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Abstract.

Background: Episodic memory decline is a hallmark of Alzheimer’s disease (AD). Subjective memory complaints (SMCs)
may represent one of the earliest signs of impending cognitive decline. The degree to which self- or partner-reported SMCs
predict cognitive change remains unclear.

Objective: We aimed to evaluate the relationship between self- and partner-reported SMCs, objective cognitive performance,
AD biomarkers, and risk of future decline in a well-characterized longitudinal memory center cohort. We also evaluated
whether study partner characteristics influence reports of SMCs.

Methods: 758 participants and 690 study partners were recruited from the Penn Alzheimer’s Disease Research Center Clinical
Core. Participants included those with Normal Cognition, Mild Cognitive Impairment, and AD. SMCs were measured using
the Prospective and Retrospective Memory Questionnaire (PRMQ), and were evaluated for their association with cognition,
genetic, plasma, and neuroimaging biomarkers of AD, cognitive and functional decline, and diagnostic progression over an
average of four years.
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Results: We found that partner-reported SMCs were more consistent with cognitive test performance and increasing symptom
severity than self-reported SMCs. Partner-reported SMCs showed stronger correlations with AD-associated brain atrophy,
plasma biomarkers of neurodegeneration, and longitudinal cognitive and functional decline. A 10-point increase on base-
line PRMQ increased the annual risk of diagnostic progression by approximately 70%. Study partner demographics and
relationship to participants influenced reports of SMCs in AD participants only.

Conclusion: Partner-reported SMCs, using the PRMQ, have a stronger relationship with the neuroanatomic and cognitive
changes associated with AD than patient-reported SMCs. Further work is needed to evaluate whether SMCs could be used
to screen for future decline.

Keywords: Alzheimer’s disease, brain atrophy, memory decline, mild cognitive impairment, proxy, self-report, subjective

memory complaints

INTRODUCTION

Alzheimer’s disease (AD) is the most common
form of dementia [1]. While AD is predominantly
a disease of the aging population, it is now widely
accepted that the molecular pathology underlying dis-
ease development begins decades before cognitive
and functional decline becomes apparent [2]. Dis-
cerning which individuals are at-risk for clinical AD
has proven to be challenging [3, 4] but remains a
critical pursuit. Early detection and accurate prognos-
tication are important for patients and their families
to make appropriate preparations and to ensure they
receive the needed support as symptoms emerge and
impact day to day function [5]. Additionally, iden-
tification of at-risk individuals would provide an
appropriate population for secondary prevention tri-
als and identify individuals who would benefit from
treatment with potential disease-modifying thera-
pies [6].

In an effort to identify additional tools to inform
early detection of cognitive change, multiple sources
of information are collected. One such source is
subjective memory complaints (SMCs), which are
an individual’s perception of their own or a loved
one’s cognitive impairment. It has been suggested
that SMCs may precede the onset of objective mem-
ory impairment [7-9]. Some studies have shown
that an individual’s subjective experience of their
impairment may be more sensitive to AD-related
neurodegenerative changes than certain neurocog-
nitive batteries, particularly early on in the disease
course. For this reason, much attention has focused
on characterizing the relationship between SMCs and
cognitive decline in a variety of populations and clin-
ical settings to determine whether SMCs can serve
as a screening tool for individuals at risk for AD
[10-12].

Thus far, the literature on the utility of self-reported
SMC:s as a potential dementia screening tool has been
largely conflicting [13-20]. This is, in part, due to the
heterogeneity in the population of individuals pre-
senting with SMCs. Many factors have since been
reported to influence the perception of one’s own
impairment, such as the context in which SMCs are
ascertained (community versus clinical), the structure
of the SMC questionnaire [21], co-morbid psychiatric
symptoms [13, 20, 22, 23], and individual differ-
ences in personality traits [24, 25]. These findings
have raised questions about how SMCs should be
interpreted in clinical and research settings.

To supplement patient-reported information, clin-
icians often rely on additional input from a proxy or
partner, typically a family member or close friend,
to assess a patient’s clinical and functional status.
In contrast to self-reported SMCs, partner reports
of memory impairment have been more reliable in
assessing objective impairment and predicting future
decline, albeit still somewhat inconsistently [19,
26, 27]. As is the case for self-report, individual
characteristics of partners may also impact patterns
of reporting about a patient’s cognitive and func-
tional status; however, very few studies to-date have
investigated such relationships [28, 29]. A deeper
understanding of the variables that impact partner
reports will be critical to make effective use of part-
ner reporting tools in both the clinical and research
settings.

Beyond these subjective reports, it is also impor-
tant to demonstrate associations between SMCs,
cognitive changes, and AD biomarkers. Prior work
has shown that self-reported SMCs are associated
with greater cerebral plaque burden on amyloid PET
[30-32] as well as hippocampal volume loss [33-35].
Other novel imaging biomarkers have yet to be stud-
ied in relation to SMCs. For instance, more granular



L. Zuroff et al. / Subjective Memory Complaints and Cognition 413

medial temporal lobe subregional measures that may
enhance sensitivity to the earliest neurodegenerative
changes of AD [36, 37] or pattern analysis algo-
rithms of structural MRI data may be employed to
describe the deviation of an individual’s brain struc-
ture from typical brain aging trajectories. The Spatial
Pattern of Abnormality for Recognition of Early
Alzheimer’s disease index, known as SPARE-AD, is
derived from such high dimensional data and indi-
cates whether participants possess spatial patterns
of brain atrophy observed in typical AD [38—40].
The SPARE-AD index has been shown to differ-
entiate individuals with normal cognition and MCI
[41] as well as predict progression from normal cog-
nition to MCI [38, 42] and from MCI to AD [39,
42]. Similarly, the SPARE-BA (BA =brain age) index
measures spatial patterns of brain atrophy associ-
ated with aging in cognitively normal individuals and
can be used as a biomarker for a person’s brain age
[43—45]. In addition to neuroimaging studies, blood-
based biomarkers of AD are becoming increasingly
attractive due to their low cost and ease of use. Neu-
rofilament light chain (NfL), glial fibrillary acidic
protein (GFAP), and phosphorylated tau at threo-
nine 181 (p-taul81) are brain-derived molecules that,
when detected in the serum or plasma, are thought
to indicate ongoing inflammation and damage in the
central nervous system [46]. Elevated plasma concen-
trations of all three biomarkers have been associated
with increased risk of developing AD and cognitive
impairment [46—52], and are thus intriguing biomark-
ers in this disease context. Further work is needed to
more comprehensively characterize how SMCs relate
to structural and molecular neuroimaging biomark-
ers as well as more novel blood-based biomarkers in
those at risk for cognitive decline due to AD or due
to normal aging.

In the present study, we aimed to address the
gaps in the literature on SMCs and cognition using
a well-characterized longitudinal cohort of individ-
uals across the cognitive spectrum and their study
partners. First, we aimed to clarify the relationship
between baseline self- and partner-reported SMCs
and objective measures of cognitive performance,
depression, and imaging and genetic AD biomarkers.
Additionally, we investigated how partner character-
istics, including the nature of their relationship to the
study participant, influence their reports of the part-
ner’s memory impairment. Finally, we investigated
whether baseline self- or partner-reported SMCs
could predict cognitive and functional decline as well
as diagnostic progression over the study period.

MATERIALS AND METHODS
Participants and study design

Participants were selected from the Penn Mem-
ory Center and the Penn Alzheimer’s Disease
Research Center (ADRC) Clinical Core Integrated
Neurodegenerative Disease Database [53], spanning
2009-2019 in accordance with the University of
Pennsylvania Institutional Review Board. Data from
758 cohort participants and 690 study partners were
included. All participants completed a questionnaire
of SMCs at baseline and were classified as hav-
ing normal cognition (NC; N=331), mild cognitive
impairment (MCI; N =200), or Alzheimer’s disease
(AD; N=227) by expert clinical consensus diagnosis
as previously described [54]. Annual study visits for
the cohort consisted of medical history, physical and
neurological examinations, and neuropsychological
testing. The accompanying study partner was asked
to provide their basic demographic data, details about
their relationship to the participant, and assessment
of the participant’s functional status and cognition,
described in greater detail below. The majority of
participants were followed annually, and an updated
consensus diagnosis was established on a yearly basis
upon careful review of the most recent data.

Subjective memory complaints

SMCs were characterized using the Prospective
Retrospective Memory Questionnaire (PRMQ) [55,
56]. The PRMQ is a 16-item questionnaire that asks
questions such as, “Do you forget something that
you were told a few minutes before?”. The subject
is asked to rate how frequently these memory lapses
occur on a scale of 1 (“Never”) to 5 (“Very Often”),
with a total minimum score of 16 and maximum
of 80. Higher PRMQ scores indicate more SMCs.
The study partner (proxy) was asked to complete an
analogous questionnaire about the perceived memory
impairment in the study participant. To evaluate dis-
crepancies in self- and study partner-reported SMCs,
aPRMAQ difference score was calculated (PRMQ Self
— PRMQ Proxy) such that positive scores indicate
more reported impairment by the subject compared
to the study partner.

Neuropsychological assessment

Over the course of the study period (2009-2019),
the ADRC Clinical Cohort completed the National
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Alzheimer’s Coordinating Center (NACC) Uniform
Dataset (UDS) Version 2 [57] from 2009-2015, and
the UDS Version 3 [58] after 2015. Both batteries
assess global cognition, processing speed, executive
function, episodic memory, and verbal and category
fluency, all of which were included in the analyses.
Howeyver, the batteries differ in some of the measures
used to assess these cognitive domains (Supplemen-
tary Table 1). There were strong correlations between
all pairs of new and prior tests in the two UDS ver-
sions [59]. Nonetheless, to account for differences
in domain-specific measures employed by the two
batteries (e.g., Logical Memory from Wechsler Mem-
ory Scale in UDS2 and the Craft Story in UDS3),
z-scores were calculated for each test within the
UDS Versions 2 and 3, normalized to the NC group.
For measures of global cognition, which include the
Mini-Mental State Examination (MMSE) [60] and
the Montreal Cognitive Assessment (MoCA) [61], all
MoCA scores were converted to MMSE equivalent
scores using a previously published MoCA to MMSE
conversion algorithm [54].

Affect and function

Participants completed the Geriatric Depression
Scale (GDS) [62], a self-report measure of level of
depressive symptoms. Study partners completed the
Functional Rating Scale (FRS) [63], a measure of the
participant’s day to day functional abilities. Briefly,
the FRS, which was previously named the Demen-
tia Severity Rating Scale, asks the study partner to
rate the participant’s performance in 11 categories
of functioning, including memory, orientation, lan-
guage, judgment, social interaction, home activities,
eating, incontinence and mobility. Each category
presents a statement indicating a range in behav-
ior from normal (independent) to severely impaired
(dependent) functional abilities. Scores range from
0 to 51 points, with higher scores indicating greater
impairment.

Study partner data

The study partner provided demographic informa-
tion, including their age, sex, race, ethnicity, and
highest level of education achieved. On the FRS
questionnaire described above, the study partner is
also asked to define the nature of their relationship
with the study participant and the frequency of con-
tact, which includes both in-person visits and phone
calls. The study partner relationship is categorized

as Spouse/Partner, Child, Sibling, Other Relative, or
Friend/Neighbor. Frequency of contact is categorized
as <1 day per week, 2 days per week, 3-4 days per
week, or 5 or more days per week.

Genetic, plasma, and neuroimaging biomarkers

The majority of study participants (N = 758) under-
went APOE genotyping. Participants possessing
either one or two copies of the APOE4 allele were
considered to be APOE4 positive, while all other
genotypes were considered negative.

For a subset of patients, data on plasma concentra-
tions of NfL, GFAP, and p-taul81 were available. See
Supplementary Table 2 for demographics of this sub-
cohort. Briefly, participants were recruited, and whole
blood samples were collected in EDTA-tubes, spun-
down, and stored at —80°C. NfL and p-taul81 were
analyzed in plasma samples on the SiMoA platform,
as previously described [64, 65]. Plasma samples
were analyzed in duplicate for GFAP using the Quan-
terix Simoa Discovery kit reagents on the Quanterix
HD-X automated immunoassay platform [66].

For a subset of patients, neuroimaging data, includ-
ing amyloid PET status and structural MRI measures,
were also collected. Demographic and disease dis-
tribution data for these biomarker sub-groups are
provided in the Supplementary Table 2. Amyloid
status was used to define subgroup analyses in the
association of SMCs with cognitive and functional
decline in NC and MCI participants only. Participants
(N=121) were stratified into amyloid positive and
negative individuals based on expert visual interpreta-
tion of amyloid positron emission tomography (PET)
scans. PET scans were obtained within five years of
clinical testing. Several amyloid PET tracers were
used with scanning performed according to manu-
facturer’s recommendations: '8 F-florbetapir (N =26,
370 MBq % 20%, 45-min uptake time, 10-min scan),
I8F_florbetaben (N=106, 300 MBq £ 20%, 90-min
uptake time, 20-min scan), and BE_flutametamol
(N =2, 185 MBq, 90-min uptake time, 20-min scan).

Additionally, we assessed the relationship between
SMCs and medial temporal lobe (MTL) subregion
volumes (N=224) in NC and MCI participants
only, as AD participants are already known to har-
bor significant atrophy in the MTL region [36].
All MRIs were obtained within twelve months of
clinical testing. Cross-sectional MTL subregion mea-
sures were obtained from 0.8 mm? T1-MRI using
the automated segmentation of hippocampal sub-
fields (ASHS)-T1 pipeline, as previously described
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[36, 37]. All automated segmentations were visu-
ally checked and edited, if necessary. The following
regions were included in this analysis: anterior hip-
pocampus, posterior hippocampus, entorhinal cortex
(ERC), Brodmann Area (BA) 35, BA36, and parahip-
pocampal cortex (PHC). We computed volume of
anterior/posterior hippocampus directly from auto-
matic segmentation. For the MTL cortical subregions
(ERC, BA35, BA36, and PHC), a graph-based multi-
template thickness analysis pipeline was applied to
the automatic segmentation to derive thickness of
each subregion [37, 67, 68]. We obtained thickness
measures for the cortical subregions because it is
less sensitive to segmentation errors of subregion
boundaries. Left and right hemisphere were averaged.
Intracranial volume (ICV) was also measured using
ASHS-T1.

A subset of participants (N = 222) was examined to
evaluate whether SMCs were associated with spatial
patterns of brain atrophy indicative of advanced brain
age (SPARE-BA index) or AD (SPARE-AD index)
[38, 40, 43]. Both the SPARE-BA and SPARE-AD
indices were generated using machine learning meth-
ods described previously [38, 40, 69]. Briefly, the
SPARE-AD index is derived from a support vector
machine classifier trained for optimal differentiation
of cognitively normal individuals and age-matched
patients with AD [39]. The SPARE-AD index sum-
marizes the high dimensional data with a single score,
wherein higher, more positive scores indicate greater
AD-like atrophy and lower, more negative scores
indicate greater similarity to normal controls. The
SPARE-BA index was calculated using support vec-
tor regression to predict brain age from MRI scans,
which can then be used to evaluated participants’
advanced brain aging based on the patterns of brain
atrophy [43, 45]. A Brain Age Gap was calculated for
each subject (predicted age — chronologic age), such
that positive scores indicate more advanced brain
aging, while negative scores indicate more resilient
brain aging.

Statistical analyses

All univariate analyses were performed using
either Pearson X2, Wilcoxon Rank-Sum, or Kruskal-
Wallis test with Dunn’s post-test, which accounts
for multiple comparisons. These analyses were
employed to evaluate differences in SMCs across
diagnostic categories, across study partner rela-
tionships, and between those with or without the
presence of particular AD biomarkers. To evaluate the

relationships between SMCs, cognitive performance,
and depressive symptoms, either partial correla-
tions or linear regressions were calculated with age,
sex, race, and education included as covariates.
GDS scores were also included as a covariate for
associations between SMCs and cognition. To eval-
uate whether SMCs were associated with plasma
biomarker concentration, MTL volumes/thickness,
SPARE-AD and SPARE-BA, multivariate linear
regressions were performed with plasma biomarker
concentration (NfL, GFAP, or p-taul81), MTL region
volume/thickness, SPARE-AD index, or Brain Age
Gap (SPARE-BA) as the dependent variables and
with SMCs, chronologic age, sex, race, and education
as covariates. For analyses of hippocampal volumes,
ICV was also included as a covariate. Because we
were interested in whether SMCs could predict devel-
opment of structural brain changes indicative of
AD-related neurodegeneration, analyses with neu-
roimaging data were performed in the NC and MCI
group only.

To evaluate the effects of baseline SMCs on change
in global cognition (MMSE) and function (FRS),
mixed linear regression models were performed with
the participant as the hierarchical variable to allow
for intra-individual correlation. The mixed-effects
model accounted for the varying number of visits and
time between visits. A maximum follow-up length of
four years was chosen to increase statistical power.
Separate models were run to predict the effect of
self-reported SMCs and partner-reported SMCs on
cognitive and functional decline. Only participants
with at least one follow-up visit were included in
this analysis. For modeling of functional decline,
follow up FRS scores were included if the question-
naire was completed by the same study partner at
all time-points to account for inter-individual dif-
ferences in reporting. The dependent variables in
each model were either MMSE or FRS scores at
each visit. The following independent variables were
included: baseline PRMQ scores (Self or Proxy), time
(years from baseline), and, separately, the interac-
tion of these two variables (PRMQ x time). Fixed
effects demographic and clinical variables included:
age at baseline, sex, race, education, and baseline
MMSE or FRS scores depending on the model. The
Bayesian information criterion (BIC) was used to
choose the most appropriate random effects for the
model (e.g., random intercept versus random inter-
cept and random slope). Backward selection of fixed
effects was used to optimize each model. Only NC
and MCI participants were included in these analyses
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Table 1
Participant Demographic and Clinical Variables by Diagnostic Category
Total Cohort NC MCI AD
(N=758) (N=331) (N=200) (N=227)
Age, Mean (SD)** 73.2 (8.5) 71.6 (8.6) 73.1(7.9) 75.7 (8.3)
Sex, (% Female)P* 61.7% 70.0% 47.5% 62.11%
Race, (%)>*
White 72.4% 61.3% 79.2% 82.7%
Black 25.7% 36.6% 19.8% 15.1%
Other 1.9% 2.1% 1.0% 2.2%
Education, Mean (SD)** 15.5 (3.0) 15.8 (2.7) 15.8 (3.0) 14.7 (3.1)
MMSE, Mean (SD)** 25.9 (4.5) 29.0 (1.1) 26.9 (2.4) 21.1 (4.6)
FRS, Mean (SD)** 6.7 (7.4) 0.53 (1.3) 5.3(3.9) 14.1 (6.6)

Amyloid PET+, N (%)

22/83 (26.5%)

30/51 (58.5%) 13/14 (92.9%)

AD, Alzheimer’s disease; FRS, Functional Rating Scale; MCI, mild cognitive impairment; MMSE, Mini-Mental
State Examination; NC, normal cognition; PET, positron emission tomography. Demographic variables were com-
pared across diagnostic groups using *Kruskal-Wallis test with Dunn’s post-test, PPearson’s chi-squared test. All
comparisons across diagnostic groups were statistically significant with a p-value <0.001, denoted by*.

given our clinical interest in predicting future devel-
opment of AD-associated cognitive and functional
impairment.

To evaluate the effect of baseline SMCs on risk of
disease progression, Cox proportional hazards mod-
els were used. Disease progression was considered a
change in diagnosis from NC to MCI/AD or a change
in diagnosis from MCI to AD. Predictor variables of
interest were self- and partner-reported SMCs as mea-
sured by the PRMQ as well as item 10 on the GDS
short form [62], a dichotomous yes/no question: “Do
you feel that you have more problems with memory
than most?”. GDS item 10 was included in a separate
model as a measure of self-reported SMCs relative
to peers because such relative measures have been
shown to be a more sensitive predictor of cognition
and cognitive change [21, 70] and is not explicitly
evaluated in the PRMQ. Covariates included were
age, sex, race, education and baseline MMSE. Back-
ward selection of covariates was then used to optimize
the model. All statistical analyses were performed in
STATA, and statistical significance was defined as an
alpha level less than 0.05.

RESULTS
Farticipant characteristics

A total of 758 participants were included in this
study. Demographic and neuropsychological charac-
teristics of the total cohort and individuals within each
diagnostic group are summarized in Table 1. Overall,
this cohort was comprised of predominantly White
(72% White; 26% Black; 2% other) and highly edu-
cated individuals (Mean=15.5 years of education,

SD =3.0). There were significant differences in all
demographic and clinical variables between diag-
nostic groups. As expected, age increased, global
cognition decreased, and functional independence
decreased with greater disease severity (p <0.0001).
Women were over-represented in the NC (70.0%)
and AD (62.1%) groups, while sex was more evenly
distributed in the MCI group (47.5% women). Race
also differed between diagnostic categories, with
an increasing proportion of White participants with
greater disease severity (p <0.0001). Education was
also significantly lower in the AD group as compared
to the NC and MCI groups (p<0.0001). Analyses
involving genetic and imaging biomarkers included
a smaller subset of this cohort. Demographic and
clinical variables did not differ substantially between
the larger cohort and subset cohorts, and results of
the latter are summarized in Supplementary Table 2.
Due to differences in demographics between each of
the diagnostic groups, demographic variables were
included as covariates in subsequent multivariate
analyses.

Study partner characteristics

Demographic characteristics of study partners
(N=690) are summarized in Table 2. The study
partner cohort was similar to that of the study par-
ticipants. They were predominantly White (67.7%)
and highly educated (M = 15.7 years, SD =4.8 years).
Significant differences in study partner demographics
between diagnostic categories was also observed in
this cohort. Study partners reporting on participants
with MCI and AD tended to be older (p <0.0001) and
a higher proportion were White compared to the NC
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Table 2
Study Partner Characteristics by Diagnostic Category
Total Cohort NC MCI AD
(N=690) (N=291) (N=183) (N=216)
Age, Mean (SD)*** 62.9 (14.2) 59.8 (14.7) 65.8 (12.0) 64.7 (14.4)
Sex, (% Female)® 62.41% 61.36% 66.67% 60.26%
Race (%)P-**

White 67.7% 50.3% 76.3% 82.3%
Black 29.2% 45.8% 21.2% 15.3%
Education, Mean (SD)* 15.7 (4.8) 16.1 (6.9) 15.5(2.8) 15.5 (2.6)

Relationship, N (%)P-**
Spouse 382 (55.4%) 124 (42.6%) 131 (71.6%) 127 (58.8%)
Child 213 (30.9%) 106 (36.4%) 31 (16.9%) 76 (35.2%)
Sibling 32 (4.6%) 19 (6.5%) 6 (3.3%) 7(3.2%)
Other relative 20 (2.9%) 10 (3.4%) 8 (4.4%) 2 (0.9%)
Friend/Neighbor 43 (6.2%) 32 (11.0%) 7 (3.8%) 4 (1.9%)
Contact Amount, N (%)°*
<1 time/week 57 (8.2%) 34 (11.7%) 8 (4.4%) 15 (6.9%)
1 time/week 52 (7.5%) 31 (10.7%) 10 (5.5%) 11 (5.0%)
2 times/week 28 (4.1%) 15 (5.2%) 9 (5.0%) 4 (1.8%)
3—4 times/week 59 (8.6%) 32 (11.0%) 12 (6.6%) 15 (6.9%)

5+ times/week 494 (71.6%)

178 (61.4%)

143 (78.6%) 173 (79.4%)

AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal cognition. Demographic variables were
compared across diagnostic groups using *Kruskal-Wallis test with Dunn’s post-test, PPearson’s chi-squared test.
Statistically significant relationships are denoted as follows: *p <0.01, **p <0.001.

group (p<0.001). Study partner sex and education
did not differ between diagnostic categories.

In terms of the relationship to the study partici-
pant, the largest proportion of study partners were
spouses/partners followed by children. Due to the low
number of study partners who identified as siblings,
other relatives, and friends/neighbors in the total
cohort (< 15%), these study partners were grouped
together in an “other relationship” category. Spouse
study partners were more frequent in the MCI group
than in the AD group (72.1% in MCI versus 60.8% in
AD, respectively, p <0.031), while children as study
partners were more common in the AD group than in
the MCI group (17.0% in MCI versus 33.7% in AD,
p=0.001).

Contact between the participant and study partner
included both in-person visits and phone calls. Across
diagnostic groups, 70% were in almost everyday con-
tact with the participants (5+ days/week), although a
greater proportion of almost everyday contact was
seen in MCI and AD groups (77%, p <0.001), which
may be reflective of the greater proportion of spouse
study partners in these groups. Additionally, in the
NC group, there was a larger proportion of study
partners (13%) that had very infrequent contact with
study participants (< 1 day/week), compared to 4.1%
and 7.7% in MCI and AD, respectively (p =0.008).

SMC:s by diagnostic category

Self- and partner-reported SMCs were compared
between each diagnostic category to determine
if subjective complaints correlated with objec-
tive impairment (Fig. 1A). Median partner-reported
SMC:s increased with more severe impairment (NC:
Median 25, IQR 21-31; MCI: Median 38, IQR
29-44, AD: Median 51, IQR 42-60; p<0.0001),
while self-reported SMCs did not. The highest degree
of impairment was reported by participants in the
MCI group (Median 42, IQR 36-49), with no dif-
ference in self-reported SMCs between participants
with NC and AD (NC: Median 38, IQR 32-43; AD:
Median 39, IQR 32-45; U=27860.5, p=0.1325).
PRMQ difference scores highlight the discrepancy in
perceptions of memory performance with different
levels of clinical impairment. Participants reported
significantly more SMCs compared to their study
partners in the NC and MCI groups, while study part-
ners reported more SMCs than participants in the AD
group (Fig. 1B). All of these relationships between
SMCs and diagnostic group were similar in the amy-
loid+ subgroup of subjects (data not shown). Taken
together, partner-reported SMCs varied to a greater
extent with diagnostic category than self-reported
SMCs.
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p<0.0001. B) Comparison of average PRMQ difference scores in each diagnostic

category. PRMQ difference scores were calculated for each subject (PRMQ Self — PRMQ proxy) to represent discrepancies in SMC reports.
Wilcoxon Rank-Sum Test: ***p <0.001, ****p <0.0001. AD, Alzheimer’s disease; NC, normal cognition; MCI, mild cognitive impairment;

PRMQ, Prospective Retrospective Memory Questionnaire.

Influence of study partner demographics on
SMCs

There were no relationships between partner-
reported SMCs and study partner age, sex, or
education in the NC or MCI group. In the AD group,
female study partners reported higher SMCs than
males (males: Median=46, IQR 39 — 59; females:
Median =52, IQR 43 — 60; U=2347.5, p=0.0145),
and greater reports of SMCs by both male and
female study partners correlated with worse objec-
tive global cognitive impairment as measured by the
MMSE (males: r=-0.353, p=0.005 versus females:
r=-0.244, p=0.0185). Younger and more highly
educated study partners also tended to report more
SMCs, even after controlling for baseline MMSE
scores (younger age: r=0.281, p<0.001; educa-
tion: r=0.279, p=0.005). Baseline cognition was
included as a covariate to account for possible cor-
relations between degree of subject impairment and
study partner demographics.

The study partner relationship with the partici-
pant also influenced partner-reported SMCs in AD
participants. In the AD group, children reported
greater SMCs than spouses (spouse: Median =49;
IQR 39 — 58; child: Median=55, IQR 44 -
64; U=2478.5, p=0.0175), which is consistent
with the above findings for study partner age.
Both children- and spouse-reported SMCs corre-
lated with MMSE scores for AD participants, with
a trend for a stronger correlation in children part-
ners (spouse: r=-0.203, p=0.0376 versus child:

r=-0.438, p<0.001; comparison p=0.056). This
suggests children study partners, at least in the AD
group, may be more sensitive to global cognitive
change. No relationships between partner-reported
SMCs and cognitive performance were observed for
either spouse or children study partners of NC or MCI
participants.

It is interesting to note that partners of NC par-
ticipants tended to have less frequent contact than
partners of MCI and AD participants (Table 2): up to
22% of NC partners had one or fewer days of con-
tact per week versus 10% and 12% in MCI and AD
partners, respectively (Pearson’s x2: p=0.01). SMC
reports by partners in both NC and AD participants
varied based on contact frequency. Partners of NC
participants with less frequent contact reported fewer
SMCs than those with nearly daily contact (Medain
24, IQR 20-28 versus Median 27, IQR 22-33;
U=3757.5, p=0.0049). Meanwhile, the opposite
was true in AD: partners with less frequent contact
reported more SMCs than those with nearly daily con-
tact (Median 57, IQR 51-61 versus Median 50, IQR
39-59, U=1079, p=0.0218).

SMCs and depression

Higher self-reported SMCs were associated with
greater depressive symptomatology in all diagnos-
tic categories after controlling for age, sex, race, and
education (NC: 3 =0.068, p <0.001; MCI: 3 =0.067,
p=0.001; AD: $=0.092, p<0.001). There were
no significant relationships between partner-reported
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Fig. 2. Significant Associations between SMCs and cognition at baseline. Partial correlations were calculated between each SMC and
cognitive measure across diagnostic groups. All reported R2 values are adjusted for age, sex, race, education, and GDS. p-values are for the
SMC term in the model. The left panel includes statistically significant relationships between self-reported SMCs and cognitive measures
(A-D), and the right panel includes those for informant-reported SMCs (E-H). The diagnostic category in which the partial correlation was
performed is listed above the graph and is further denoted by the colors of the individual dots: normal cognition (NC), green; mild cognitive

impairment (MCI), blue; Alzheimer’s disease (AD), red.

SMCs and depressive symptoms in any diagnostic
category. There were significantly higher frequencies
of depression in MCI and AD compared to the NC
group, as defined by a GDS score > 6 (both p-values
<0.015).

SMCs and objective cognitive performance

Partial correlations of SMCs with cognitive per-
formance were analyzed separately within each
diagnostic category, and statistically significant
relationships are presented in Fig. 2. Average per-
formance on each cognitive test within a diagnostic
category is provided in Supplementary Table 3.
Within the NC group, higher self-reported SMCs
were associated with slower processing speed (Trail
Making Test A time; adjusted r=0.135, p=0.033)
as well as worse performance on category fluency
(Animal Naming; adjusted r=-0.134, p =0.035). No
statistically significant relationships were observed
between partner-SMCs and any measure of cogni-
tion in the NC group. Within the MCI group, no
statistically significant relationships were observed
between self-reported SMCs and any measure of
cognition, while partner-SMCs were associated with
worse performance on delayed recall (adjusted
r=-0.231, p=0.0078). Finally, in the AD group,
higher self-reported SMCs were associated with

worse performance on tasks of executive func-
tion (Trail Making Test B time; adjusted r=0.200,
p=0.0251) and delayed recall (adjusted »=-0.182,
p=0.0251). Higher partner-reported SMCs in the
AD group were associated with worse perfor-
mance on the MMSE (adjusted r=-0.312, p =0.002),
immediate recall (adjusted r=-0.199, p=0.020),
and delayed recall (adjusted r=-0.195, p=0.0234).
When considering the amyloid+ subgroup of par-
ticipants, worse performance on delayed recall was
observed with higher self-reported SMCs in the NC
group (adjusted r=-0.997, p=0.045) and greater
partner-reported SMCs in the MCI group (adjusted
r=-0.517, p=0.012). No other significant relation-
ships between SMCs and cognition were found in the
amyloid+ subgroup. Taken together, partner-reported
SMCs tended to correlate better with memory impair-
ments in both the MCI and AD group, while
associations between self-reported SMCs and mem-
ory impairment were only observed in the amyloid+
subgroup.

SMCs and genetic, plasma, and neuroimaging
biomarkers

There were no significant differences in self- or
partner-reported SMCs between those with and with-
out APOEH4 alleles in any of the diagnostic categories
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Fig. 3. Plasma GFAP concentrations by SMC quantile in participants with normal cognition. PRMQ Self and Proxy scores were divided
into lower and upper quartiles within normal controls, defining participants and their informants as SMC- and SMC+, respectively. A)
Differences in plasma concentrations of GFAP between self-reported SMC quartiles. B) Differences in plasma concentrations of GFAP
between proxy-reported SMC quartiles. Wilcoxon Rank-Rum Test: *p <0.05. GFAP, glial fibrillary acidic protein; SMC, subjective memory
complaints.

Table 3
Association between Subjective Memory Complaints and Medial Temporal Lobe Volumes
Normal Cognition MCI
Self SMCs Partner SMCs Self SMCs Partner SMCs
MTL Region B P B P B p-value B P
Ant. Hippo. -5.2929 0.038* —2.3066 0.302 —6.4488 0.189 —2.9801 0.350
Post. Hippo. -3.3442 0.117 -0.4104 0.827 -3.2704 0.445 -1.9313 0.440
ERC —-0.0026 0.209 —-0.0012 0.484 —0.0130 0.004* -0.0062 0.030*
BA35 -0.0035 0.157 —-0.0032 0.124 -0.0115 0.021* -0.0039 0.207
BA36 —0.0046 0.065 —-0.0036 0.092 —-0.0010 0.834 -0.0028 0.340
PHC -0.0053 0.003* 0.0017 0.267 —0.0080 0.012* —-0.0038 0.071

Ant Hippo, Anterior hippocampal volume; BA, Brodmann area; ERC, Entorhinal cortex; MTL, Medial temporal lobe; PHC, Parahippocampal
cortex; Post. Hippo., Posterior hippocampal volume. Linear regression was performed with age, sex, race, and education as covariates.

Tmeasures for which intracranial volume was included as an additional covariate. *and bold font indicate p <0.05.

(Supplementary Table 4). SMCs were associated with
changes in plasma biomarkers of neurodegenera-
tion. Overall, concentrations of all plasma biomarkers
increased with increasing degree of impairment (Sup-
plementary Table 5). We first divided individuals
into those with higher versus lower SMCs, defining
those that were SMC+ (upper quartile) and SMC-
(lower quartile) within each diagnostic category. We
found that higher self- and informant-reported SMCs
were associated with higher plasma GFAP concen-
trations in the NC group (Fig. 3); however, only the
relationship with informant-reported SMCs remained
significant when considering the entire range of
SMCs in the NC cohort and after controlling for age,
sex, race, and education (B=1.438, p=0.002). We
similarly found higher plasma concentrations of p-
taul81 for informant-reported SMC+ versus SMC- in
the NC group (Median 2.25, IQR 1.75 — 3.09 versus

Median 1.99, IQR 1.47 —2.47, U=1432, p=0.042),
though this relationship did not remain when consid-
ering the entire range of SMCs and controlling for
demographic variables. Lastly, higher self-reported
SMCs in the AD group were associated with lower
plasma NfL concentrations (3 =-0.593, p=0.033),
again suggesting impaired insight into the degree
of impairment or neurodegeneration. There were no
significant relationships between SMCs and plasma
biomarkers in the MCI group.

‘We next investigated the association between mea-
sures of medial temporal lobe (MTL) structures and
self- and partner-reported SMCs in a subset of partic-
ipants in the NC and MCI groups. In the NC group,
higher self-reported SMCs were associated with
lower anterior hippocampal volumes (3 =-5.293,
p =0.038) as well as reduced thickness of the parahip-
pocampal cortex (3 =-0.005, p=0.003) (Table 3).
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Fig. 4. Relationship between SMCs and patterns of brain atrophy associated with AD and aging. Scatter plots shows the relationships between
SPARE-AD index and self- and partner-reported SMCs (PRMQ Self and Proxy Scores) in (A) NC participants and (B) MCI participants.
Greater partner-reported SMCs were associated with more pronounced AD-related atrophy. In MCI. C, D) Predicted Age of a subject can
be ascertained based on the degree of brain atrophy in areas associated with aging (SPARE-BA index; see Methods). The Brain Age Gap
for each subject was calculated by predicted—chronologic age, whereby positive values indicate advanced brain aging (shaded red), and
negative values indicate resilient brain aging (shaded blue). Linear regressions were performed to evaluate the relationship between the
Brain Age Gap and SMCs in NC and MCI participants after controlling for chronologic age, sex, race, and education. Scatter plots represent
the relationship between the Brain Age Gap and self- and partner-reported SMCs (PRMQ Self and Proxy Scores) in (C) NC and (D) MCI
participants. Greater self-reported SMCs were associated with more pronounced age-related atrophy in NC.

Notably, partner-reported SMCs were not associated
with any volumetric MTL measurements in the NC
group. In the MCI group, self-reported SMCs were
associated with reduced thickness in the following
areas: the entorhinal cortex (8 =-0.0130, p =0.004),
Brodmann area 35 (B=-0.012, p=0.021), and
the parahippocampal cortex (B =-0.008, p=0.012).
Higher partner-reported SMCs in the MCI group
were associated with a thinner entorhinal cor-
tex (3=-0.006, p=0.030). Taken together, SMCs
reported by individuals with both NC and MCI were
associated with more regional reductions in MTL
volumes than partner-reported SMCs in the same
diagnostic group.

We next evaluated the relationship between SMCs
and AD- and aging-associated patterns of brain
atrophy (Fig. 4). We found a significant positive
correlation between partner-reported SMCs for MCI
participants and SPARE-AD index, which indi-
cates that the global patterns of brain atrophy
were more “AD-like” in those with higher SMCs
(B=0.0409, p=0.046; Fig. 4B). No significant rela-
tionships were observed between the SPARE-AD
index and self-reported SMCs in MCI participants

or with self/partner-reported SMCs in NC partici-
pants (Fig. 4A). Regarding age-related patterns of
atrophy, more SMCs were reported by NC partici-
pants with more advanced brain aging (3 =0.1620,
p=0.032) after controlling for chronologic age,
sex, race, and education (Fig. 4C). No other sig-
nificant relationships were found between SMCs
and brain aging atrophy patterns in NC or MCI
(Fig. 4D).

SMCs and cognitive decline

To evaluate the relationship between baseline self-
and partner-reported SMCs and global cognitive
decline as measured by the MMSE, linear mixed
models were performed in participants with NC,
MCI, and in a combined group of both NC and MCL.
In the combined cohort of NC and MCI, higher base-
line partner-reported SMCs were associated with a
faster annual rate of decline in cognition over the
study period while controlling for diagnostic group
(Table 4, upper panels). No significant relationships
were found between baseline SMCs and change in
MMSE scores over the study period in either the NC
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Table 4
SMCs and baseline factors affecting cognitive decline in NC & MCI participants
95% Confidence
Interval

Fixed Terms in final model Estimate Std. Err. P Lower Upper

Bound Bound

Total Cohort NC + MCI PRMQ Self (N=369)
PRMQ Self x Time (y) -0.0076 0.006 0.195 -0.0191 0.0039
MMSE at baseline 0.8260 0.027 <0.001 0.7721 0.8798
PRMQ Self 0.0050 0.005 0.344 -0.0054 0.0154
Time (years) 0.0090 0.235 0.969 -0.4516 0.4697
Education 0.0489 0.015 0.001 0.0190 0.7875
Diagnosis (MCI) -0.4073 0.102 <0.001 -0.6078 -0.2069
PRMQ Proxy (N=333)
PRMQ Proxy x Time (y) -0.0207 0.005 <0.001 -0.0303 -0.0111
MMSE at baseline 0.8263 0.027 <0.001 0.7730 0.8796
PRMQ Proxy 0.0040 0.005 0.444 -0.0063 0.0143
Time (years) 0.3556 0.152 0.019 0.0574 0.6539
Education 0.0621 0.015 <0.001 0.0324 0.0918
Diagnosis (MCI) -0.3636 0.119 0.002 -0.0597 -0.1305
Amyloid + Subgroup NC + MCI PRMQ Self (N=21)
PRMQ Self x Time (y) -0.0538 0.022 0.015 -0.0974 -0.0103
MMSE at baseline 0.8544 0.155 <0.001 0.5501 1.159
PRMQ Self 0.0105 0.026 0.691 -0.0413 0.0623
Time (years) 1.7951 0.9659 0.063 -0.0981 3.6883
Diagnosis (MCI) -0.5735 0.4768 0.229 —-1.5081 0.3611
PRMQ Proxy (N =29)

PRMQ Proxy x Time (y) -0.0407 0.019 0.035 -0.0786 -0.0030
MMSE at baseline 0.9721 0.107 <0.001 0.7623 1.1812
PRMQ Proxy 0.0180 0.021 0.396 -0.0236 0.0597
Time (years) 0.8930 0.4748 0.232 -0.5727 2.3588
Diagnosis (MCI) -0.3290 0.499 0.510 -1.3071 0.6490

The above fixed effects remained in the final model following optimization with backward selection. Random effects included a random
intercept for each subject and a random slope for time in years, for which model statistics are not shown. MCI, mild cognitive impairment;
MMSE, Mini-Mental State Examination; NC, normal cognition; PRMQ, Prospective Retrospective Memory Questionnaire.

group or the MCI group when analyzed separately
(Supplementary Table 6).

We next evaluated the relationship between SMCs
and cognitive decline in a subgroup of amyloid+
participants to better select for those individuals at
greatest risk of later developing AD-related cogni-
tive decline. We found that both higher self- and
partner-reported SMCs at baseline were associated
with a faster annual rate of cognitive decline in NC
and MCI participants after controlling for diagnostic
group (Table 4, lower panels). There were no sig-
nificant relationships between SMCs and change in
MMSE scores in either NC or MCI groups when
analyzed separately (data not shown).

SMCs and functional decline

To evaluate the relationship between baseline self-
and partner-reported SMCs and functional decline,

linear mixed models were again performed in par-
ticipants with NC, MCI, and in a combined group
of both NC and MCI. In the combined NC and
MCI cohort, higher partner-reported SMCs were
associated with a more rapid annual rate of func-
tional decline while controlling for diagnostic group
(Table 5, lower panel). In the NC group, somewhat
unexpectedly, higher self-reported SMCs were asso-
ciated with a slower rate of functional decline as
measured by the FRS (Table 5, upper panel). No sig-
nificant relationships were found between baseline
SMCs and rate of functional decline over the study
period in the MCI group (Supplementary Table 7). As
with cognitive decline, above, we also evaluated the
relationships between SMCs and functional decline
in an amyloid+ subgroup. No significant relationships
emerged between SMCs and change in FRS scores in
NC, MCI, or the combined group in amyloid positive
individuals (data not shown).
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Table 5
SMCs and baseline factors affecting functional decline

95% Confidence Interval

Fixed Terms in final model Estimate Std. Err. P Lower Bound Upper Bound
NC
PRMQ Self x Time (y) -0.0114 0.005 0.028 —-0.0216 —-0.0012
FRS at baseline 0.8428 0.031 <0.001 0.7825 0.9031
PRMQ Self 0.0009 0.006 0.876 —-0.0106 0.0125
Time (y) 0.5139 0.200 0.010 0.1226 0.9052
NC+MCI

PRMQ Proxy x Time (y) 0.0197 0.007 0.005 0.0061 0.0334
FRS at baseline 0.8315 0.029 <0.001 0.7737 0.8892
PRMQ Proxy 0.0089 0.009 0.329 —0.0090 0.0269
Time (years) —-0.2670 0.218 0.220 —0.6936 0.1596
Diagnosis (MCI) 1.336 0.179 <0.001 —0.8255 0.1732

The above fixed effects remained in the final model following optimization with backward selection. Random
effects include a random intercept for each subject and a random slope for time in years, for which model statistics
are not shown. MCI, mild cognitive impairment; NC, normal cognition; PRMQ, Prospective Retrospective Memory

Questionnaire.
Table 6
Baseline partner-reported SMCs and risk of diagnostic conversion
95% Confidence Interval
10-point B estimate Std. Err. p Lower Bound Upper Bound
Hazard Ratio
PRMQ Self
PRMQ Self 1.2888 0.02537 0.023 0.251 0.9821 1.0713
Sex 0.0002 -0.8398 0.156 0.020 0.2130 0.8759
MMSE 0.0073 -0.4092 0.057 <0.001 0.5621 0.7848
PRMQ Proxy
PRMQ Proxy 1.6959 0.0528 0.021 0.009 1.1424 2.5186
MMSE 0.0043 -0.5459 0.083 <0.001 0.0002 0.0710
GDS Item 10
GDS Item 10 5.7604 0.1751 0.765 0.104 0.8739 4.1885
Sex 0.0002 -0.8435 0.156 0.020 0.2115 0.8751
MMSE 0.0124 -0.4388 0.051 <0.001 0.5528 0.7520

Only covariates remaining statistically significant after model optimization after backward selection are shown.
PRMQ, Prospective Retrospective Memory Questionnaire; MMSE, Mini-Mental State Examination.

SMCs and diagnostic conversion

Cox-proportional hazards models were used to
assess whether baseline SMCs predicted subsequent
diagnostic progression. A total of 25 participants
initially in the NC and MCI groups progressed to
either MCI or AD over a mean follow up of 4.2
years. Partner-reported SMCs at baseline predicted
progression to a different diagnostic category over
the study period, whereby a ten-point increase of
baseline PRMQ Proxy scores increased the annual
risk of progression by approximately 70% (Table 6).
Notably, and as expected, baseline MMSE scores
also predicted diagnostic progression, while no other
demographic variables were predictive. When includ-
ing baseline diagnosis as a covariate, the relationship

between SMCs and diagnostic progression was no
longer significant. Neither measure of self-reported
SMCs (PRMQ Self or GDS item 10) predicted diag-
nostic progression over the study period (p=0.335
and p=0.105, respectively).

DISCUSSION

Reliable methods for early detection of preclinical
disease are greatly needed to implement effective pre-
vention and treatment of AD. A patient’s experience
of SMCs may represent one of the earliest points in
time when they will seek medical care for their cogni-
tive health. It is therefore critical to better understand
the utility of SMCs in predicting cognitive decline.
Furthermore, evaluation of SMCs is efficient, and
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correlating measures of SMCs with known biomark-
ers of AD would expand dementia screening and
identify those in need of further work-up. In the
present study, we aimed to evaluate the relation-
ships between self- and study partner-reported SMCs,
objective cognitive performance, AD biomarkers,
and risk of future decline in a well-characterized
longitudinal memory center cohort. Additionally, we
sought to evaluate the relationship between study
partner characteristics and their report of cognitive
change in their family member/friend. We found
that, in general, study partner-reported SMCs were
more consistent with cognitive testing and increasing
symptom severity than self-reported SMCs. Partner-
reported SMC also correlated better with longitudinal
cognitive and functional decline. Additionally, we
found that depression significantly influenced self-
but not study partner-reported SMCs, while part-
ner age, sex, education, and relationship to the
study participant, particularly within the AD group,
were associated with their reports of SMCs in their
partners.

Importantly, this study replicates and adds to a
growing body of literature on differences in self- and
study partner-reported SMCs in the older adult popu-
lation, including those at-risk for cognitive decline
due to AD. With regard to self-reported SMCs, it
is interesting to note that MCI participants reported
the highest degree of subjective memory impairment,
while individuals with NC and AD reported equal but
lower average levels of SMCs. This highlights that
the participants with AD demonstrated poor insight
into their own memory impairment. Additionally, NC
participants are reporting more impairment relative
to proxy reports. The extent of SMCs reported by
NC participants in this study may be biased by self-
selection to participate in research studies focused on
memory and aging.

We also found that higher self-reported SMCs at
baseline reflected objective memory impairment in
the AD group only, while higher self-reported SMCs
in NC were associated with worse performance on
tasks of processing speed and category fluency. In
considering the finding in NC group, it is well-
established that processing speed declines with age
[71]. The association between SMCs and process-
ing speed, and not memory performance, suggests
that NC participant reported SMCs may represent
their perceived changes in cognition, more broadly. It
is not uncommon for individuals with non-memory
cognitive changes to label their concerns as mem-
ory impairment. Indeed, NC participants may be

perceiving some degree of cognitive decline that
are associated with neuroanatomic changes, as NC
participants with higher self-reported SMCs exhib-
ited more pronounced brain atrophy indicative of
advanced brain aging (SPARE-BA). Such patterns
of atrophy in NC participants have previously been
associated with deficits in executive function but not
in memory domains, similar to our cohort [45]. In
longitudinal analyses, higher self-reported SMCs at
baseline were not associated with cognitive, func-
tional, or diagnostic decline in the total cohort over
the study period. In fact, greater memory complaints
in NC were associated with slower functional decline
over 4 years of follow up, though a longer study
period is typically needed to capture true decline in
participants with normal cognition at baseline. The
need for prolonged follow up is likely due to the sub-
stantial heterogeneity within NC participants. In our
cohort, only 27% of NC and 59% of MCI partici-
pants with amyloid PET scans had cerebral amyloid
and were thus at higher risk of developing AD. In
contrast to the findings in the total cohort, a sub-
group analysis of amyloid+ individuals did show an
association between self-reported SMCs and memory
impairment at baseline as well as cognitive decline in
NC and MCI over the study period. This suggests
that self-reported SMCs may be more useful when
applied to a subset of participants with increased risk
of progressing to AD.

Despite there being few relationships between self-
reported SMCs and cognitive/functional status in
the total cohort, study partner-reported SMCs were
more consistently associated with objective mem-
ory performance in both MCI and AD groups, again
suggesting that study participants experience reduced
insight as symptom severity increases. Similar find-
ings were demonstrated in longitudinal follow-up,
wherein higher study partner-reported SMCs at base-
line were associated with more rapid cognitive and
functional decline in NC and MCI participants over
4 years of follow up. A subgroup analysis in amyloid+
individuals re-demonstrated the association between
partner-reported SMCs and cognitive but not func-
tional decline over the study period, which may
indicate that the reports by study partners are sensitive
to cognitive changes associated with AD pathology.
Separately, partner-reported SMCs were also asso-
ciated with diagnostic progression in NC and MCI
participants over the study period, whereby a ten-
point increase in PRMQ proxy score at baseline
increased the annual risk of diagnostic progression
by 70%. Taken together, these findings highlight
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the potential for the PRMQ proxy to be used for
prognostication in the memory clinic setting and
bears replication in additional independent cohorts
to inform generalizability.

It should be noted that while the finding that study
partner SMCs strongly correlate with cognition and
decline is consistent with much of the prior litera-
ture [17, 19, 20, 72-74], other reports demonstrate
a robust relationship with self-reported SMCs [15,
18, 75]. Discrepancies are likely due to method-
ologic differences, including the populations studied
as well as the metrics used to measure cognition, func-
tion, and SMCs. While the total study population is
derived from a memory center cohort, the NC group
is comprised of volunteers from the community. Dis-
crepancies between self-reported SMCs, objective
cognitive performance and neuroimaging biomark-
ers have been shown in community samples [76,
77], and perhaps explains the weaker associations
observed between self-reported SMCs and these data
in our sample. Furthermore, there is no consensus in
the field regarding the most sensitive SMC question-
naires to detect meaningful cognitive change, and, as
such, the varied implementation of SMC question-
naires in research limit comparison across studies and
between participants and study partners [16, 20, 70,
73, 78]. Key advantages of the PRMQ are the anal-
ogous self and study partner questionnaires and the
large dynamic range compared to shorter question-
naires with binary outcomes [55, 56].

It is widely accepted that characteristics of an
individual, such as age, sex, education, and mood,
can influence perception of one’s own impairment.
Indeed, depressive symptoms in this cohort were
strongly associated with self-reported SMCs across
all diagnostic groups, as previously reported [13, 20,
22, 23]. Though much effort has been dedicated to
identifying which attributes influence an individual’s
perception of memory performance, relatively lit-
tle is known about the ways in which study partner
characteristics influence their report of patients’ cog-
nition. This is an important area of study given the
degree to which clinicians and researchers rely on
partner reports to corroborate patient histories and
fully evaluate a patient’s cognitive and functional
status. Research to-date has focused on the effects
of personality traits and affective symptoms in the
partner, which have found that, like patients, greater
depressive/anxiety symptoms [29] as well as a higher
degree of neuroticism [28] correlates with greater
reports of SMCs in community-dwelling individuals.
We therefore sought to edify the existing literature by

evaluating how additional study partner characteris-
tics influence their reports across a range of diagnoses
in the memory clinic setting. We demonstrated that
younger age, female sex, and higher education were
associated with greater study partner-reported SMCs
in the AD group only, which may be explained by
the greater reports of impairment by partners that are
children compared to spouses, considering that the
child partners are more likely to be younger females.
Additionally, there was a trend for a stronger correla-
tion between children-reported SMCs and objective
cognitive performance compared to those reported by
spouses of patients with AD. This may be explained
by a variety of factors, such as a tendency to minimize
the symptoms of disease, frequency of observations,
or cognitive decline in similarly aged spouses [1]. Itis
not currently standard practice to systematically eval-
uate the cognitive status or other attributes of study
partners that present to a clinic with a patient. As an
alternative to such measures, Buchanan et al. recently
called for the identification of certain SMC scales or
sub-scales that are less susceptible to partner report-
ing bias [28]. Further work is needed to determine
the degree to which particular items or sub-scales of
the PRMQ or similar questionnaires are influenced
by partner characteristics and biases. Moreover, it is
interesting to note that frequency of study contact also
influenced partner reports, particularly within the NC
and AD group. Study partners with less frequent con-
tact tended to under-report SMCs in NC participants
and to over-report impairment in AD participants.
This suggests that partners with less frequent contact
may be less reliable, and given the greater proportion
of partners with infrequent contact in NC participants,
it may also explain the lack of association between
partner SMC reports and cognitive outcomes in the
NC group.

In keeping with the field’s move toward a neu-
ropathological definition of AD, we also evaluated the
relationship between self- and study partner-reported
SMCs and plasma and neuroimaging biomarkers of
AD in order to identify those individuals that may
be at increased risk for development of AD. Neu-
roimaging biomarkers explored in this study include
subregional MTL atrophy and indices that identify
global patterns of brain atrophy associated with AD
and aging, SPARE-AD and SPARE-BA, respectively.
Each of these measurements possess key advantages
in evaluating neuroanatomic correlates of cognitive
decline. MTL subregion segmentation provides for
evaluation of subtle structural changes in the regions
first impacted by tau deposition, which typically
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begins in BA35, followed by the entorhinal cor-
tex, and the hippocampus [79]. The SPARE-AD and
SPARE-BA indices consider all brain regions to iden-
tify regions whose volumes maximally differentiate
the populations of interest: older from younger in
SPARE-BA, and AD from NC in SPARE-AD. In the
present study, higher SMCs were reported by study
partners of MCI participants who had an atrophy
pattern more consistent with AD as well as spe-
cific subregion volume loss in the MTL, a region
affected early by tau pathology. Similarly, elevated
plasma NfL, GFAP, and p-taul81 concentrations have
been associated with AD and increased dementia
risk [46-50], and partner-reported SMCs were asso-
ciated with higher levels of plasma GFAP. These
neuroimaging and plasma biomarker findings in con-
junction with the aforementioned neurocognitive data
further strengthens the assertion that study partners
can perceive objective changes associated with the
neurodegenerative processes underlying AD.

In contrast, self-reported SMCs did not correlate
with global patterns of AD-related brain atrophy and
instead were associated with patterns of atrophy seen
in advanced brain aging (SPARE-BA), as reported
above. The lack of association with SPARE-AD may
provide a possible neuroanatomic explanation for
why self-reported SMCs were not associated with
objective memory performance or diagnostic pro-
gression. However, self-reported SMCs did correlate
with volumetric reductions in certain regions of the
MTL in both NC and MCI. Several factors could
influence the apparent discrepancy in these findings.
First, it has previously been shown that atrophy in
the MTL and in the temporal lobe more broadly
occurs in physiologic aging [44, 80]. MTL atro-
phy observed in NC may therefore be reflective
of advanced aging as suggested by the association
between SPARE-BA and self-reported SMCs. Alter-
natively, it is possible that self-reported SMCs in NC
subject are inconsistent at identifying cognitive, func-
tional, and neuroanatomic changes associated with
AD due to methodologic limitations. For instance, it
is possible that the cognitive measures included in
this study from UDS versions 2 and 3 are not sensi-
tive enough to detect early and more subtle memory
changes in the NC population [81], as other cognitive
measures utilized in studies of preclinical AD have
been shown to be more sensitive to early changes
[81, 82]. Furthermore, there are generally low rates
of progression to dementia in a memory center popu-
lation with normal cognition, especially over a follow
up period of less than ten years [7, 83]. Longer term

follow-up is needed to detect meaningful associations
between self-reported SMCs and diagnostic change
in NC participants, a concept that is supported by a
series of studies on SMCs and dementia in the same
longitudinal cohort with varying lengths of follow-up
[20, 84].

Strengths of this study include the large sample
size, longitudinal study design with an average of
four years of follow up, and availability of neuropsy-
chiatric, neuropsychological and neuroimaging data.
We also describe the relationship between partner
characteristics and perceived impairment of the study
participants in a memory center population. One lim-
itation of our study is incomplete characterization of
the study cohort: only a subset of participants had data
available for various disease biomarkers, and addi-
tional medical co-morbidities impacting cognition
and cognitive decline (e.g., cerebrovascular disease)
were not considered in our analyses. In light of
these sample limitations, our amyloid+ subgroup was
expanded to include individuals who had an amy-
loid PET scan within five years of clinical testing,
which could conceivably lead to mischaracterization
of subjects as amyloid positive when they were nega-
tive at the time of cognitive testing. However, data
from longitudinal cohorts suggest that conversion
from amyloid negative to positive in cognitively nor-
mal individuals typically occurs over a longer time
period [85]. Other important neuroimaging biomark-
ers were similarly not included, such as regional
glucose hypometabolism measured by FDG-PET,
which has been shown to correlate with subjective
cognitive decline [86—89]. Subsequent studies should
aim to better account for these important factors.
Additionally, the majority of our subjects were White,
and efforts are currently underway to replicate these
findings in a more diverse cohort. Another limita-
tion of all single center studies is generalizability;
however, our findings with regard to objective cogni-
tive impairment and subsequent decline are supported
by two recent, large longitudinal analyses: one in a
memory center cohort in the Netherlands [73] and
another in a community-dwelling population in Aus-
tralia [20]. It has also been suggested that utilizing a
memory center population may not be representative
of the community at large. Our conception of the clin-
ical relevance of this work is in the development of
a screening tool for future cognitive and functional
decline; therefore, it will be important to replicate
this study in a population of individuals presenting
with memory complaints in the primary care setting
as well.
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In summary, the present study demonstrated that
study partner-reported SMCs correlate with measures
of objective impairment and greater AD-associated
brain atrophy and are also predictive of future decline
over four years of follow up. Furthermore, we demon-
strated that study partner characteristics, especially
the relationship to the study participant and frequency
of contact, should be considered when interpreting
their reports, especially for older and more impaired
patients. Further work is needed to determine the best
tool to evaluate both self- and study partner-reported
SMCs in the memory center context and to validate
these findings in an independent, well-characterized,
longitudinal cohort over a longer follow-up period.
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