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Abstract. Recent clinical studies have revealed that the serum levels of toxic hydrophobic bile acids (deoxy cholic acid,
lithocholic acid [LCA], and glycoursodeoxycholic acid) are significantly higher in patients with Alzheimer’s disease (AD)
and amnestic mild cognitive impairment (aMCI) when compared to control subjects. The elevated serum bile acids may be
the result of hepatic peroxisomal dysfunction. Circulating hydrophobic bile acids are able to disrupt the blood-brain barrier
and promote the formation of amyloid-f3 plaques through enhancing the oxidation of docosahexaenoic acid. Hydrophobic
bile acid may find their ways into the neurons via the apical sodium-dependent bile acid transporter. It has been shown that
hydrophobic bile acids impose their pathological effects by activating farnesoid X receptor and suppressing bile acid synthesis
in the brain, blocking NMDA receptors, lowering brain oxysterol levels, and interfering with 17(3-estradiol actions such as
LCA by binding to E2 receptors (molecular modelling data exclusive to this paper). Hydrophobic bile acids may interfere
with the sonic hedgehog signaling through alteration of cell membrane rafts and reducing brain 24(S)-hydroxycholesterol.
This article will 1) analyze the pathological roles of circulating hydrophobic bile acids in the brain, 2) propose therapeutic
approaches, and 3) conclude that consideration be given to reducing/monitoring toxic bile acid levels in patients with AD or
aMCI, prior/in combination with other treatments.

Keywords: Alzheimer’s disease, blocking NMDA receptors, blood-brain barrier, declining cognitive function, liver dysfunc-
tion, serum bile acids

INTRODUCTION

As Alzheimer’s disease (AD) is becoming a
major public health threat, there is an urgent unmet
need to develop new therapies for AD [1]. As a
result, several agents have been tested in clinical
trials over the years with disease modifying ther-
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apies (DMTs) comprising more than 60% of the
agents, and symptomatic cognitive enhancing agents
forming about 30% of drugs [1-4]. DMTs refer
to agents that either prevent, delay, or slow the
progression of the disease [5]. DMTs themselves
can be categorized into two groups: immunotherapy
(mostly using antibodies) or small molecules [1].
There were 17 DMT agents in phase III of clinical
trials in 2018, and eight agents were terminated
in 2019 [4]. Preventing tau aggregation has been
another approach in DMT. Leuco-methylthioninium
bis(hydromethanesulfonate) (LMTM), a stable
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reduced form of the methylthioninium moiety, acts
as a selective inhibitor of tau protein aggregation.
LMTM did not show efficacy in a phase III clinical
trial [6]. As another example, intranasal insulin
showed significant improvements in learning,
memory, and cognitive function in a pilot study
of mild to moderate AD [7]. Then a clinical
trial (NCTO01767909) examined the effects of
intranasally-administered insulin on cognition,
entorhinal cortex, and hippocampal atrophy, and
cerebrospinal fluid (CSF) biomarkers in amnestic
mild cognitive impairment (aMCI) or mild AD. This
trial completed, but no cognitive or functional bene-
fits were observed with intranasal insulin treatment
over a 12-month period [8]. Device malfunction was
reported at the early stages of the trial [9].

With respect to symptomatic cognitive enhancing
agents (such as donepezil, a cholinesterase inhibitor),
these generally do not tackle the disease’s under-
lying mechanism. One of the drugs in this class,
ITI-007, entered phase III clinical trial with the aim
of improving neuropsychiatric symptoms (agitation)
in AD patients. However, the trial was terminated
in 2018, as interim data analysis revealed that the
trial would not meet the primary outcome. On the
other hand, suvorexant was tested in patients with
AD for the treatment of insomnia [10]; and the drug
was approved by the FDA for the indicated use.

The above observations show that there are other
important disease underlying mechanisms such as
oxidative stress [11] that should be considered in
developing therapeutic agents for AD. This paper
aims to expand on this point and present that altered
bile acid metabolism could play major roles in devel-
oping AD.

LIVER DISFUNCTION CONTRIBUTING
TO AD

A previous study found that the expression of per-
oxisomal D-bifunctional protein (D-BP) decreased
significantly in the liver of patients with AD com-
pared to control subjects [12]. This enzyme catalyzes
conversion of tetracosahexaenoic acid into docosa-
hexaenoic acid (DHA). Therefore, defective D-BP
activity impairs DHA biosynthesis in the liver of
patients with AD. It should be noted that DHA
is found mainly as phospholipid species such as
38:6 and 40: 6 in phosphatidylethanolamine (PE),
phosphatidylinositol (PI), phosphatidylcholine (PC),
phosphatidylserine (PS) [13], and lysophosphatidyl-

choline (LPC-DHA: LPC 22 : 6, CHEBI:73873, Mw:
567.7) [14]. Interestingly, association of blood lipids
and AD has been shown [15, 16]. Therefore, reduced
synthesis of DHA in the liver (due to defective D-BP
activity) would lead to reduced serum lipids, such
as PC 38: 6 (CHEBI:74963, CAS: 59403-54-2), and
PC ae C40:6 (CHEBI:86252) as shown in patients
with AD [15]. Importantly, in vivo studies found
that DHA in the form of LPC-DHA is transferred
across the blood-brain barrier (BBB) by a member of
major facilitator superfamily transporters (Mfsda2)
[17]. Furthermore, dietary LPC-DHA significantly
increased brain DHA content and improved brain
function in adult mammals, but not DAH as free acid
[18]. Therefore, reduction of DHA synthesis in the
liver of patients with AD would reduce plasma lev-
els of LPC-DHA (normally 21.5 uM) [14]. Reduced
plasma levels of LPC 18:2 have been reported in
patients with AD [15] as well as LPC-DHA in these
patients [19]. Now the important point is that D-BP is
also involved in the biosynthesis of bile acids (shown
schematically in Fig. 1) [20].

Figure 1A shows bile acid biosynthesis by
classic and acidic pathways in the liver. In the
classic pathway, cholesterol is transported into
endoplasmic reticulum (ER) and oxidized to 7a-
hydroxyl-4-cholesten-3-one (C4) by 3HSD7. At
this point, part of C4 is hydroxylated at position
12 by CYP8BI to yield 7a, 12c, dihydroxyl-4-
choleste-3-one. Both C4 and 7a, 12a, dihydroxyl-
4-choleste-3-one are modified by several enzymes
(AKR1D1, 3aHSD, CYP27A1, and BACS) to
form 3o, 7o, dihydroxy-5B-cholestanoyl-CoA and
3a, 7a, 12a, trihydrohydroxy-cholestanoyl-CoA,
respectively, which then are transported into peroxi-
some by the 70-kDa peroxisome membrane protein
(PMP70). Figure 1B presents the side cleavage of 3a,
7o, 120, trihydrohydroxy-cholestanoyl-CoA ((25 R)-
THC-CoA). It can be seen that D-BP converts (24E)
THC:1-CoA to 24-keto-(25R)-THC-CoA at two
steps. Figure 1B also depicts an alternative pathway
for side chain oxidation employing L-bifunctional
protein (L-BP) and AMACR enzymes. [21]. There-
fore, when D-BP is not functioning, L-BP can step
in and continue the formation of bile acids, but it
appears that the activity of L-BP is much less than
D-BP in bile acid biosynthesis. As in D-BP defi-
cient patients, the hepatic ratio of C7/Cp4 bile acid
increased to 1.45 compared to 0.04 in control sub-
jects [20]. If L-BP was as active as D-BP, the C»7/Cp4
bile acid would not have significantly increased in
D-BP deficient patients. The side chain cleavage of
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Fig. 1. The biosynthesis of bile acids from cholesterol by the neutral or acidic pathway A) in the cytoplasm and B) completion in peroxisomes

(only for biosynthesis of conjugated cholic acid).

3a, dihydrohydroxy-cholestanoyl-CoA is presented
in Supplementary Figure 1, which also shows the
formation of conjugated CA and CDCA.

The acidic pathway (also known as alternative
pathway) contributes about 10% of total bile acid
production [22]. In addition, normally cholesterol
is converted to other forms such as 27 hydroxy-
cholesterol (3a, hydroxyl-5-cholestenoic acid) in
extra-hepatic tissues or 24(S) hydroxycholesterol in
the brain and it is transported into the liver by
blood circulation for conversion mainly to CDCA
via the acidic pathway [23]. This pathway can
become the major bile acid production route when
the classic pathway in the liver is not function-
ing normally due to deficiencies of enzymes such
CYP7A1 [24, 25]. In one of the acidic path-
ways, which occurs in mitochondria, cholesterol
is oxidized to 33, hydroxy-5-cholestenoic acid by
CYP27A1 at two steps and released to cytosol
(Fig. 1A). Then, 33, hydroxy-5-cholestenoic acid
is uptaken into the ER and converted to 3B, 7a,

dihydroxy-5-cholestenoic acid by CYP7B1. After-
wards, in one of metabolic pathways in the liver,
3B, 7a, dihydroxy-5-cholestenoic acid is modified
to 33, 7o, dihydroxy-5B-cholestanoyl-CoA (Supple-
mentary Figure 2), which then is transported into
peroxisome by PMP70 for side chain cleavage (Sup-
plementary Figure 1).

Defective D-BP will affect levels of bile acids in
the blood too [26], as these have been also observed
in AD patients (increased plasma levels of GCA,
GDCA, GCDCA) [27]. It is believed that defective
D-BP results in the accumulation of C27 intermediate
bile acids such as 3a,7a,12a trihydroxycholestanoic
acid (THCA), 3a,7a dihydroxycholestanoic acid
(DHCA), and OH-THCA in the liver, leading to
cholestasis and consequent hepatic injury [20]. This
hepatic injury may also result in further changes in
the serum/plasma lipid levels. For example, six lipid
metabolites were found to be cholesteryl esters (ChE
32:0,ChE 34:0, ChE 34: 6, ChE; 33: 6, ChE 40: 4,
ChE 32 : 4) that are reduced in plasma of patients with
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AD [28]. In another study, a combination of 24 blood
metabolites classified AD patients with >70% accu-
racy [29]. This study identified a blood lipid signature
that predicts AD progression.

The neurological functions of bile acids have been
reviewed recently [30-32], and neurological impair-
ment has been reported with increased blood bile
acid levels [33]. Air pollution [34] and genetic vari-
ations [35] may alter bile acid metabolism in the
body and promote developing AD. In addition, ele-
vated serum/plasma levels of toxic bile acids such as
lithocholic acid (LCA) may originate from defective
D-BP in the liver of patients with AD, which could
play major roles in developing AD. This is further
explained in the following sections.

HIGH BILE ACID SERUM/PLASMA
LEVELS IN PATIENTS WITH AD

Clinical studies have indicated increased serum
bile acid levels in patients with AD compared to
control healthy subjects [15, 27, 36], as well [15] as
increased urinary conjugated primary bile acid (tau-
rochenodeoxycholic acid (TCDCA)) and conjugated
secondary bile acid (taurodeoxycholic acid (TDCA))
levels [37]. It was originally reported by Greenberg
et al. (2009) that the plasma levels of glycocholic
acid (GCA), glycodeoxycholic acid (GDCA), and
glycochenodeoxycholic acid (GCDCA) increased in
patients with AD compared to control subjects [27].
Few years later, Mapstone et al. (2014) found that
the serum levels of glycoursodeoxycholic acid were
higher in patients with aMCI/AD compared to con-
trol subjects [15]. This was followed by the work
of Olazaran et al. in 2015 that screened 495 plasma
metabolites in patients with AD and normal control
subjects. They found that plasma levels of deoxy-
cholic acid (DCA) and LCA significantly increased in
patients with AD compared to control subjects [38].
These observations were confirmed by Marksteiner
et al. (2018), who reported that the plasma levels
of LCA increased to 50 & 6 nM, which was signif-
icantly higher compared to control subjects (32 +3
nM) [39] It should be noted that LCA is nontoxic to
neurons at concentrations below 25 pM [40]. Inter-
estingly, the levels of LCA were higher in the brain
of patients with AD compared to control subjects,
suggesting that LCA may accumulate in the brain
perhaps due to increased LCA serum levels, leading
to declining of cognitive function in patients with AD
[41]. MahmoudianDehkordi et al. (2019) found that

the serum levels of secondary bile acids (DCA and
its glycine and taurine conjugates) were significantly
higher in patients with AD than control subjects,
although serum levels of primary bile acids were
significantly lower than control subjects [42]. While
Shao et al. (2020) discovered that plasma levels of
cholic acid were significantly higher than control sub-
jects [36]. Organic anion transporter polypeptide 1
(OATP1) expressed in the choroid plexus and organic
anion transporter polypeptide 2 (OATP2) expressed
at the BBB both mediate the transport of bile acids
from the systemic circulation into the brain [31].
Significant positive correlations have been observed
between serum and brain bile acid concentrations for
CA, CDCA, DCA, and taurocholic acid (TCA). LCA
levels were below the limit of quantification in the
brain [43].

On the other hand, Pan et al. (2017) did not find
a significant difference in plasma levels of LCA
between control subjects and AD patients, and in
fact the levels of LCA in AD patients were lower
(44 £ 10 nM) than in control subjects (63 £ 19 nM).
Also, there was no significant difference in brain
levels of LCA between AD patients (0.05+£0.01
nmol/g) and control subjects (0.06 £ 0.02 nmol/g)
[44]. Tt should be noted that serum/plasma levels of
LCA in young healthy subjects is 19.9 £ 1.1 nM [45].
Therefore, these observations suggest that serum lev-
els of LCA increase with age, which may have a
role in gradual declining of cognitive function in
non-cognitively impaired healthy elderly subjects
[46]. Furthermore, these observations suggest that
increased serum/plasma bile acid levels may happen
at some stage of the disease and then may decrease
due to other metabolic dysfunctions in the patients.

Total serum bile acids for general population is
3.8£0.2 uM [47]. However, total serum bile acid
levels less than 1.5 uM are considered normal [48],
but total serum bile acid level of 14 uM is consid-
ered the normal upper limit [48]. The total serum bile
acid levels can be as high as 100 times of normal lev-
els [48]. Values of total serum bile acid ranged from
0.3 to 9.8 uM in 216 pregnant women [49], while
total serum bile acid levels increased from 4.2 uM
in control subjects to 6.5 uM in patients with AD
[39]. Therefore, total serum bile acid levels do not fall
beyond normal upper limit in patients with AD, sug-
gesting serious pathological effects are not expected,
but chronic and steady declining effects on organs.

Patient and healthy subject data indicate that during
aging the serum levels of LCA increase, however, the
increase in AD patients is more noticeable [39, 47].
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Fig. 2. Serum lithocholic acid (LCA) levels versus the age for

healthy subjects (.) and AD patients (£}, ), demonstrating that
LCA serum levels matches healthy subject before age 85. Raw data
was obtained from Marksteiner et al. (2018) [39].
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Fig. 3. Serum lithocholic acid (LCA) levels versus MMSE score
(n=23), population includes healthy subjects, subjects with mild
cognitive impairment and patients with AD, suggesting that gen-
erally MMSE levels tend to decrease by increasing serum LCA
levels. Raw data was obtained from Marksteiner et al. (2018) [39].
Further studies are required to demonstrate this in larger popula-
tions.

For example, serum LCA levels were 7.50 £ 0.38 nM
in healthy subjects aged between 19 and 65 years [47],
while this increased to 32 &+ 3 nM in healthy subjects
aged 77 £ 1.2 (SEM), and 50 &= 6 nM in AD patients
aged 79 £ 2.0 years [39]. Based on the available data
in a clinical study, we plotted the serum LCA ver-
sus age for healthy subjects and AD patients (Fig. 2,
raw data was obtained from Marksteiner et al. [39]).
With age serum LCA level increases for AD patients.
Also, Fig. 3 (raw data was obtained from Marksteiner
et al. [39]) depicts Mini-Mental State Examination
(MMSE) versus serum LCA showing a decrease in
MMSE when serum LCA concentration increases.

HYDROPHOBIC BILE ACIDS DISRUPT
THE BLOOD-BRAIN BARRIER

The BBB is a selective barrier that eclipses the
brain and isolates it from the circulating blood. It

is composed of the capillary basement membrane
(BM), astrocyte end feet ensheathing the vessels, and
pericytes embedded within the BM. It represents a
major barrier for drug permeation especially those
which are highly hydrophilic and have molecular
mass greater than 400 Da. Hydrophobic bile acids
such as DCA alter the permeability of the BBB to
molecules that otherwise normally do not cross the
BBB [50, 51]. Therefore, DCA potentially expose
the brain neurons to harmful metabolites/chemicals
in the blood (Fig. 4). Interestingly, DCA caused sig-
nificant reduction in the brain mass of rats, [50] a
phenomenon that is observed in patients with AD
compared to cognitively normal subjects [52]. Peri-
papillary edema and alteration in tight junctions
could be the reasons for increased BBB permeabil-
ity by DCA [53]. In addition, bile acids are capable
of damaging the BBB by their detergent and lytic
effects on the cell membrane [53]. Cerebral endothe-
lial cells form tight junctions with adjacent cells via
interactions of the tight junction proteins: occluding,
claudin-5, and intracellular docking proteins ZO-
land ZO-2. Bile acids (DCA and CDCA) increased
permeability of the BBB by activation of Racl fol-
lowed by phosphorylation of occludin, with CDCA
being more potent [54]. The disruption of BBB signif-
icantly increased with hydrophobic bile acids (DCA
and CDCA) than hydrophilic bile acids (ursodeoxy-
cholic acid, GCDCA, TCDCA) [54]. Only doubling
serum total bile acid concentration was sufficient
to increase BBB permeability [54]. Seiffert et al.
(2004) exposed the cerebral cortex of rats to bile
salts (DCA), which resulted in long-lasting extrava-
sation of serum albumin into the brain. Although this
was associated with astrocyte activation, there was
no inflammatory response or marked cell loss [55].
Higher CSF levels of albumin have been reported in
patients with AD [56]. Increased BBB permeabil-
ity was suggested for this observation. In another
in vivo study, focal administration of deoxycholate
resulted in BBB disruption (measured using in-vivo
MRI brain imaging) leading to neuronal loss and
deterioration of animals’ motor functions [57]. Previ-
ous studies have found increased permeability of the
BBB in patients with AD compared to age-matched
control subjects [58]. The disruption of BBB could
lead to microhemorrhages with the release of neuro-
toxic hemoglobin-derived products [59]. The release
of iron from hemoglobin can lead to lipid perox-
idation and neuronal cell death [59]. It has been
shown that only 1% oxidized DHA was sufficient
to revert the protective effect of DHA and signif-
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icantly increase A production [60]. It has been
proposed that the disruption of the BBB would facil-
itate the migration of inflammatory molecules into
the brain leading to microglia activation and neuroin-
flammation [61]. Conjugated bile acids such as TCA
activated Sphingosine 1 Phosphate Receptor 2 recep-
tor, [62] which released CCL2 from neurons, leading
to activated microglia [63], and neurological decline
[64]. Furthermore, inflammation would increase plas-
min system inhibitors, resulting in reduced plasmin
activity, which leads to impaired A degradation
in the brain and accumulation of AR deposits in
AD patients [65]. The plasmin system is a set of
proteases and inhibitors in the brain expressed by
neurons. This system contains urokinase-type plas-
minogen activator (uPA) and tissue-type plasminogen
activator (tPA), which convert plasminogen to plas-
min (active protease). In this system tPA and uPA
are inhibited by both plasminogen inhibitor-1 (PAI-
1) and plasminogen inhibitor-2 (PAI-2) [66, 67], with
alpha-2-antiplasmin inhibiting plasmin [66]. Interest-
ingly, PAI-1 levels increased (not significantly) in the
CSF of patients with AD compared to control sub-
jects [67]. Therefore, the accumulation of A3 would

be expected to increase in the brains of patients with
AD (increased PAI-1 levels).

Hydrophobic bile acids damage other epithelial
barriers. DCA is a potent bile acid in decreasing the
tight junctions of human bronchial epithelial cells at
relatively mild acidic conditions (pH =6) compared
to TCA and glycocholic acid. This could be one of the
reasons for pneumonia complications in AD patients
[68].

POSSIBLE INCREASED C-27 BILE ACIDS
LEVELS IN PLASMA OF PATIENTS WITH
AD

The downregulation of D-BP enzyme in the liver
of patients with AD may suggest increased levels
of C27 bile acids in the serum or liver (Fig. 5),
as, C27 bile acids (derivatives of 3a, 7a, 12a, 24
tetrahydroxy-5@-cholestanoic acid) account for 74%
of total bile acid in the serum of patients with
D-BP deficiency [69]. C27 bile acids enhance mito-
chondrial ROS production by inhibiting respiratory
chain [70]. However, the plasma levels of 3p3-
hydroxy-5-cholestenoic acid (C27 bile acid) ranged
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from 41 ng/ml to 134 ng/ml in 11 healthy subjects 3B,7a-dihydroxy-5-cholestenoic acid, 7a-hydroxy-
[71]. The total median levels of serum or plasma 3-oxo-4-cholestenoic acid), 172 ng/ml, was greater
C27 bile acids (3B3-hydroxy-5-cholestenoic acid, than median of C24 unconjugated bile acids



180 T. Ehtezazi et al. / Bile Acids and Alzheimer’s Disease

(146 ng/ml) in healthy subjects [72]. Certain meals
(oat bran) increased serum levels of C4 (7a-
hydroxy-4-cholesten-3-one) [73]. C27 bile acids in
human serum originate from 7a-hydroxy-cholesterol
[74]. The serum levels of C4 also increased in
patients with hypercholesterolemia and treated with
cholestyramine from 12 ng/ml (heathy subjects) [72,
75] to 174ng/ml. Galman et al. (2003) showed
that treatment with cholestyramine increased rat
liver 7a-hyroxylase activity leading to increased
serum levels of C4 [75], and potentially serum C27
bile acid levels [76]. Furthermore, increased liver
7a-hyroxylase activity would also increase serum
7Ta-hydroxycholesterol levels [76]. These observa-
tions indicate that serum levels of C27 bile acids may
increase due to diet, treatment, GI or hepatic diseases,
and not necessarily due to downregulation of D-BP
enzyme in the liver.

On the other hand, serum levels of C4 (and poten-
tially C27 bile acid levels) decreased in patients
with acute myelogenous leukemia or total parenteral
nutrition [77, 78]. The levels of 7a-hydroxylase
also significantly increased in patients treated with
cholestyramine, but decreased in patients treated
with chenodeoxycholic acid (both at the doses
of 15mg/kg) [79]. The mRNA of 7a-hydroxylase
cholesterol increased in cholestatic patients, despite
areduction in 7a-cholesterol hydroxylation and bile
acid synthesis [80]. These observations suggest that
in certain liver diseases the serum levels of C27 bile
acid and LCA may increase (derived from CDCA)
due to increased serum levels of C4 [72, 81]. As
CDCA is the precursor of LCA [82, 83] therefore,
in AD patients when blood levels of CDCA are high,
blood LCA levels tend to be high [39, 44]. As the
prevalence of colorectal cancer decreases in patient
with AD [84], then it may be suggested increased
serum LCA levels (or potentially C4) would be tran-
sient.

On the other hand, when the serum levels of bile
acids decrease in patients with AD [42], this could
suggest reduction of bile acid synthesis by the liver.
Then, in anyway, there would be a change in the
existing balance within the intestinal microbiome of
patients with AD, which is called dysbiosis. Reduced
bile acid synthesis by the liver increases the small
intestinal bacterial growth [85, 86], which leads to
increased serum TNFa and systemic inflammation
[87]. Due to proinflammatory mediators, the produc-
tion of bile acids by the neutral pathway decreases
and then the acid pathway produces more C4 and
hence more CDCA [72]. Increased levels of CDCA

increases intestinal Enterobacteriaceae, which are
pathogenic [88]. The decreased levels of bile acids
including CDCA in AD patients [42] would decrease
secondary bile acids levels (including LCA) in the
intestine produced by clostridum [89], which again
leads to outgrowth of Enterobacteriaceae [89]. Then,
the intestinal altered microbiome will lead to the for-
mation of toxic bile acids such as DCA [90], which
would damage the BBB and build up in the brain [42].

The levels of C4 are in the range of 0-15ng/ml
in healthy volunteers only for 49% of subjects.
Although levels of C4>60ng/ml are considered
abnormal, 7% of healthy subjects fall in this range
[91]. Therefore, the serum levels of C27 bile acids
may be much higher in some healthy subjects com-
pared to the others, yet with no obvious clinical
symptoms.

In summary, although C27 bile acid levels may
increase in the serum or liver of the patients with AD,
the large variations in healthy subjects may prevent
clearly seeing the increased C27 bile acids in these
patients.

BILE ACIDS ENTER NEURONS VIA BILE
ACID TRANSPORTERS

The solute carrier family 10 members 1
(SLC10A1; NTCP) and 2 (SLC10A2; ABST) trans-
porter protein belong to the solute carrier super
family with over 450 members [92, 93]. SLC10A1
and SLC10A2 carry bile acids. SLC10A4 is another
member that is expressed in the brain [94-96]. It is
located in the synaptic vesicles as either vesicular
acetylcholinesterase or vesicular monoamine trans-
porter 2 [92]. It has been proposed that SCL10A4
contributes to loading the vesicles in neurons with
dopamine, which is released in synaptic clefts [92].
SCL10A4 normally has no bile acid transporter activ-
ity, but it can become an active bile acid transporter
with the help of thrombin, which cleaves the N-
terminus section of SLC10A4 protein (Fig. 6) [97].
Then SLC10A4 can transport LCA and DCA [97].
As thrombin levels are elevated in the brain of
patients with AD [98], then this could be a mech-
anism that LCA finds its way into the neurons. When
bile acids are in neurons, they exert their effects
through a number of nuclear receptors, including far-
nesoid X receptor [99], pregnane X receptor [100],
vitamin D receptor [101], and estrogen receptor o
(discussed below). Furthermore, it has been shown
that in cholestatic liver injury the serum bile acid lev-
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Thrombin

Fig. 6. Under normal condition bile acids (BAs) cannot utilize bile acid transporter like SLC104A to enter neurons, but when brain levels of
thrombin increase in the patients with AD (for example due to the BBB disruption), then the SLC104A is modified, and this time it carries

BAs into the neurons.

elsincrease. Bile acids both uncharged and negatively
charged found their ways into neurons via SLC10A2
bile acid transporters, which is expressed in the
rat hypothalamus; and suppressed the hypothalamic-
pituitary-adrenal axis (HPA) [102]. It should be noted
that SLC10A2 is not expressed in the human brain.
HPA dysfunction has been reported in a substantial
portion of patients with AD [103]. HPA axis dys-
function was correlated to the severity of dementia
in patients with AD [103]. On the other hand, by
increasing the severity of AD, depletion of SLC10A4

expression was noted in the transentorhinal cortex
and hypothalamus of patients with AD [96]. Kei-
tel et al. (2010) showed the expression of TGRS
(a membrane-bound bile acid receptor) on astro-
cytes and neurons [104], and the activation of TGRS
may promote the migration of bile acid transporter
(ASBT) into the cell membrane [105]. However, the
expression of TGRS decreases in the brain by the ele-
vation of serum bile acid levels [104]. This could be
a further support for HPA dysfunction in AD patients
in the short term, but not longitudinally [103].
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THE INTERACTION OF BILE ACIDS
WITH FARNESOID X RECEPTOR IN THE
BRAIN

Farnesoid X receptor (FXR) protein expression
was identified in the human brain abundantly [106].
In conditions when the liver is damaged, serum bile
acids are known to increase, possibly due to the
release of bile acid content from damaged hepato-
cytes [107]. When serum bile acids levels increase
(for example in cholestasis), brain bile acid levels
also increase [108] and toxic bile acids such as LCA
tend to accumulate in the brain [108, 109]. This may
also result in change of the brain bile acid profile,
reduction of good bile acid levels such as CA and
CDCA [109]. CDCA is the highest activator of FXR
(346 folds), but LCA is the lowest FXR activator
causing only 100 folds increase at 100 uM [110].
Increased bile acid levels in the brain activated FXR
signaling, which downregulated the expression of
brain Cyp46A1 (catalyzes the synthesis of 24(S)-
hydroxycholesterol) in mice (Fig. 7) [111].

The expression of retinoid xenobiotic receptor
(RXR) is reported in hippocampal neurons [112].
Therefore, RXR may heterodimerize with FXR in
downregulation of Cyp46A1l (Fig. 7), as it does in

the intestine [90]. This could be an explanation for
the reduction of good bile acids in the brains of
bile duct ligated rats [109]. In addition, the activa-
tion of FXR in the brain contributed to neurological
decline [99]. Similar to the liver, activation of FXR
by GW4064 increased the expression of small het-
erodimer partner (SHP) protein in brain primary
cultured neurons [106]. More importantly, accumula-
tion of bile acids in the brain led to neural cholesterol
accumulation and neurological decline such as escape
response and presence of server ataxia [111]. Bile
acids bind to FXR and this prevents transactivation
of LXRa, which is a positive regulator of choles-
terol degradation, and LXRa is also expressed in the
brain [113]. This means that activating FXR leads to
accumulation of cholesterol [110]. In fact, increased
total serum cholesterol levels have been observed in
patients with non-cirrhotic, non-alcoholic steatohep-
atitis, when they were treated with 6a-ethyl CDCA
(INT-747, [obeticholicacid]) [114]. This is a selec-
tive FXR agonist with 100 folds greater efficacy than
CDCA [115]. Bile acids (CDCA, DCA, LCA) did
not activate FXR significantly at concentrations less
than 10 wM [110]. The serum total bile acid levels can
increase to 71 wM in patients with liver disease com-
pared to control subjects who have 9 uM total serum
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Fig. 7. When bile acids find their ways into the neurons, then they activate FXR and possibly RXR, which collectively reduce the expression
of Cyp46A1 leading to accumulation of cholesterol and reduced brain levels of 24(S)-hydroxycholesterol.
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bile acid level [116]. Therefore, significant activation
of FXR can occur in the brain with serum bile acid
levels under pathological conditions. These obser-
vations may explain increased levels of cholesteryl
esters in the brains of patients with AD [117] through
the activation of FXR signaling pathway in the brain.
Reducing cortical bile acid levels alleviated accumu-
lation of cholesterol in the brain [111]. Accumulation
of cholesterol in the brain promotes the aggregation
of AB1-42 [118], which increases the risk of AD.

There is an involvement of phospholipase A2
(PLA2) in AD (its levels either increase or decrease),
and a recent study showed that activation of FXR by
CDCA at 50 nM concentration decreased phospho-
lipase 2 G12B (PLA2G12B) expression in HepG2
(hepatoma cell line) cells [119]. Therefore, there is
a possibility that part of alterations of PLA2 levels
in the brains of patients with AD may originate from
high toxic bile acid levels in the brain that activate
FXR signaling pathway.

Activation of FXR reduced hepatic inflamma-
tion (through inhibition of NF-«B) [120]. NF-kf3
inhibition also prevented the expression of proin-
flammatory cytokines from CNS-resident -cells
[121]. Furthermore, clinical aspects of experimen-
tal autoimmune encephalomyelitis (EAE) mice were
significantly improved either by the inhibition of
NF-k@ [122] or administration of obeticholic acid
(a strong FXR agonist at the dose of 5mg/kg)
[123]. These suggest that activation of FXR would
reduce neuroinflammation, a condition that has been
observed in patients with AD [124]. However, toxic
bile acids may contraindicate this benefit by pro-
moting AP accumulation in the brain. On the other
hand, NF-kf3 can be activated by phosphatidylinosi-
tol 3-kinase through TNFR2 (TNF receptor 2), which
promoted neuronal survival [125]. Therefore, inhibi-
tion of NF-k@3 byFXR signaling could compromise
neuronal survival in AD.

HYDROPHOBIC BILE ACIDS BLOCK
NMDA RECEPTORS IN THE
HIPPOCAMPAL NEURONS

N-methyl-D-aspartate receptors (NMDARS) play
major roles in learning and memory [126-128].
NMDARs are capable of converting specific patterns
of neuronal activity into long-term changes in synap-
tic structure (synaptic plasticity) leading to cognitive
functions and learning [129]. NMDARs in the gran-
ule cells (GCs) of the dentate gyrus play a crucial

role in the process of pattern separation [130]. Fur-
thermore, new neurons are continuously generated
in the hippocampus of the adult mammalian brain
[131], and GluN2B containing NMDARs promote
synaptic activation in adult born GCs of the olfac-
tory bulb that integrate into circuits with high and
correlated synaptic activity [132]. Two regions-the
olfactory bulb (SVZ) and the dentate gyrus of the
hippocampus-(SGZ)- receive and integrate new born
neurons throughout the adult life [133]. NMDARs
help new neurons to survive and integrate into cir-
cuits [131]. Work on rodent hippocampus has shown
that NMDAR mediated plasticity (which is essential
for the formation of the memory) [134] and NMDARs
are crucial for the formation of temporal memory in
the CA1 of the hippocampus [134]. Computational
studies suggest that dentate gyrus and its connec-
tions to CA3 are responsible for pattern separation
[135]. If the above pathway does not work, then the
connections of CA3 to CA1 should complete the pat-
tern [135]. Pattern completion and pattern separation
complement each other. If one weakens, the other
one strengthens [135]. There is a proper information
encoding, normal pattern completion rate, and pattern
recognition in patients with aMCI, but these are for-
gotten rapidly [135]. In contrast, there is a slow and
even incomplete pattern recognition in patients with
AD. These suggest that patients with AD have exten-
sive hippocampal and parahippocamal damage, and
therefore they cannot encode the information prop-
erly [135].

Both under-excitation (hypofunction) and exces-
sive excitation of NMDARSs are thought to play roles
in AD [126, 127]. NMDAR antagonists impair spa-
tial learning in rats [136] and nonhuman primates
[137]. On the other hand, excessive activation of
NMDARSs (GluN2B containing NMDARs mediated
by AB) results in deficit uptake of glutamate by exci-
tatory amino acid transporters leading to impaired
long term potentiation [126]. Although meman-
tine is an NMDAR antagonist, memantine exerts
its therapeutic efficacy by attenuating A-induced
tau-phosphorylation and associated signaling mecha-
nisms [138], and it should be noted that memantine is
a low-affinity NMDAR antagonist. Strong NMDAR
antagonists such as phencyclidine can produce psy-
chotomimetic effects in humans. Hydrophobic bile
acids are able to inhibit NMDARSs [139]. The affin-
ity of bile acids to albumin determines the potency
of a bile acid in blocking NMDARs [139] with
LCA being the most potent molecule [140]. Block-
ade of NMDARs by bile acids would be expected,



184 T. Ehtezazi et al. / Bile Acids and Alzheimer’s Disease

as pregnanolone sulfate is a non-competitive antag-
onist of NMDARs and structurally is similar to
sulfated LCA. NMDARs are crucial for the forma-
tion of temporal memory in the CA1 [134], and the
NR2A subunits of NMDARs are responsible for the
retrieval of memory [141]. The blocking of NMDARSs
results in apoptosis of neuroblasts and this decreases
the number of newly generated neurons [142] and
hence formation of new memories [143]. The restor-
ing of spine densities in the dentate gyrus rescued
loss of long-term memories in mouse models of
AD [144] and NMDARs are required for the for-
mation of spines [145]. Furthermore, the blockade
of NMDAR in retrosplenial cortex disrupts retrieval
of remote and recent information [141], decreases
synthesis of 173 estradiol in the brain [146], inacti-
vates benefits of E2 via Rap/AF-6/ERK1/2 signaling
pathway [147], reduces neural connectivity [148]
(dendritic complexity, spine density and morphol-
ogy), prevents persistent and maturation of newly
formed synapses [149], and contributes to NMDAR
hypofunction (which has been seen in AD) [150].
Hydrophobic bile acids reduce the levels of 24-OHC
in the brain [151], which is a strong activator of

NMDARs [152]. As presynaptic NMDARs (PreN-
MDARSs) would enhance transmitter release in part
via protein kinase C signaling [153] and subsequent
glutamate release in CA3-CAl circuit [154], then
blockade of preNMDARs by toxic bile acids would
further contribute to the dysfunction of remaining
NMDARs in AD [155]. Blockade of NMDAR with
toxic bile acids may lead to psychotic symptoms that
has been observed in 50% of patients with AD [156].

Activation of NMDARs leads to the activation of
mitogen-activated protein kinase (MAPK) and extra-
cellular receptor kinase-1and 2 (ERK1/2), inducing
phosphorylation of cAMP responsive element bind-
ing protein (CREB) and increasing expression of
brain-derived neurotrophic factor (BDNF). This con-
tributes to memory formation and cognitive function
(Fig. 8) [157-159].

HYDROPHOBIC BILE ACIDS COULD
IMPAIR THE ROLES OF E2 IN THE BRAIN

17 estradiol (E2) s a steroid hormone with molec-
ular weight of 272 Da which is biosynthesized from
cholesterol involving aromatase [160]. Hippocampal

lithocholic acid Memory
formation and
Cognitive Function

Fig. 8. Hydrophobic bile acids such as lithocholic acid block the activation of NMDARS by agonists such as glutamate (Glu); and prevent
flux of Ca?* into neurons leading to downregulation of BDNF, which contributes to the formation of memory and cognitive function.
The flux of Ca?* activates both cAMP-responsive element binding protein mitogen-activated protein kinase/extracellular regulated kinase
MAPK/ERK and calcium/calmodulin-dependent protein kinases Iloe (CamklIor) [159] which results in phosphorylation of cAMP-responsive
element binding protein (CREB) as well as activation of histone acety] transferase (HAT). These lead to upregulation of BDNF.
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pyramidal neurons and granule neurons of adult male
rats are equipped with a complete machinery for the
synthesis of E2 from endogenous cholesterol [161].
Furthermore, brain has the capacity to convert cir-
culatory testosterone into E2 through the enzymatic
action of aromatase [162]. E2 plays major roles in
the brain such as reducing neuronal loss following
stroke, increasing neuronal connectivity, improving
cognitive performance, inducing brain BDNF synthe-
sis [163—166], improving learning in ovariectomized
(OVX) mice [167], and contributing to leaning by
increasing hippocampal dendritic spines [168-170].
E2 exerts its effects in the brain through estrogen
receptor a (ERa), ER(, and GPERI1 [171]. ERa
facilitated cognitive functions [172], contributed to
the BBB functions [173], reduced AR accumula-
tion in the brain [174], reduced tau phosphorylation
by phosphorylating GSK3p [175], reduced BCL-
associated death promoter (BAD) levels [176], and
generated optimal signals of E2 through proline-,
glutamic acid-, and leucine-rich protein-1 (PELP1)
[177]. Furthermore, E2 interacts with GSK3[3 and 3-
catenin in the brain via ERa, which is crucial in ERx
protein stabilization and turnover [178]. E2 mediates
neuroprotection [179] via activation of plasma mem-
brane ERa [180, 181], ERB [182], GPER1 (GPR30)
[183], extranuclear ER [184], via PELPI interac-
tion with GSK3B [185], and inhibition of NRLP3
inflammasome pathway activation [186]. E2 also
improved episodic memory [187], LTP [188], and

neurogenesis [189], through NMDARs. Spine den-
sity significantly increased with initial E2 treatment
followed by NMDAR activation [147].

The estrogen receptor is unique in having a gluta-
mate (Glu-353) to accept the hydrogen bond donated
by the estrogenic 3-hydroxyl group [190]. The 173-
hydroxyl group of E2 makes a single hydrogen bond
with the § nitrogen of His-524 in hRERa [191]. Most of
ERa ligands contain 3-hydroxyl group [192], similar
to LCA. However, LCA contains 19-methyl group,
which makes LCA a weak partial agonist, and could
displace more potent ligands from their binding sites
[193]. Our molecular modelling studies suggests that
LCA can bind to ERa receptors (Fig. 9), but possibly
void of physiological actions (the molecular mod-
elling investigations are exclusive to this review paper
and were performed in Autodock vina version 1.1.2
[194, 195]). This is because upon binding of LCA
with ERa, the helix 12 of ERa cannot cover as a
lid over the ligand-binding pocket to secure the lig-
and in position. Hence, having ERa occupied by less
potent ligands, this would reduce the efficacy of E2 to
activate desired signaling pathways. Our results may
be supported by previous observations about trans-
repression of bile salt export pump (BSEP) mediated
by E2 through ERa [196]. CDCA strongly transacti-
vated BSEP expression and E2 repressed this activity.
However, E2 efficacy was much lower in the presence
of LCA [196]. Therefore, it may be interpreted that
LCA reduced the efficacy of E2, through occupying

[[] Known antagonist/downregulator
[l Estrogen
[[] Lithocholicacid

Lithocholicacid has a very similar shape to a known antagonistand downregulator
of ER-a which adopts a broadlyL-shaped pose in the ER-a structure with PDB code
5t92 and drapes a carboxylate at the exterior (solvent) of the protein

Fig. 9. The molecular modelling of the interaction of estrogen receptor-a (ERa) with lithocholic acid. Lithocholic acid has a very similar
shape to a known antagonist (compound 9 in reference [398], the molecular structure of the compound is given in Supplementary Figure 3)
and down regulator of ERa which adopts a broadly L-shaped pose in the ERa structure with PDB code 5t92 and drapes a carboxylate at the

exterior (solvent) of the protein.
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ERa and preventing E2 to fully engage with ERa.
Furthermore, LCA has been considered as a ligand
which has similar lipophilicity to estrogen and possi-
bly with the ability to interact with estrogen receptors
such as ERa, but devoid of metabolic activity, which
estrogen is able to exert [197].

Leu-387 in ER will act like a barrier from com-
plete fitting of LCA to the ER ligand-binding pocket.
E2 acts through ERa to acutely suppress GABA
release [198]. The interference of LCA with E2 roles
may explain the disturbed balance of excitatory and
inhibitory signaling systems observed in AD brains
[199]. LCA inhibited NLRP3 inflammasome activa-
tion [200], similar to E2. LCA does not activate ER3
[201, 202]. Furthermore, LCA reduced significantly
the expression of ERa in MCF-7 cells [203], and the
reduction of cytoplasmic ERa expression has been
reported in the brains of patients with AD compared
to control subjects [204].

The overall level of ERa does not significantly
change in AD brains compared to control subjects,
although there is a slight decrease compared to con-
trol subjects [205]. Therefore LCA could reduce the
number of accessible ERa and diminish working
memory performance [206]. Furthermore, the per-
centage of neurons expressing ER-mRNA decreases
with age after 65 years [207], and there is a relation-
ship between MMSE and levels of wild-type nuclear
fraction ERa in superior frontal cortex of patients
with AD [208].

The neuroprotection exerted by IGF-I also depends
on estrogen receptors [209]. Although the levels of
IGF-I increase in the CSF of patients with AD [210],
the neuroprotective effects of IGF-1 are not seen. This
might be explained by the blockade of ERa by LCA,
and IGF-I requires involvement of ERa for its roles.
Furthermore, BAD levels increase in the brains of
patients with AD [211], along increased activity of
GSK33 [212]. In conclusion, the above evidence sug-
gests that LCA may interfere with the vast benefits
of E2 in the brain via ERa receptor.

LITHOCHOLIC ACID AND THE
FUNCTIONS OF ABCA1 AND
P-GLYCOPROTEIN IN REDUCING BRAIN
AB LEVELS

ATP-binding cassette (ABC) transporters utilize
ATP to transport their substrates across membranes.
ABCAL1 (also known as CERP) is a member of ABC
transporters that is expressed on the human BBB

endothelial cells [213-215] (both luminal and ablu-
minal sides in porcine [216]) and human astrocytes,
pericytes and microglia [217]. There is a direct cor-
relation between ABCA1 expression and lipidation
of apoE in the CNS, indicating that ABCAI trans-
ports cholesterol on to apoE [218] and interestingly,
ABCAL1 is required for normal levels of apoE in
the brain [219]. The ABCAI indirectly eliminates
AB1-49 from the brain into the blood circulation
through the BBB [220]. The ABCA1 of microglia
cells is required for efflux of cholesterol to apoA-I,
apoE2, and apoE3 [221], a major contributing path-
ways for regulating lipid homeostasis in the brain.
As expected, the inhibition of ABCAI resulted in the
accumulation of cholesterol in the brain [222]. Fur-
thermore, ABCA1 reduced neuroinflammation and
neuronal death [223].

Lipidated apoE by ABCA1 promoted degradation
of soluble A3 both inside microglia and extracellu-
larly [218, 224], and ABCAI1 (even non-functional
mutants) reduced AP production [225]. Astrocytes
are the major source of extracellular apoE in the
CNS and themselves express a high level of ABCAI,
which plays a crucial role in extracellular lipidated
apoE [226], facilitating degradation of soluble A
by insulin degrading enzyme [224], the main prote-
olytic degradation pathway of A [227]. It should
be noted that there are three major isoforms of apoE
(apoE2, apoE3, apoE4), with lipidated apoE3 pre-
senting 2-3 fold higher affinity for both AB-40 and
AB1-42 peptides than apoE4 [228]. On the other hand,
delipidation of both apoE3 and apoE4 decreased their
affinities for A3 peptides by 5-10-fold and abolished
the isoform-specificity [228]. In fact, overexpress-
ing ABCAL1 increased lipidation of apoE in the CNS
and reduced amyloid burden [229]. Conversely, the
absence of ABCAL resulted in a significant increase
in AB1-40 load in the brain of ABCAI ~/~ mice com-
pared to the wild type [230]. It has been shown that
increased brain ABCALI levels by oral administra-
tion of rosiglitazone improved A clearance from the
brains of AD rat models [231]. ABCAI is upregu-
lated in AD hippocampal neurons two- to three-fold,
potentially through A mediated pathways [232].
The increased levels of ABCAI in the brains of
patients with AD may be a compensatory mechanism
to reduce the brain AR load [233]. Overexpressing
ABCALI in APP/PS1 mice reduced brain A3 burden
[234]. It should be noted that environmental fac-
tors (such as dichlorodiphenyltrichloroethane) could
increase brain A3 levels by lowering ABCA1 expres-
sion and promoting AP synthesis [235].
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LCA reduced the expression of ABCA1 in HepG2
cells through the activation of nuclear pregnane X
receptor (PXR) [100]. In fact, PXR serves as a
physiological sensor of LCA [236]. Activation of
PXR increased ABCA1 expression in kidneys [237].
Activation of PXR in the brain increased the expres-
sion of P-glycoprotein (P-gp) [238] and significantly
reduced brain AP levels in a mouse model of AD.
Therefore, it would be expected that P-gp expres-
sion is increased as the result of PXR activation
by LCA. At the early stage of AD, P-gp expres-
sion is upregulated in the capillaries of the brain.
However, the accumulation of Af3 completely disap-
peared the expression of P-gp on arterioles or reduced
P-gp capillary expression [239, 240]. A compen-
satory mechanism may be suggested to increase A3
clearance from the brain by upregulation of P-gp
[239], high serum LCA levels may also contribute
to increased P-gp expression via PXR activation.
Furthermore, it was found that activation of PXR
(by allopregnanolone or T0901317 [241]) led to
increased expression of ABCA1 in mouse brain
[242]. Therefore, the increased expression of ABCA1
in the brain of patients with AD could be due to AB-
mediated pathway, as well as increased serum LCA
levels. It appears that LCA may provide some neuro-
protective effects against AD. However, this may lead
to increased brain A3-levels, and contraindicates the
neuroprotective effects (Fig. 10).

TOXIC BILE ACIDS AFFECT 24-OHC AND
BILE ACID PROFILES IN THE BRAIN

Cholesterol 24-hydroxylase (CYP46A1) is highly
expressed in the brain and catalyzes the synthesis
of 24(S)-hydroxycholesterol (24-OHC) from choles-
terol (Fig. 11) [243]. CYP46A1 is not uniformly
distributed in the human brain, but it has been detected
in the hippocampus [244]. The formation of 24-OHC
is a major pathway for removal and excretion of
cholesterol from the brain [245]. The net flux of 24-
OHClis 6.4 mg/day to the blood circulation for human
brain [246]. The brain contains about 80% of 24-OHC
in the body [247], therefore, 24-OHC is also called
cerebrosterol [248]. The net flux of 24-OHC remains
age independent for adults older than 20 years [247].
As well as net flux of 24-OHC to the blood circula-
tion and conversion to bile acids by the liver, brain
has all the enzymes to biosynthesis for CDCA from
24-OHC [249].

24-OHC induced transcription and protein synthe-
sis in a dose dependent manner in astrocytes, but
not in SH-SYSY cells (neuronal origin) cells [250].
This led to increased efflux of cholesterol via apo-E
and apoA-I [250]. Following a traumatic brain injury,
there is an increased efflux of cholesterol from dam-
aged cell membrane to the brain environment; and
as a result the activity of CYP46Al increases to
convert excess insoluble cholesterol to soluble form
of 24-OHC [251]. As well as trauma, inflammation
and necrosis are associated with increased choles-
terol production in the brain, which leads to increased
amounts of 24-OHC in the brain [252]. 24-OHC
is an LXR agonist, and consequently can increase
the expression of ABCA1 [253], contributing to
reduction of ABPP cleavage and AP production,
i.e., potentially reducing the risk of developing AD
[254]. Furthermore, 24-OHC has positive modulatory
effects on NMDARSs [152] promoting LTP and cogni-
tive functions [152]. In fact, 24-OHC is a very potent,
direct, and selective positive allosteric modulator of
NMDARSs with a mechanism that does not overlap
with other allosteric modulators such cholesterol or
27-hydroxycholesterol [152]. Finally, under normal
conditions, 24-OHC favors the processing of ABPP
to the non-amyloidogenic pathway [255].

The serum levels of 24-OHC is a balance between
the brain production of 24-OHC and its metabolism
by the liver [256]. Then higher serum 24-OHC level
would be expected in patients with liver disease com-
pared to controlled subjects [257]. Serum levels of
24-OHC varied between 1.7-18 wmol/L in patients
with severe cholestatic liver disease (equivalent to
685 ng/mL-7,236 ng/mL, Mw =402 g for 24-OHC)
[258], while normal 24-OHC levels are in the range of
30-80 ng/mL [259]. Therefore, increased serum lev-
els of 24-OHC in patients with liver disease could
be due to the inability of the liver to convert it to
bile acids such as CDCA [260]. On the other hand,
the plasma or serum levels of 24-OHC were signifi-
cantly lower in patients with AD (20-50 ng/mL) than
matched control subjects (30-80 ng/mL) [259, 261].
The reduced plasma levels of 24-OHC could sug-
gest the loss of CYP46A1 in the brain [262]. Then
expectedly, variation in CYP46A1 gene may act as
a risk factor for AD through influence on choles-
terol metabolism in the brain [263]. It was found
that the number of neurons and astrocytes express-
ing CYP46A1 decreased in the cortex of patients
with AD compared to control subjects [264, 265].
Interestingly, the remaining CYP46A1 enzymes were
accumulated around A3 plaques [264].
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Fig. 10. The hydrophobic bile acids such as lithocholic acid increase the expression of ABCA1 transporter and P-gp. Although upregulation
of these proteins should lead to better clearance of AP plaques from the brain of AD patients, the hydrophobic bile acids promote the
formation of AP plaques which themselves make ABCA1 and P-gp out of function.

Can elevated serum bile acid levels suppress
CYP46A1 expression in the brain, and hence reduce
24-OHC levels in the brain? In vivo studies showed
that mice with acute liver failure, which was induced
by azoxymethane, developed increased serum bile
acid levels [266]. Toxic bile acids such as LCA and

DCA reduced the synthesis of 24-OHC and expres-
sion of CYP46A1l in the brain via activation of
FXR and SHP [151] (Fig. 11). Therefore, decreased
expression of CYP46A1 in the brains of patients with
AD could be due to the increased serum bile acid
levels. This is in line with reports that CSF [267]
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Fig. 11. Hydrophobic bile acids (BAs) reduce brain levels of 24(S)-hydroxycholesterol, through downregulation of Cyp46Al. 24(S)-
hydroxycholesterol increases the expression of ABCAI transporter in astrocytes through activation of LXR-RXR signalling pathway, then
reduction of 24(S)-hydroxycholesterol in the brain may contribute to downregulation of ABCA1 in astrocytes.

and brain levels of 24-OHC decrease as the severity
of AD progresses [268]. Although, concentrations of
24-OHC in the CSF were either significantly higher
in patients with AD (2.28 & 0.73 ng/mL at the early
stages, or 2.03 = 0.36 ng/mL at the later stage) [269],
or slightly higher than control subjects [270], higher
early CSF 24-OHC levels in patients with AD could
be due to the increased neurodegeneration [248]. Nor-
mal CSF 24-OHC concentration is 1.5 ng/mL [249].
Furthermore, it was confirmed that the reduction of
24-OHC was accompanied by the reduction in the
expression of CYP46A1 in postmortem human AD
brains [268]. Although, there has not been a report
on the CSF levels of LCA in patients with AD and
at the same time for 24-OHC levels, the CSF levels
of GLCA and TLCA increased in patients with AD
[271].

Therefore, it may be speculated that at the early
stages of the AD, increased rate of neuron break-
down produces large amounts of 24-OHC in the brain
and as a result CSF levels of 24-OHC increase. How-
ever, the negative feedback of serum high secondary
bile acid levels such as LCA reduce the expression
of CYP46A1 in the brain and hence CSF levels of
24-OHC decrease at the later stages of the AD.

THE INTERACTION OF HYDROPHOBIC
BILE ACIDS WITH TGRS RECEPTORS

Takeda G protein receptor 5 (TGRS) is a
cell-surface G protein coupled receptor, which is
responsive to bile acids [272]. TGRS is expressed
in gastrointestinal tract, on immune cell membranes,
neurons and astrocytes [273]. TGRS plasma mem-
brane localization and responsiveness to extracellular
ligands depends on a long (>9 residues) a-helical
stretch at the C terminus [274]. Bile acids activate
TGRS with different potencies and in the rank order
of LCA>DCA>CDCA>CA [275]. Among all bile
acids, TLCA is the most potent agonist of TGRS
[276]. TLCA has a 3-hydroxyl group which forms
hydrogen bond with Y240 of TGRS. This is essen-
tial for the high activity of TLCA [277]. Bile acids
interact in different modes with TGRS leading to
different cellular responses [277]. For example, tau-
roursodeoxycholic acid (TUDCA) with a 7-hydroxyl
(as well as 3-hydroxyl group) forms a hydrogen bond
with N93333 of TGRS [277]. While LCA with 3-
hydroxyl group (lack of 7-hydroxyl group) forms a
hydrogen bond with Y8932% or N933-33 (depending
on the head-to-tail, or tail-to-head pose in the inter-
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lithocholic acid

Fig. 12. Toxic bile acids such as lithocholic acid activate TGRS in microglia and astrocytes which leads to the flux of Ca?* into these cells.
As a result, the levels of cyclic adenosine monophosphate (cAMP) increase, which not only increases the reactive oxygen species (ROS)
levels, but also leads to activation of CREB and production of pro-inflammatory cytokines (TNFa, IL-183, and IL-6).

action site) of TGRS [278]. Alternatively, toxic bile
acids may transactivate other receptors, such as DC
(deoxycholate) transactivating epidermal growth fac-
tor receptor (EGFR)-ERK1/2 signaling pathway via
TGRS [279], leading to different responses.

What are physiological roles of TGRS in the
brain?

There is a body of evidence that activation of
TGRS by ligands (including bile acids) would reduce
inflammatory, induce anti-inflammatory markers
[280-286], reduced the progression of the disease in
amyotrophic lateral sclerosis [287], and significantly
decreased the levels of TNF-a, IL-13 and IL-6, fol-
lowing injection of AB-4» into the brain [288]. On
the other hand, TGRS stimulation by 53-pregnan-3a-
ol-20-one and 53-pregnan-3a-17a-21-triol-20-one

(both structurally similar to LCA with 3-hydroxyl
groups) are coupled to the elevation of intracellular
Ca’" and the generation of reactive oxygen species
(Fig. 12) in astrocytes and neurons [104]. Further-
more, microglia cell lines showed slightly reduced
inflammation following TGRS activation by betulinic
acid (a 3-hydroxyl group bile acid, but with two
methyl groups at position 4, Supplementary Figure 3)
in the range of 10 uM to 1 mM [286].

Bile acids may promote neurological functions
through TGRS activation. TUDCA improved neu-
rological functions through TGRS5/SIRT3 signaling
pathway after subarachnoid hemorrhage (SAH)
[289]. Also, INT-777 (Supplementary Figure 3)
administration significantly decreased NLRP3-ASC
inflammasome activation in microglia, reduced brain
edema and neuroinflammation, leading to improved
short-term neurobehavioral functions at 24 h after
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SAH [290], and significantly improved Afi_42-
induced cognitive impairment (administered i.c.v.)
[288]. Activating TGRS by INT-777 reduced BBB
permeability and improved neurological functions
through the BRCA1/Sirtl signaling pathway after
middle cerebral artery occlusion [291]. The activa-
tion of TGRS with INT-777 significantly improved
the short-term and long-term neurological deficits,
accompanied by reducing the oxidative stress and
neuronal apoptosis at 24 h after SAH [292]. Oleano-
lic acid is a TGRS agonist [293] and administration
of oleanolic acid to EAE mice reduced the severity of
the disease by reduction of the BBB leakage and low-
ering infiltration of inflammatory cells into the CNS
[294]. TGRS mRNA was downregulated in the cere-
bral cortex of cirrhotic patients dying with hepatic
encephalopathy when compared with the brains from
non-cirrhotic control subjects [104], perhaps due to
increased serum bile acid levels in these patients
[295]. Also, western diet increased brain levels of
DCA, which was followed by reduced expression of
TGRS in the brain [296]. In addition, ammonia [104]
downregulated the expression of TGRS in the brain,
and the brain levels of ammonia significantly increase
in patients with AD [297]. Therefore, toxic metabo-
lites such as bile acids may prevents the benefits of
other bile acids by reducing TGRS expression.

Does TGRS play a role in AD?

AP1-42 in the brain downregulated the expression
of TGRS in the hippocampus [288]. Bile acids acti-
vate TGRS on sensory nerves, stimulating the release
of neuropeptides in the spinal cord that transmit
itch and analgesia [298]. Patients with AD [299] or
dementia [300] experience pruritus.

All the above observations lead to the conclusion
that certain TGRS signaling by bile acids such as
TUDCA and INT-777 is neuroprotective and dimin-
ishes inflammation. However, TGRS expression is
downregulated in the brains of patients with AD, and
toxic bile acids may contribution.

HYDROPHOBIC BILE ACIDS MAY
IMPAIR SONIC HEDGEHOG SIGNALING
PATHWAY IN THE BRAIN

Sonic hedgehog (SHH) is a mammalian glycopro-
tein involved in both during embryonic development
and also post-embryonic tissue regeneration and
repair [301]. The SHH expression increases by age

in the cortex, hippocampus, and cerebellum regions
of rat brains [302]. In addition, SHH signaling reg-
ulates the self-renewal of neuronal stems cell in
the subventricular zone of adult brains [303] that
continuously supply new neurons [304]. SHH is asso-
ciated with cholesterol rich raft-like microdomains
[305]. Lipid rafts represent discontinuous regions
of the plasma membrane that form functional
microdomains [306], which are enriched sterol, sph-
ingolipids, and glycosylphosphatidylinositol-linked
proteins (Fig. 13A) [307]. The SHH signaling
pathway was reduced in 3xTgAD animals [306].
Inhibitors of +y-secretase restore SHH signaling,
which are currently envisaged as tools for the cure of
AD, because they lower A3 levels [308]. The brains
of AD patients show a specific down-regulation of
seladin-1, a protein involved in cholesterol synthe-
sis, and low membrane cholesterol was observed
in hippocampal membranes of ApoE4 (apolipopro-
tein E4) AD cases [309]. As explained in the above,
cholesterol is required for the activity of SHH pro-
tein. The expression of PTCHI was almost missing
in the brains of patients with AD, as well as decrease
in Ptch2 [310]. Interestingly, AB1-42 decreased brain
Ptch-Glil levels, while it elevated SHH expression
[310]. Increased levels of SHH expression were found
in the hippocampus of APP23 mice and AD patients
[310, 311]. These observations indicate that although
SHH levels increase in the brains of patients with
AD, the other components for full SHH signaling
are not available. The early and progressive choliner-
gic deficiency of basal forebrain cholinergic neurons
(BFCNs), characterized by a reduction in acetyl-
choline synthesis, substantially contributes to the
gradual cognitive decline of AD patients [312]. Work
by Yue et al. (2015) showed the important role of
SHH in derivation of embryonic stem cells to BFCNs
[312]. This could highlight that lack of functional
SHH in the brain of patients with AD, which may
prevent derivation of endogenous stem cells in the
brain to BFCNSs.

In the brain, the presence of ROS leads to
autoxidation of cholesterol and production of 7-keto-
cholesterol [313, 314]. CYP27A1(in the brain) [315]
produces 7-keto-27-OHC from 7-keto-cholesterol,
and 7-keto-27-OHC binds cysteine-rich domain of
SMO activating SHH [316]. Interestingly, the lev-
els of 7-keto-cholesterol significantly increase in the
brain of patients with AD [268], suggesting activation
of SHH signaling pathway in AD. However, it was
shown that AB-47 interrupted canonical SHH signal
transduction, leading to distorted primary cilia struc-
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Fig. 13. The possible interference of bile acids (BAs) with the sonic hedgehog (SHH) signaling. A) Under normal condition, SHH protein
interacts with PTCH1, which inhibits smoothened protein (SMO). Upon the activation by the SHH, the SMO forms a complex with oxysterols
like 24(S)-hydroxycholesterol and also is conjugated with cholesterol which leads to movement in the lipid raft and activation of Gli family
proteins (Glil, Gli2, Gli3). Initially the Gli proteins are in complex with SUFU protein, but upon interaction with SMO protein, SUFU is
separated from the Gli family proteins. Then the released Gli family proteins are translocated to the nucleus, where over express SHH target
genes. B) BAs may interfere with SHH signaling by preventing activation of SMO by oxysterols as well as modifications of lipid rafts which

may prevent activation of Gli family proteins.

ture, which are found in hippocampal neurons [317].
On the other hand, reducing SHH activity by pro-
tease nexin-1 helped improving memory functions of
AD transgenic mice (APP/PA1) [318]. Meanwhile,
facilitating the expression (over expressing) of SHH

contributes to neurogenesis [319]. It has been sug-
gested that the deregulation of PTCH1-Glil signaling
in AD leads to the loss of NSCs and glial precursor
cells and consequently decline in cognitive function
[320].
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The above controversial observations may be
explained by the toxic bile acid interventions. Toxic
bile acids like DCA preferentially interact with
disordered membranes and makes them more dis-
ordered [321]. The hypothesis that changes in the
lipid composition of rafts contribute to AD pathol-
ogy has gained considerable support [306]. It was
found that cortical lipid rafts are profoundly affected
in the 3xTgAD mice [306]. Therefore, toxic bile
acids might interfere with SHH signaling, by impos-
ing perturbations into plasma membrane lipid rafts
(Fig. 13B).

LITHOCHOLIC ACID MAY PROMOTE
THE FORMATION OF A3 PLAQUES

Amyloid formation by APi-40, AP26-39, and
AB26-40 can be nucleated-“seeded”-, by peptides
which hold the critical C-terminal residues includ-
ing AB1-42, AB26-42, AB26-43, and ABy-42 [322]. The
key amino acids are isoleucine and alanine [322].
However, both AB1-42 and AR1-49 formed filaments
[323]. Importantly, ABj-42 accelerated the nucle-
ation of AB1-40 [324] with AP trimer sizes of 20 nm
[325]. AB1-42 promoted A deposition, but AR1-49
inhibited it [326-328]. Furthermore, A3 aggregates
induced formation of more AP aggregates [329].
Other metabolites or compounds also can affect the
formation of AP aggregates such as retinola [330],
vitamin D binding protein (vDBP) [331], vitamin
D2 (V-D2) [332], and vitamin D (vitamin D3) [333].
Our molecular modelling studies also suggested that
LCA forms a complex with AB1-49 similar to V-D2,
hence, LCA may also promote the aggregation of
AB1-40. Figure 14 represents the docking performed
between A1-40 taken from NMR structure with PDB
code liyt and vitamin D2 or LCA. The docking was
performed in Autodock vina version 1.1.2. and is
analogous to that performed previously, the chain
selected from docking was that labelled 2, which was
found to resemble most closely that used previously
[194, 195, 332].

Both LCA and vitamin D3 (1,25 (OH);D3) bind
to vitamin D receptor, with LCA having less affinity
[334]. Therefore, LCA may interfere with the bio-
logical benefits of vitamin D3 and could promote
the aggregation of AB. This could have further con-
sequences. In more details, two binding sites have
been identified for vDBP, one for vitamin D and
one for actin [335]. vDBP may also bind bile acids,
because there is more ligand structure flexibility for

Fig. 14. Molecular modelling simulation of docking between LCA
(grey sticks), vitamin D2 (cyan lines) and ABj-49, demonstrating
possible promotion of AR plaque formation by LCA.

vDBP compared to VDR [336]. Furthermore, vita-
min D2 metabolites bind human vDBP with less
affinity than vitamin D3 metabolites [337]. Hence,
there may be other metabolites such as LCA that
bind vDBP and reduce the efficiency of vDBP to
perform its biological tasks in clearing A3 plaques.
Interestingly, perhaps as a compensatory mechanism,
serum and CSF levels of vDBP increase in AD [338].
More precisely, the levels of vDBP increase from
0.6 £ 0.0 pg/ml in control patients to 1.2 + 0.1 pg/ml
in patients with AD [339]. However, this may not
be high enough, then drug delivery systems such
as PLGA nanoparticles may be employed to deliver
vDBP to the brain to reduce accumulation of AR in the
brain [340]. Therefore, if the functionality of vDBP
is restored by reducing serum levels of LCA, then
therapeutic benefits such as improvements may be
observed in cognitive functions of patients with AD.
It is important to start early treatment, as at the late
stages, the brain is too compromised to take benefits
from the drug [341].

THERAPEUTIC APPROACHES

Administration of TUDCA at the dose of
750 mg/day is safe in patients with liver cirrhosis
[342]. This did not change serum levels of litho-
cholic acid, but decreased serum levels of CDCA and
cholic acid at doses of 500 mg/day or higher [343].
Furthermore, TUDCA improved glucose homeosta-
sis in streptozotocin-induced mouse AD model [344].
Certain bile acids have anti-inflammatory and anti-
oxidative activities such as TUDCA and TCA [345].
Howeyver, it should be noted that administration of



Table 1
List of drugs that can reduce serum bile acids including LCA
Drug Dose/day Mechanism of action/ Duration/ Remarks Limitations Ref
Days-weeks
Cholestyramine 16 g Bile acid binding resin 3 weeks Decreases serum levels of Unpleasant taste, diarrhea, [347, 361]
lithocholic acid. The bloating, Vitamin K
change is not large deficiency
UDCA 900 mg Stimulation of biliary 15 days Reduced serum LCA from Not observed, rare mild [362-365]
secretion of bile 20 wmol/L to 3 wmol/L diarrhea
Acids (normal level is 1 wmol/L)
Colestipol 75¢g Bile acid sequestrant 6 days Reduced serum bile acids Unpleasant taste [366, 367]
Vancomycin 15¢g Non-absorbable antibiotic 7 days Serum secondary bile acids Diarrhea [368]
affecting intestinal decreased
microbiota
Atrovastatin 40 mg Activation of pregnane X 12 weeks Reduce serum GLCA from Increased serum alanine [369, 370]
nuclear receptors 42 ng/ml to 34 ng/ml aminotransferase levels
(liver damage)
Dexamethasone 12 mg By reducing serum estriol and 10 days (oral) Reduced serum bile acids Suppression of [371, 372]
estradiol levels and their pituitary-adrenal axis
effects on the liver
S-adenosyl-L-methionine 800 mg By blocking the effects of 10 days (i.v.) Reduced total serum bile No side effects [373]
estrogen on the liver acids
Elobixibat 10 mg SLC10A2 inhibitor 14 days Potential reduction of serum No serious adverse events, [355, 357, 374, 375]
LCA due to shorter some or mild GI
secondary bile acid time in discomforts
the intestine
Activated charcoal 150 g Preventing bile acid 8 days Reduced serum bile acids Preventing absorption of key [376, 377]
enterohepatic recirculation nutrients such as vitamin K,
and alarming black stool!
Obeticholic acid 5-10 mg Selective farnesoid X 12 months Significantly reduced plasma  Pruritus [346, 378]
receptor agonist bile acid levels including
C4
Maralixibat 20 mg Apical sodium dependent bile 13 weeks Reduced serum bile acids Gastrointestinal disorder [379]
acid competitive inhibitor from 52 ng/ml to 33 ng/ml (abdominal pain)
GSK2330672 Starting with Ileal bile acid transporter 3 days at 90 mg Reduced serum bile levels by ~ Diarrhea [380]

90 mg then 180
mg

inhibitor

then increase to
180 mg until
day 14

50% (from 30 puM to
15 uM)
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Colesevelam

Rifampicin

Guar gum

Cilofexor

NGM282

Bezafibrate

MBX-8025

A4250

Phenobarbitone

375¢

600 mg

15¢g

100 mg

3 mg injection

400 mg/day plus
UDCA
(600 mg/day)

200 mg

3 mg

3mg/kg

Anion-exchange resin with
strong bile acid-binding
capacity

Hydroxylation of
hydrophobic bile acids and
reducing their cytotoxicity

Binds with bile acids in the
intestinal lumen

Non-bile acid FXR agonist

FGF-19 mimetics

PPAR agonist

PPARo agonist

Apical sodium dependent bile
acid transporter inhibitor

Hepatic smooth endoplasmic
reticulum enhancement, an
increase in hepatic
cytochrome P-450 content

3 weeks

1-2 weeks

At least 10 days

12 weeks

12 weeks

3 months

12 weeks

1 week

2 weeks

Reduced total serum bile
acids from 155 pmol/L to
140 pmol/L.

Reduced total and conjugated
bile acids

Prevented increase of serum
bile acids levels

Reduced primary and
secondary serum bile acids
by 50% and 40%,
respectively

Significantly reduced total
serum bile acids
(conjugated bile acids and
DCA significantly reduced,
LCA was also reduced but
not significantly)

Reduced serum bile acids
including LCA (did not
reach statistical
significance)

Reduced serum C4 and bile
acid levels

Reduced serum bile acids
Reduced serum bile acids

(did not reach statistical
significance)

Mild stool change

No adverse effects

Mild abdominal distress

Adbvert events (mainly
pruritus) were similar to
placebo

Gastrointestinal symptoms
such as diarrhea and
injection site reactions

Adverse events were not
reported when bezafibrate
used with UCA, however,
fibrates on their own may
cause hepatotoxicity,
increased risk of
developing gallbladder
disease and
venothromboembolic
disease (pulmonary
embolism)

Frequent adverse events were

pruritus, diarrhea, and
nausea
Abdominal symptoms

including increased bowel

movements
Not reported

[381]

[382, 383]

[384]

[385, 386]

[387]

[388-390]

[391]

[392]

[393]
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bile acids such as obeticholic acid (Supplementary
Figure 3) comes with pruritus, which is common
adverse event with FXR agonists [346]. Admin-
istering cholestyramine 16 g/day for three weeks
decreased serum levels of lithocholic acid, but gener-
ally the change was not significant [347]. However,
the limitations of the therapy are: unpleasant taste,
diarrhea, and bloating. As 7a-hydroxylation by
CYP7A is necessary for the conversion of cholesterol
to bile acid, cholestyramine is an inducer of CYP7A,
which is also active against 27-hydroxycholesterol.
This is in addition to CYP7B [348]. Therefore,
administration of cholestyramine will lead to more
acidic pathway, and hence more CDCA, and poten-
tially more LCA, and this could be an explanation
why administration of cholestyramine does not sig-
nificantly reduce serum LCA levels [81]. On the other
hand, the probiotics cocktail VLS#3 could promote
excretion of bile acids [349] and reduce LCA levels
in AD patients (by increased bowel movement).

Bile acid therapy will be useful when serum C24
bile acid levels are low. Bile acid therapy will help
absorption of lipids and vitamins [20]. Oral admin-
istration of non-absorbable antibiotics (vancomycin
and polymyxin B) reduced amounts of LCA and
DCA in the feces of mice after 5 days. This was
due to the dysbiosis induced by the antibiotics. It
should be noted that reduced levels of LCA and DCA
changed the expression of hepatic enzymes such as
CYP2b10, CYP3a25, and CYP51al, which could
affect metabolism of other drugs taken by the patient
[350]. Can treatment with CDCA increase serum lev-
els of LCA? There is a possibility, as treatment with
DCA increases the amounts of DCA in the bile [351].
Therefore, treatment with CDCA may increase the
content of this bile acids in the bile and consequently
amounts of LCA in the blood. Sadeghi et al. (2020)
also found that bile acid therapy by CA or sodium
deoxycholate reduced acetylcholinesterase activity in
the hippocampus of AD rat model, and this therapy
also reduced the AR load in the brain of the animal
models [352].

Table 1 presents a list of drugs that have been
administered in different diseases such as intrahepatic
cholestasis pregnancy and chronic idiopathic consti-
pation to reduce serum levels of bile acids or where
reduction of serum bile acids occurred unintention-
ally. Patients with AD may suffer from constipation,
and this could be due to dysregulation of mAChr
signaling pathways and ER stress response [353].
Therefore, treatment with drugs such as elobixibat
(an inhibitor of ileal bile acid transporter [354]) may

reduce the serum levels of LCA due to increased
bowel movement, as it is suggested that constipa-
tion increases LCA serum levels due to greater LCA
reabsorption [355]. High bile acid levels in feces are
associated with diarrhea [356]. Importantly, delayed
colon transit elevates serum C4 levels, indicating
altered/increased bile acid synthesis and further ele-
vation of serum LCA levels [357]. Interestingly,
serum levels of LCA decreased below the detection
level by applying transcutaneous neuromodulation
[355]. In this method, electrical stimulation was
delivered noninvasively via surface electrodes placed
at both the acupoint ST36 and the posterior tibial
nerve using an external watch-size stimulator. As an
alternative method, total plasma exchange reduced
serum bile acids by replacing the patient’s plasma
volume with 5% albumin fluid [358]. This is known
as therapeutic plasma exchange which is a procedure
that the patient’s blood is passed through an apheresis
machine. The filtered plasma is removed and dis-
carded with reinfusion of red blood cells along with
replacement fluid such as plasma or albumin in to the
patient [359].

Elafibranor (GFT505) is agonist of PPARa /o
[360], and has been investigated in patients with pri-
mary biliary cholangitis in a phase II clinical trial
(NCTO03124108). Change in serum bile acids was a
secondary outcome measure, but the report is due for
publication. Elafibranor may reduce serum bile acid
levels, as GENFIT reported reduction of serum C4
levels in the patients at the dose of 80 or 120 mg/day
for 12 weeks [360].

CONCLUSIONS

Recent clinical studies have shown that serum
bile acid levels increase in patients with AD includ-
ing toxic bile acids such as LCA, perhaps due
to the peroxisomal dysfunction. Hydrophobic bile
acids such as DCA alter the permeability of the
BBB to molecules that normally do not cross the
BBB. Hydrophobic bile acids activate FXR signal-
ing in the brain, which leads to recued brain levels
of hydrophilic bile acids. Hydrophobic bile acids
block NMDARs, with LCA being the most potent.
NMDARs are crucial for the formation of tempo-
ral memory. Molecular modelling suggests that LCA
has the ability to form a complex with E2 receptors,
but without physiological actions, preventing estro-
gen from exerting its role in cognitive function and
memory. LCA may reduce the expression of ABCAI,
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promote the formation of A fibrils, leading to accu-
mulation of A3 plaques in the brain at the early stages
of AD. The plasma or serum levels of 24-OHC were
significantly lower in patients with AD and elevated
serum bile acids levels have the ability to reduce
synthesis of 24-OHC via activation of FXR. Bile
acids have the ability of activating TGRS and leading
to neuroprotection and diminishing of inflammation.
However, the expression of TGRS decreases in the
brains of patients with AD, with potential contribu-
tions from toxic bile acids. Therefore, the benefits
from elevated serum bile acids may not be observed.
Toxic bile acids may inhibit the activation of the
SHH, by preventing the interaction of potent endoge-
nous oxysterols with SMO protein. There are several
approaches to reduce serum bile acids such as the
use of transcutaneous neuromodulation, administra-
tion of cholestyramine (16 g/day), or obeticholic acid
(5-10 mg/day).

FUTURE DIRECTIONS

Further studies should be conducted aiming to
reduce serum levels of bile acids in patients with AD.
These studies should include evaluation of the clinical
outcomes, along the line of that undertaken by Mark-
steiner et al. (2018) [39], i.e., measuring the serum
bile acids of patients with AD and recording basic
cognitive scores (e.g., MMSE) at the beginning of
trial. The intervention would be administering a ther-
apeutic agent to reduce serum bile acids for a period of
six months, followed by cognitive assessment scores,
in parallel with serial measurements of serum bile
acids. An alternative approach could be monitoring
serum bile acid levels of individuals regularly, and
establish association between serum bile acid levels
and cognitive function, given link between secondary
bile acids in the gut and brain [394]. Another direction
would be to promote exercise in elderly subjects and
monitoring serum bile acids and cognitive function.
It has been shown that recreational physical activ-
ity is inversely associated with total fecal bile acid
concentrations [395], and exercise is also linked to
the reduction of total serum bile acid levels [396].
Optimizing the diet also could be another safe and
inexpensive means of further investigation in patients
with AD, as diet affects serum bile acid levels (vegans
having higher serum bile acids compared to omni-
vores) [397].
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