury is urgently needed.

INFLAMMATORY SIGNALING PATHWAY
IN AD AND STROKE

Inflammation is one of the most important patho-
physiological conditions in AD and stroke (Fig. 5).
It is mainly mediated by microglia [86, 87], oligo-
dendrocytes [88, 89], and astrocytes [90, 91] in the
brain.

Association between inflammation and AD

Extracellular AP deposition activates microglia
and triggers pro-inflammatory cytokines such as
interleukin-6 (IL-6), tumor necrosis factor-a (TNF-
o), and interleukin-1f3 (IL-1) in the AD brain [92].
Microglia and astrocytes have an importantrole in A3
clearance and degradation [93], but in case of over-
production of A and pro-inflammatory cytokines,
microglia fail to activate the effective phagocytic
response to clear the AR from the brain, causing the
deposition of more pro-inflammatory cytokines in the
AD brain [93].

Recent findings showed significant elevated TLR2
activation in Tg2576 AD mice [94, 95] which may
also contribute to A accumulation in the brain [96].
However, TLR9 can decrease in both A3 and tau
pathologies in various AD transgenic mouse models
and rescue their cognitive deficits [97]. In AD patho-
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genesis, NF-kB stimulates NLRP3 inflammasome,
and proinflammatory cytokines such as IL-13 and
IL-18 are produced, finally getting mature IL-13 and
IL-18 and released from microglia to the extracellular
environment [98] (Fig. 5).

Association between inflammation and stroke

Oxidative stress and inflammation are mainly
involved in the pathological development of late post-
ischemic conditions [99]. NF-kB signaling cascade is
activated within 2 hours after brain injury in a middle
cerebral artery occlusion (MCAO) rat model [100].
Stimulated NF-kB controls the gene expression of
proinflammatory cytokines such as TNF-a and IL-
1B. In addition, toll-like receptors (TLR) mediated
signaling pathway via NF-kB is also stimulated and
upregulated in ischemic brain injury by MCAO in
C57BL/6 mice [101]. TLRs play a vital role in cere-
bral brain injury. The protein expression of TLRs is
augmented which is linked with the inflammatory
cascade in IS [102]. In addition, TLR4 also rises brain
ischemic lesions. The protein expression of TLR4,
TNF-a, caspase-1, NLRP3, and IL-8 significantly
increased in the cerebral ischemia-reperfusion mice
model [103]. Oxidative stress markers such as nitric

oxide and malondialdehyde are increased whereas
superoxide dismutase is reduced in these mice brains.
The levels of NLRP1, NLRP3, IL-13, and IL-18 were
elevated in the animal model and human brain with
IS [104] (Fig. 5). Therefore, a thorough understand-
ing of the widespread mechanisms of post-ischemic
neuroinflammatory signaling pathways is needed for
the new treatment strategies for IS.

AUTOPHAGY PATHWAY IN AD AND
STROKE

Autophagy is a cellular degradation process and is
essential for the maintenance of cellular homeosta-
sis through the synthesis, deprivation, and turnover
of different cellular components. The mechanism
of autophagy is carried out through the forma-
tion of vesicle nucleation, vesicle elongation, and
autophagosome. Then autophagosome is fused with
the lysosome, forming an autolysosome in which
engulfed material and inner membrane is degraded
[105]. Dysfunction of autophagy accelerates AD
and stroke progression and pathogenesis [106, 107]
(Fig. 6).
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Association between autophagy and AD

Dysregulation of autophagy is associated with
AD pathogenesis. The precise role of autophagy
in AD through the endosomal-lysosomal system
is still debatable. Some researchers suggested that
abnormal autophagy induction helps to create the
necessary compartment for the accumulation of
autophagic vacuoles holding A3 and finally forming
A plaques [108, 109]. Other evidence indicated that
either impaired autophagic clearance or deteriorat-
ing autophagic activity may play in AD pathogenesis
and progression [110]. Therefore, autophagy is a
key regulator of A3 generation and clearance. A3
is released in an autophagy-dependent manner from
neurons in AD pathology [111]. In the early stage
of AD, amyloid- protein precursor (ABPP) pro-
cessing and AP accumulation-mediated autophagy
facilitate the removal of toxic protein aggregates
via mechanistic target of the rapamycin (mTOR)-
dependent and -independent pathways [112, 113].
In addition, autophagy-related genes and ABPP are
believed to influence AD development and offer a
bidirectional link between autophagy and AD pro-
gression. Fewer extracellular AP plaques were found
in the autophagy-deficient ABPP transgenic mice by
the inability of cells with disrupted autophagy to
secrete AR in the brain [114]. In AD the mechanism
of autophagy modulation in ABPP processing and A3
metabolism and its pathogenesis are not well known.
The mTOR signaling pathway controls autophagy in
AD (Fig. 6).

Numerous studies suggest that the levels of
phospho-mTOR and its downstream signaling
molecules such as ribosomal protein S6 kinase beta-
1 (p70S6K) and the eukaryotic translation factor
4E (elF4E) are elevated in postmortem human AD
brains, suggesting increased mTOR activity in the
AD brains [115]. The increased mTOR activity was
connected with enhanced tau hyperphosphorylation
[112]. In short, the downregulation of mTOR signal-
ing proteins may reduce autophagy which accelerates
the AP aggregation and tau hyperphosphorylation in
AD pathogenesis.

Association between autophagy and stroke

Numerous evidence indicates that autophagy is
triggered in neurons, glial cells, and brain microvas-
cular cells upon IS [116]. But the exact molecular
mechanism of autophagy in IS is not well known.
However, recent accumulating evidence in IS showed

that autophagy inhibits inflammasome activation by
triggering mTOR and AMPK pathways in cellu-
lar homeostasis. The autophagy-forming markers
such as LC3-II and Beclin-1 are upregulated in IS.
Autophagy can retrieve the neuronal tissue after IS
by the phenotypic alteration of microglia through the
NF-«B pathway [107]. Additionally, the autophagy-
mediated death-promoting mechanism promotes
numerous relevant stimuli in post-ischemic neuronal
damage through the downregulation of autophagy
signaling molecules such as autophagy-related pro-
tein 7, Beclin-1,and LC3-11[117]. In addition, mMTOR
signaling molecules are reduced in autophagy via
phosphorylation of its downstream signaling factors
(p70S6K) and 4E binding protein 1 (4EBP1) [117,
118] (Fig. 6). Hence, activation of the mTOR sig-
naling pathway could be an effective strategy for the
reduction of infarct size after post-cerebral ischemia.

NOTCH SIGNALING PATHWAY IN AD
AND STROKE

Notch signaling is intermediated by the communi-
cation of one the ligand of Delta/Serrate/LAG2 (i.e.,
JAG1, JAG2, DLL3, and DLL4) in one cell with one
of the Notch receptors (i.e., Notch1, Notch2, Notch3,
and Notch4) in the neighboring cell during develop-
ment and aging processes. The notch intercellular
domain (NICD) is the most contributing factor in
Notch signaling. It is produced by the proteolytic
cleavage of the receptor-ligand interaction cascade
and then NICD is translocated into the nucleus and
induces the gene expression which is involved in
proliferation, differential, and development (Fig. 7).
Notch signaling is activated in AD [119] and IS [120].

Association between Notch signaling and AD

Presenilin (PS), the catalytic member of the y-
secretase proteolytic complex, plays an important
role in the cleavage of ABPP and AP production
through Notch signaling in the early-onset familial
AD pathogenesis. Alterations in proteolysis of the
Notch by +vy-secretase may participate in the patho-
genesis of AD [121]. Notch proteins also interact
with PSs and with ABPP in postmitotic neurons in
AD. Mutations in the genes encoding the ABPP and
PS1, and PS2 are occasionally responsible for early-
onset AD. Loss of specific memory and learning and
behavioral and cognitive impairment is associated
with the Notch signaling pathway in AD [119, 121]
(Fig. 7). High expression of Notchl was observed in
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the AD cortex, indicating the enhancement of A3 pro-
duction and alteration of Notch signaling in the AD
brain [122]. Two-fold Notch expression was higher in
the AD brain than in the age-matched control human
brain [123]. It suggested that higher Notch signaling
and expression could be a detrimental effect on AD.
Therefore, altered Notch signaling in AD is needed
to be further investigated.

Association between Notch signaling and stroke

Invivo and in vitro studies indicated that Notch sig-
naling contributes to IS. The levels of y-secretase and
NICD were augmented in post-ischemia-transgenic
mice [124]. Increased levels of NICD were also found
in primary neuron culture upon ischemia-like condi-
tions. Furthermore, it has been conveyed that Notch
is upregulated instantly after initiation of ischemia
in animal models [124, 125]. The contribution of the
Notch pathway has been recognized in the growth and
proliferation of blood vessels in IS pathogenesis. The
levels of NICD and Jagl positive endothelial cells
amplified by activation of downstream signals includ-
ing Bim, P65, and NF«B donated to the development

and deterioration of IS in stroke brains of human and
mouse models [120, 125]. The y-secretase inhibitor
might recover the stroke signs through the downreg-
ulation of NICD and downstream targets (Fig. 7).
Therefore, Notch signaling has a vital role in brain
damage in IS.

GUT-BRAIN AXIS IN AD AND STROKE

Gut microbiota has a proven role in regulat-
ing multiple neurochemical pathways through the
highly interconnected “gut-brain axis (GBA)”. “Gut-
brain axis” states a bidirectional communication
network between the CNS and the gastrointestinal
tract involving multiple overlapping pathways such
as the autonomic, neuroendocrine, and immune sys-
tems and; directly affecting the vagus nerve to the
brain. The gut microbiome controls BBB integrity,
neural development, aging, and CNS immune acti-
vation. Alteration of gut-microbiota diversity breaks
the gut barrier integrity and activates systemic neu-
roinflammation, promotes neuronal injury, and finally
neurodegenerative diseases such as AD and stroke.
Dysbiosis accelerates or causes impaired GBA sig-
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TMAO, trimethylamine N-oxide.

naling in AD [126] and in stroke [127]. Therefore,
the GBA is an important pathway of communica-
tion between the gut and the brain, and dynamically
contributes to AD and IS pathogenesis (Fig. 8).

Association between gut-brain axis and AD

Gut dysbiosis may worsen BBB permeability and
cause AD pathogenesis. Numerous evidence suggests
that gut microbiota can control brain and behavioral
function and produce bacterial amyloid (also known
as curli). Curli may trigger the immune cells in the gut
and/or brain and activates neuroinflammation [128].
Bacteria containing lipopolysaccharides may upregu-
late pro-inflammatory cytokines through GBA [129].
Also, reduced beneficial bacteria may impact the lev-
els of short-chain fatty acid (SCFAs) bioavailability
which may subsequently change the metabolic path-
ways and further contribute Af deposition in AD
brain [130, 131]. Elevated levels of Helicobacter-
aceae Desulfovibrionaceae and Odoribacter were
found in APP/PSI mice [132]. Reduced levels
of Acetobacter and Lactobacilli were found in
an AD Drosophila model, and it was associated

with reduced SCFAs levels [133]. Higher quanti-
ties of Bacteroids, Ruminococci, Actinobacteriae,
Lachnospiraceae, and Selenomonadales levels were
observed in the fecal samples of AD patients [134].
Low loads of Firmicutes and Bifidobacterium and
high loads of Bacteroidetes were found in the fecal
samples of AD patients, suggesting the presence of
gut dysbiosis in AD patients [135]. Gut microbiota
may impact AD pathogenesis via numerous path-
ways such as neuroinflammation, oxidative stress,
pathogenic translocation, and neurotransmitter dys-
regulation. The gut microbiome needs more attention
and understanding the interaction in terms of amyloid
pathology may help with beneficially modifying the
bacterial consortium to improve the quality of life in
pre-symptomatic AD patients.

Association between gut-brain axis and stroke

Emerging clues propose the important role of gut
microbiota in the pathology of stroke. Dysbiosis
increases the risk factors of strokes such as systemic
inflammation, atherosclerosis, and cardiometabolic
disorders. Dysbiosis induces systemic inflammation,
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neuroinflammation, and infection in acute cerebral
ischemia which has a detrimental effect on stroke
outcomes. Several pathways such as bacterial com-
ponents, gut metabolites, immune cells, and bacterial
translocation are involved in stroke. The ischemia
brain also stimulates the gut microbial diversity
through the neural or hypothalamic-pituitary-adrenal
pathways, which have a harmful effect on stroke out-
comes [136]. In addition, many gut microbiota such
as Bacteroides, Prevotella, and Faecali bacterium are
significantly reduced in IS patients compared with
their healthy counterparts [137]. Increased levels of
Lactobacillus ruminis and decreased Lactobacillus
sakei were identified in IS patients, which induce
the proinflammatory cytokine IL-8 secretion [137,
138]. Though the research on the gut inflammatory
and immune response after stroke is still in its initial
stages, recent investigations between clinical trials
[138-142] and animal experiments [143—145] have
provided some interesting clues regarding the role of
gut microbiota in IS outcomes. Hence, the gut micro-
biome plays a pivotal role in gut inflammation and the
immune response to pre/post-ischemic brain injury
and stroke.

CONCLUSION

In a nutshell, we concluded that both diseases
share several common abnormalities including exci-
totoxicity, ApoE4, impaired PI3K/Akt pathway,
increased neuroinflammation, decreased mTOR-
autophagy signaling, decreased Notch signaling, and
gut dysbiosis. It has been recommended that AD
and stroke disrupt common cellular and molecular
pathways and each disease reinforces the progres-
sion of the other. This review mainly focused on
the biochemical pathways shared by AD and IS.
Understanding the key mechanisms underlying the
toxic interaction between these diseases may pro-
vide opportunities for designing effective therapeutic
strategies. Whether stroke is directly involved in AD
or acts indirectly as a contributing factor to AD patho-
genesis needs to be established. Hence, the prevention
of stroke and its treatment may have important impli-
cations for the alleviation of AD and warrant further
investigations.
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