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Abstract.
Background: There is considerable variability in the rate at which we age biologically, and the brain is particularly susceptible
to the effects of aging.
Objective: We examined the test-retest reliability of brain age at one- and three-year intervals and identified characteristics
that predict the longitudinal change in brain-predicted age difference (brain-PAD, defined by deviations of brain age from
chronological age).
Methods: T1-weighted magnetic resonance images were acquired at three timepoints from 497 community-dwelling adults
(73.8 ± 3.5 years at baseline, 48% were female). Brain age was estimated from whole brain volume, using a publicly available
algorithm trained on an independent dataset. Linear mixed models were used, adjusting for sex, age, and age2.
Results: Excellent retest reliability of brain age was observed over one and three years. We identified a significant sex
difference in brain-PAD, where a faster rate of brain aging (worsening in brain age relative to chronological age) was
observed in men, and this finding replicated in secondary analyses. The effect size, however, was relatively weak, equivalent
to 0.16 years difference per year. A higher score in physical health related quality of life and verbal fluency were associated
with a faster rate of brain aging, while depression was linked to a slower rate of brain aging, but these findings were not robust.
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Conclusion: Our study provides consistent evidence that older men have slightly faster brain atrophy than women. Given
the sparsity of longitudinal research on brain age in older populations, future prospective studies are needed to confirm our
findings.

Keywords: Aging, biomarkers, cognition, depression, health status, neuroimaging, physical fitness, quality of life, sex, social
class

INTRODUCTION

Aging is an inevitable biological process, charac-
terized by the gradual accumulation of cellular and
tissue damage, and subsequent attenuation of sensory,
motor, and cognitive functions [1, 2]. The brain is
particularly susceptible to the effects of aging, under-
going many structural and functional changes over
the lifespan. Progressive age-related brain atrophy
(i.e., loss of brain tissue volume) [3] has been associ-
ated with a decline in cognitive performance [4] and a
greater risk of neurodegenerative disorders [5]. There
is, however, considerable interindividual variability
in the rate of brain aging and disease risk, which
is influenced by genetic and environmental factors
[6]. As such, some individuals will remain relatively
healthy in later life, while others will experience a
severe decline in cognitive function, independence,
and quality of life.

Interindividual differences in the progression of
biological brain changes can be investigated through
the construct of ‘brain age’. Brain age is a neuro-
imaging-based biomarker created for its correlation
with chronological age. An older brain age relative
to chronological age is considered a sign of advanced
brain aging (i.e., greater age-related changes, includ-
ing the loss of brain tissue volume), and has been
linked to poor health [7] and cognitive decline [8].
A number of structural brain age models have been
developed and examined in community-dwelling
older populations [9–11]. This includes the algorithm
developed by Cole and colleagues [6] that uses voxel-
level analyses of grey and white matter volume, and
cerebrospinal fluid to provide a single estimate of
brain age, taken from across the whole brain. The
difference between chronological and brain age is
referred to as brain-PAD (the brain-predicted age dif-
ference). We have found a brain-PAD representing an
older brain age relative to chronological age is asso-
ciated with a lower cognitive performance [12], and
others have shown brain-PAD to predict dementia and
mortality risk [6, 13].

A growing body of evidence supports the con-
tributing role of sociodemographic, physical, and
psychological health and wellbeing in interindividual
differences in brain structure. For example, a weaker
grip strength in midlife have been linked to a smaller
whole brain volume in later life (aged 69–71 years)
[14], while greater brain atrophy has been identified
in people with depression or poor metabolic health
[15, 16]. The protective effect of a higher educational
attainment on brain volume has also been identified
in older individuals cross-sectionally [17, 18] and
may be an initial advantage that carries into later
life [18, 19]. Brain age studies report similar pat-
terns of association in the general population, through
which an older brain age relative to chronological
age was found to be cross-sectionally associated with
poor grip strength and cardiometabolic health [6, 20,
21]. Some cross-sectional studies have linked depres-
sion to advanced brain aging, though there remain
inconsistencies among studies that primarily relate
to symptomatic patient populations [22–24]. Single
estimates of brain age have been found to be higher
in women than men [25–28], though the findings are
somewhat inconsistent. Conversely, cross-sectional
studies link a younger brain age relative to chronolog-
ical age to meditation [29], musical attainment [30],
more years of formal education, and physical activity
[31].

An important consideration for improving later-
life health, and resilience to age is to determine
whether these sociodemographic, physical, and psy-
chological factors can change brain-PAD over time
(e.g., could a stronger grip strength delay the process
of brain aging over time). While some have inves-
tigated brain age longitudinally, most such studies
relate to early life factors [32–34] or involve small
samples of young adults [35–38], or patient popu-
lations [39–41]. For this reason, there is a need for
longitudinal studies that measure brain age at mul-
tiple timepoints, and which investigate the influence
of a range of factors on the change in brain-PAD in
older community dwelling adults. The aim of this
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study was firstly to assess the test-retest reliability of
brain age estimation using serial magnetic resonance
images (MRIs) collected over a three-year period
in older community dwelling adults. Secondly, we
sought to determine whether baseline factors relating
to sociodemographic, health, mood, quality of life,
and physical and cognitive function are associated
with the change in brain-PAD in older community
dwelling adults.

MATERIALS AND METHODS

Study design

This study utilized neuroimaging data from
ASPREE-NEURO (NEURO) [42], a sub-study of the
ASPirin in Reducing Events in the Elderly (ASPREE)
clinical trial [43]. ASPREE is a double-blind, ran-
domized, placebo-control trial aimed to determine
whether daily treatment of low dose aspirin (100 mg)
could extend disability free life in older adults from
Australia and the US [43]. Full eligibility criteria
for ASPREE have been published elsewhere [43]. In
brief, Australian participants were eligible if aged 70
years and over at study entry; were without major
cognitive impairments (i.e., none reported a diagno-
sis of dementia, or had a Modified-Mini-Mental State
(3MS) examination score ≤ 77) [44]. They were free
of any previous cardiovascular event, including atrial
fibrillation, and were not taking antithrombotic ther-
apy; they were also devoid of any serious illness that
was a high risk of major bleeding or was likely to
cause death within 5 years of randomization [43].

NEURO recruited 572 ASPREE participants resid-
ing in Melbourne and nearby regional Victoria, of
whom 497 completed a baseline MRI scan and one
or more follow-up scans, and comprise our study
sample. Of these participants, 430 completed a brain
scan at each timepoint, while the remaining 67
attended scanning at baseline and the one- (n = 57)
or three-year follow-up (n = 10). Fifty-two NEURO
participants were excluded as they had only attended
scanning at baseline (n = 34), year one (n = 8), year
three (n = 3), or both the one- and three-year follow-
up (n = 7). A further 23 individuals were excluded
as they had no estimate of brain age at any time-
point. Relative to the included sample, the excluded
group had a lower mean score on cognitive tasks
assessing psychomotor speed, and episodic memory
(Table 1). Although these individuals were compara-
ble in chronological age and sex, a greater proportion

were obese, and had a slow gait speed, depression,
diabetes, or hypertension (Table 1).

For scanning purposes, participants were free of
contraindications to MRI, including foreign bodies
and metallic or electronic implants unsafe at 3T, and
claustrophobia [42]. All participants provided writ-
ten informed consent to both ASPREE and NEURO,
and study procedures were conducted in accordance
with institutional guidelines. ASPREE is registered
with the International Standard Randomized Con-
trolled Trial Number Register (ISRCTN83772183)
and Clinicaltrials.gov (NCT01038583). NEURO is
registered with the Australian and New Zealand Clin-
ical Trial Registry (ACTRN12613001313729). The
current study was approved by the Monash Univer-
sity Human Research and Ethics Committee (Project
ID: 29311).

Baseline participant characteristics

Participants completed a number of questionnaires
and assessments at baseline, and those relevant to
the current study are detailed below [45]. Socioeco-
nomic status (SES) was derived using the Index of
Relative Socio-Economic Advantage and Disadvan-
tage percentile score (SEIFA) [46] and divided into
binary groups using a median split. For the purpose
of this analysis, education status was defined as less
than 12 years of education (i.e., did not complete all
years of secondary education in Australia), or 12 or
more years of education (i.e., completed secondary
or higher years of education in Australia) [47].

Participants having diabetes mellitus were those
receiving treatment for diabetes, or who had a fast-
ing blood glucose of at least 126 mg per deciliter
(≥7 mmol per liter), or who provided a self-
reported diagnosis. Dyslipidemia was defined by
the participant being prescribed cholesterol lower-
ing medication; having serum cholesterol levels of
at least 212 mg per deciliter (≥5.5 mmol per liter), or
a low density lipoprotein (LDL) level of more than
160 mg per deciliter (≥4.1 mmol per liter). Hyperten-
sion was defined by a systolic and/or diastolic blood
pressure (BP) more than 140/90 at trial entry, or by
participants who had previously received advice that
treatment for hypertension was appropriate [45].

Physical function was assessed using measures of
grip strength and gait speed. These were quantified
as the average of three trials of grip strength, using
the dominant hand, and mean time to complete a
3-meter walk (in seconds), respectively [45]. Weak
grip strength was defined as the lowest quintile after
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Table 1
Baseline participant characteristics for included (n = 497) and excluded study participants (n = 75)

Characteristics aIncluded bExcluded p

Chronological age (y), median (IQR) 72.4 (71.2–75.3) 72.9 (71.3–76.6) 0.22
Female, n (%) 238 (47.9) 46 (61.3) 0.14
Race, n (%):

White 484 (97.6) 72 (96.0) 0.43
Other 12 (2.4) 3 (4.0)

Low education (< 12 y), n (%) 188 (37.8) 35 (46.7) 0.14
SES (< median percentile), n (%) 236 (47.5) 39 (52.0) 0.47
3MS, median (IQR) 95.0 (92.0–97.0) 94.0 (92.0–96.0) 0.07
COWAT, mean (SD) 12.4 (4.5) 12.1 (4.6) 0.62
SDMT, mean (SD) 39.5 (8.8) 34.9 (8.5) < 0.0001
HVLT-R, delayed recall, median (IQR) 8.0 (6.0–10.0) 8.0 (5.0–9.0) 0.02
Depression, n (%) 46 (9.3) 14 (18.7) 0.01
Physical HRQoL, median (IQR) 51.3 (44.4–55.1) 48.6 (41.8–53.5) 0.05
Mental HRQoL, median (IQR) 57.2 (52.8–60.1) 56.3 (50.2–60.2) 0.30
Body mass index (kg/m2), n (%):

< 24 136 (27.5) 13 (17.3) < 0.0001
25–29 228 (46.2) 21 (28.0)
30+ 130 (26.3) 41 (54.7)

Weak grip strength, n (%) 91 (18.5) 20 (27.0) 0.08
Slow gait speed (3m/s), n (%) 89 (18.0) 23 (30.7) 0.01
Pre-frail/Frail, n (%) 142 (28.6) 27 (36.0) 0.19
Diabetes, n (%) 54 (10.9) 18 (24.0) 0.001
Dyslipidaemia, n (%) 285 (57.3) 52 (69.3) 0.05
Hypertensive, n (%) 344 (69.2) 62 (82.7) 0.02
Aspirin treatment, n (%) 249 (50.1) 37 (49.3) 0.90
aNumber of total participants who are missing from race (n = 1), SDMT (n = 2), HVLT-R (n = 1), body mass index
(n = 3), weak grip strength(n = 4), and slow gait speed (n = 3). bNumber of total participants who are missing
from SDMT (n = 1) and weak grip strength (n = 1). COWAT, Controlled Oral Word Association Test; HRQoL,
Health-related quality of life; HVLT-R, Hopkins Verbal Learning Test-Revised, delayed memory recall; SDMT,
Symbol-Digit Modalities Test; SES, socioeconomic status; 3MS, Modified-Mini-Mental State examination.

adjusting for sex and weight. Slow gait speed was
defined as the lowest quintile after adjusting for sex
and height.

Frailty was defined using modified Fried Frailty
criteria, which includes having a low body mass index
(< 20 kg/m2); weak grip strength and slow gait speed
(as described above); self-reported exhaustion using
questions from the Center for Epidemiologic Stud-
ies Depression (CES-D) scale [48], and low physical
activity (i.e., defined using self-reports of no walk-
ing outside the home, or walking for less than 10
minutes without rest in the past two weeks) [49]. Par-
ticipants were categorized as ‘prefrail’ and ‘frail’ if
they satisfied 1–2 or 3 + criteria, respectively [49].
For our analysis we combined prefrail and frail par-
ticipants as there were only three people identified
as frail. Depressive symptoms were defined as a
score of ≥ 8 on the CES-D, which identifies people
with more severe depressive symptoms than par-
ticipants scoring < 8 [48]. Summary measures of
physical and mental health-related quality of life
(HRQoL) were derived from items from the Short-
Form-12 (SF-12) [50], as described previously [51].

A higher score in either measure represents better
well-being.

Cognitive function was measured using a battery
of tests that assessed phonological verbal fluency
(Controlled Oral Word Association Test [COWAT],
using the single letter ‘F’) [52], psychomotor
speed (Symbol-Digit Modalities Test [SDMT]) [53],
delayed verbal memory recall (Hopkins Verbal
Learning Test-Revised [HVLT-R]) [54], and global
cognition (3MS) [44]. A lower test score indicates a
poorer cognitive performance for each of these mea-
sures except for SDMT, on which a higher score
indicates a faster performance.

Neuroimaging data collection and quality control

Structural MRI data was acquired at three time-
points: baseline and the one- and three-year follow-
ups (a median duration of 14 [IQR = 11–20], 355
[IQR = 349–381], and 1,085 [IQR = 1,071–1,106]
days after the assessment of participant baseline char-
acteristics), using a 3 Tesla Siemens Skyra MR scan-
ner (Siemens Erlangen, German) with a 32-channel
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head and neck coil, located at Monash Biomedical
Imaging in Melbourne Australia. High resolu-
tion 3D magnetization prepared rapid gradient-echo
(MPRAGE) images were acquired in the sagittal ori-
entation, with 1mm isotropic resolution (192 slices,
FOV = 256 × 240 mm2, TR = 2300 ms, TE = 2.07 ms,
TI = 900, flip angle = 9°).

Image quality was assessed using the MRI Quality
Control toolbox (MRIQC) [55]. An empirical crite-
rion was used to identify outliers (> 1.5 inter-quartile
range) on one or more metrics of image quality,
followed by a visual inspection by three study inves-
tigators (JW, PW, IHH), as previously described [12].
A total of 26 images at baseline; 13 at year one, and
21 at year three received a poor image quality rating
and were excluded from this study.

Brain age prediction

Estimates of brain age were derived from raw T1-
weighted MR images using Cole and colleague’s
software (https://github.com/james-cole/brainageR)
[6]. All images were pre-processed using the Statisti-
cal Parametric Mapping (SPM12) toolbox (Univer-
sity College London, London, UK). This includes
segmentation into grey matter, white matter, and cere-
brospinal fluid, followed by normalization to the
Montreal Neurological Institute (MNI) space using
a non-linear (DARTEL) registration [56]. Tissue vol-
ume at each voxel was retained through scaling of the
normalized tissue maps by the Jacobian determinant
of the deformation [57]. Images were resampled to a
voxel size of 1.5 mm and smoothed using a Gaussian
spatial smoothing kernel of 4 mm at full-width-half-
maximum [56].

Normalized tissue maps were combined and
divided into 435 principal components previously
identified for a training cohort of 3,377 healthy adults
(aged 18–92 years), sourced from seven publicly
available datasets that cover a range of geographi-
cal locations (including Australia, the US, and UK),
scanner strengths and data acquisitions (refer to
https://github.com/james-cole/brainageR for further
details). Components covering 80% of the total vari-
ance of chronological age were input into a Gaussian
process algorithm, and the resulting rotation matrix
used to predict brain age for the NEURO participants.
Brain-PAD was defined as the difference between
brain age and chronological age. A positive value
(i.e., older brain age relative to one’s chronologi-
cal age) is considered a sign of accelerated brain
aging; while negative values (i.e., younger brain age

relative to chronological age) reflect decelerated brain
aging.

Statistical analysis

The mean (standard deviation [SD]) are reported
for continuous data, or as the median (interquartile
range [IQR]) if the distribution was skewed. Cat-
egorical data is summarized by the frequency and
percentage. Intraclass correlation coefficients (ICC)
were employed to assess the reliability of brain
age and brain-PAD over the one- and three-year
follow-up. ICCs and their respective 95% confidence
intervals were calculated based on a single-rating,
consistent-agreement, using a two-way mixed effects
model [58]. Reliability was interpreted as poor
(< 0.5), moderate (0.5–0.75), good (0.75–0.9), and
excellent (> 0.9) [59]. Minimal detectable change
(MDC), representing the least amount of change
necessary to exceed measurement noise [60], was cal-
culated using the following formula: 1.96 ∗ SEM ∗√

2. SEM represents the standard error of measure-
ment, which is equal to the standard deviation of
baseline brain age (SD1) multiplied by the

√
1 − ICC

[59]. Systematic bias in brain age over repeated
assessments was evaluated using the paired-test and
Cohen’s D [61]. Agreement was visualized using
a Bland-Altman’s plot, which plots the difference
between baseline and follow-up estimates against the
mean of the two assessments [62]. Limits of agree-
ment were calculated using the mean difference ±
1.96 ∗ SD of the differences [62]. The mean absolute
error (MAE) and correlation between chronological
age and brain age were used to assess model fit, while
a correlation with brain-PAD was used to evaluate
bias of prediction by chronological age, respectively.

Linear mixed modelling was used to investigate
the association between baseline participant charac-
teristics (‘exposures’) and the baseline, and rate of
change in brain-PAD (‘outcome’). Models included
fixed effects of time (i.e., annual visits of 0 [baseline],
1 and 3 years, treated as a continuous variable) and
exposures, along with the interaction between time
and exposures, and a random intercept and slope. To
account for potential age bias and sex, multivariable
models were adjusted for age, age2, and sex [37]. A
polynomial for age was included given prior knowl-
edge regarding brain-PAD and age bias [63], and its
contribution to our model variance in baseline ran-
dom effects. Results are reported using unstandard-
ized coefficients of the baseline intercept, and interac-
tion, alongside their respective confidence intervals.

https://github.com/james-cole/brainageR
https://github.com/james-cole/brainageR
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Fig. 1. Dot plots presenting the mean and standard deviation of brain age (a) and brain-PAD (b) measured at baseline, year one and three.
Orange line represents the mean; red and green lines define the standard deviation.

Given that the availability of only three repeated
measures may limit the reliability of estimates from
a linear mixed model, we conducted additional anal-
yses to assess the robustness of our main findings
[64]. This involved classifying participants by the
overall pattern of change in brain-PAD over three
years, which we defined as ‘accelerate’, ‘deceler-
ate’, and ‘stable’, and was dependent on the change
in brain-PAD increasing (i.e., a numerically posi-
tive change that represents greater brain atrophy),
or decreasing (i.e., a negative change indicating pre-
served brain aging) by two or more years, or had
otherwise remained relatively stable (irrespective of
direction, change in brain-PAD was less than two
years) over the three year follow-up. Multinomial
logistic regression models were used to determine
which baseline exposures predicted the likelihood of
being in one of these groups, with the stable group
treated as the reference for all models. The change in
brain-PAD of two years was chosen to define groups
as this exceeds our cohorts mean change of 0.47 years
over the three-year follow-up, therefore attenuating
the likelihood of selecting participants by measure-
ment noise alone. All analyses were performed using
Stata software, release 16 (Statacorp, TX).

RESULTS

Study participants

The median chronological age of participants at
baseline was 72 years, more than half had more than
12 years of formal education, and 48% were female.
Although they were recruited as a relatively healthy
cohort without major illness at baseline, participants
had a range of chronic conditions including obesity,
hypertension, diabetes and depression (Table 1).

Reliability of brain age and the brain-predicted
age difference

The mean brain age at baseline, year one and
three are summarized in Fig. 1. Mean baseline brain
age was very similar to the mean chronological age,
collected at the time of scanning (72.2 versus 73.8
years). The mean change in brain age from baseline
to year 1 was 1.4 years (n = 487, 95% CI = 1.19, 1.56,
p < 0.0001) and from baseline to year 3 was 3.4 years
(n = 440, 95% CI = 3.17, 3.64, p < 0.0001). This was
similar to the mean one- and three-year chronolog-
ical age of 74.8 and 76.7 years, collected a median
of 0.9 (IQR = 0.92–0.99), and 2.9 (IQR = 2.90–2.97)
years after the baseline scan, respectively. Excel-
lent test-retest reliability for brain age was found
for both timepoints (Fig. 2). Chronological age was
significantly correlated with brain age at baseline
(rho = 0.44), indicating moderate accuracy of pre-
diction, which remained at the one (rho = 0.42) and
three-year (rho = 0.43, all p < 0.0001) follow-ups.
This is further supported by a MAE of 4.97 years at
baseline and was relatively consistent at each follow-
up (one-year = 4.84 years; three-year = 4.74 years).

Participants individual brain-PAD trajectories are
summarized in Supplementary Figure 1. Mean base-
line brain-PAD was –1.6 years (SD of 6.0) indicating
that the sample, on average, had a slightly younger
brain age relative to their chronological age (Fig. 1).
There was a statistically significant increase in brain-
PAD over one (0.40 [2.1]) and three years (0.47 [2.5];
both p < 0.0001), respectively. No significant associ-
ation was observed between chronological age and
baseline brain-PAD (rho = –0.02, p = 0.60), suggest-
ing no age bias in the prediction of brain-PAD. This
was consistent at one (rho = –0.04, p = 0.39) and three
years (rho = –0.02, p = 0.75). The MDC was small for
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Fig. 2. Scatter and Bland-Altman plots showing test-retest reliability of brain age over 1 (a, b) and 3 years (c, d). The limits of agreement
are represented by values above and below the dotted red line (images b, d).

Table 2
Test-retest reliability measures for brain age and brain-PAD

Measure n aICC (95% CI) SEM MDC Cohen’s d
(95% CI)

Year one
Brain age 487 0.95 (0.94, 0.96) 1.52 4.21 0.66 (0.43, 0.89)
Brain-PAD 0.94 (0.93, 0.95) 1.47 4.07 0.19 (–0.04, 0.43)

Year three
Brain age 440 0.93 (0.92, 0.94) 1.83 5.06 1.36 (1.13, 1.60)
Brain-PAD 0.91 (0.89, 0.92) 1.80 4.99 0.19 (–0.05, 0.42)

ICCs (intraclass correlation coefficient) and their respective 95% confidence intervals were calculated based on a
single-rating, consistent-agreement, using a two-way mixed effects model [58]. MDC, minimal detectable change;
SEM, standard error of measurement.

baseline-year 1 and increased with a longer follow-up
(baseline-year 3; Table 2).

Associations between baseline participant
characteristics and the change in brain-PAD

Of all the characteristics examined, COWAT (a
measure of verbal fluency whereby a lower score rep-
resents a poor cognitive performance) was negatively
associated with brain-PAD at baseline (Supplemen-
tary Table 1), but with a faster rate of change in

brain-PAD (i.e., greater change in brain age relative
to chronological age) over time (Supplementary Fig-
ure 2a). Other characteristics associated with the rate
of change in brain-PAD were sex (Fig. 3), depres-
sion, and physical HRQoL (i.e., interaction term was
significant) (Supplementary Figure 2b, c). The sex
differences are shown in Fig. 3, where males have a
statistically significant faster rate of change in brain-
PAD over time, compared to females. Depression was
linked to a slower rate of change in brain-PAD (i.e.,
lesser change in brain age relative to chronological
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Fig. 3. Marginal plot comparing the change in brain-PAD
between males and females (n = 497). This plot represents the
predictive margins and 95% CI for males (baseline = 259; 1
year = 253; 3 year = 230) and females (baseline = 238; 1 year = 234;
3 year = 210), taken from linear mixed models adjusting for age
and age2.

age) (Supplementary Figure 2b), while higher scores
of physical HRQoL (i.e., better physical well-being)
were associated with a faster rate of change in brain-
PAD (Supplementary Figure 2c). Given participants
were from the ASPREE trial, we assessed the effects
of aspirin but found no association with baseline or
the rate of change in brain-PAD over three years.
This, in addition to all other interactive effects are
summarized in Fig. 4. When treated as a covariate,
aspirin had little to no effect on the prior signifi-
cant findings (Sex: –0.16 [–0.31, –0.004], p = 0.04;
COWAT, baseline brain-PAD: –0.12 [–0.24, –0.003],
p = 0.044; COWAT: 0.02 [0.001, 0.03], p = 0.042;
physical HRQoL: 0.01 [0.0004, 0.02], p = 0.041;
depression: –0.27 [–0.54, –0.01], p = 0.041). Given
that 18 characteristics were examined, and a 5% sig-
nificance level, we would anticipate at least one of
these associations would be significant by chance
alone.

Additional analyses were performed classifying
participants based on whether the change in brain-
PAD remained stable (n = 274), decelerated (n = 61),
or accelerated from baseline to year 3 (n = 105). Par-
ticipants who decelerated had a median chronological
age of 74.2 years (IQR = 71.8–77.1), which was
older than individuals in the stable (72.4 [71.2–75.4])
or accelerate groups (71.6 [70.9–74.0]). Brain-PAD
measured at baseline was significantly different
between the three groups (p < 0.0001), with the
accelerate group having a more negative brain-PAD
(i.e., younger brain age relative to chronological
age) than the stable (mean difference = –2.65 [95%
CI = –4.21, –1.08], p < 0.0001), or decelerate groups

Fig. 4. Forest plot of the association between baseline participant
characteristics and the change in brain-PAD. Dots are the unstan-
dardized beta coefficients representing the interaction between
baseline characteristics and time; bars display the 95% confidence
interval. Models adjusted for sex, age, and age2 ∗p < 0.05.

(mean difference = –4.57 [95% CI = –6.76, –2.37],
p < 0.0001). At year 3, the decelerate group had a
lower brain-PAD than the accelerate group (mean
difference = –2.50 [95% CI = –0.34, –4.66], p = 0.02).
The accelerate group had a mean positive brain-PAD
of 3.7 years (SD of 1.6), which equates to an older
brain age relative to chronological age.

Multinomial logistic regression analyses, adjust-
ing for baseline brain-PAD, sex, and chronological
age, were performed to examine whether baseline
factors predicted the outcome of accelerate or decel-
erate, with the stable group as the reference. From
these we found women had a statistically signif-
icant lower risk (50%) of being in the accelerate
versus stable groups (Supplementary Table 2). A
higher 3MS score (i.e., representing a better global
cognitive performance) was associated with a 6%
lower risk of brain-PAD accelerating, while a lower
SES was associated with a statistically significant
higher risk (66%) of brain-PAD accelerating than
remaining stable. Despite the associations described
above, no association was observed with depres-
sion, COWAT, and physical HQRoL, or any other
characteristic.

DISCUSSION

In a cohort of community-dwelling older adults
from the ASPREE NEURO study (aged 70 years and
above), we investigated the test-retest reliability of
‘brain age’, estimated from a widely-used algorithm
[6]. We found excellent test-retest reliability of brain
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age longitudinally from baseline over one and three
years, which highlights the robustness of this measure
over the short and medium-term. We then examined
whether factors relating to sociodemographic, health
and wellbeing, and physical and cognitive function
were associated with the three-year change in brain
aging. We identified an association with sex, whereby
a faster rate of change in brain aging (i.e., representing
a greater increase, and therefore worsening of brain
age relative to chronological age) was observed in
men. We also found a weak, and somewhat paradox-
ical evidence for an association between depression
and slower rates of change in brain aging (i.e., lesser
change in brain age relative to chronological age),
and associations between a faster rate of change in
brain aging with both higher verbal fluency, and with
greater physical HRQoL.

Among the determinants investigated in this study,
the most consistent was the faster rate of brain aging,
and thus cortical atrophy, occurring in men compared
with women, although the effect sizes were small.
While this finding of greater brain atrophy in men
aligns with some longitudinal neuroimaging studies
[65, 66], evidence from other studies is specific to
certain brain regions, and relatively mixed [67, 68].
Other sex differences include a higher frequency of
white matter hyperintensities in women, and cortical
infarctions in men [69], and this is considered a pos-
sible explanation for some reports that women have
a higher incidence of Alzheimer’s disease (AD) [70],
although this remains inconclusive [71]. In terms of
brain age, two small studies (n = 14 and 20) have
investigated brain age prospectively, but in younger
community dwelling adults [36, 72]. Of these studies,
only one had examined sex differences, but this was
in relation to the female menstrual cycle [36]. Find-
ings from some cross-sectional studies indicate that
women have a higher brain age than men, and thus
greater age-related brain changes [25–28, 73]. Con-
versely, other studies report an older brain age relative
to chronological age in men compared to women [6,
7, 74], which aligns with our longitudinal finding of
greater brain atrophy in men.

Although it remains inconclusive, sex differences
may be linked to the involvement of sex hormones,
including exposure to natural estrogen and testos-
terone over the lifetime, which are considered to
have neuroprotective effects [75]. Declines in estro-
gen have been considered partially responsible for
the greater loss of brain tissue volume observed in
postmenopausal women, and later onset of AD in
women compared to men [76], though these findings

remain inconsistent [77–79]. They also do not cor-
roborate some findings from observational studies
on hormone therapies, which suggest no beneficial
effects of estrogen for older women [80]. Conversely,
given its primary role in males, declines in testos-
terone are considered an important risk factor for
AD in men [81–83], and could partly explain the
accelerated brain atrophy in our study cohort, though
the evidence remains inconsistent [84, 85]. Few neu-
roimaging studies have examined sex differences
in circulating testosterone, with one cross-sectional
study reporting an association between higher levels
of testosterone and lower cerebral amyloid burden in
older women (mean age of 73 years), and a larger
hippocampal volume in men (mean age of 72 years)
[86]. In older men with prostate cancer, the pro-
longed use of androgen deprivation therapy (ADT)
has been found to be cross-sectionally associated with
a smaller grey matter volume [87], while a longitu-
dinal study reports a decline in grey matter volume
over 6 months of ADT [88]. Sex differences in these
hormones have also been identified from brain tis-
sue, whereby lower levels of testosterone were found
in men (aged 60–79 years), and older women with
AD (80 years and above), while lower levels of estro-
gen were identified in women with AD (aged 61–91
years), but not men (aged 60–89 years) [89].

The other findings in our study, with regards to
depression, physical HRQoL, and verbal fluency,
were not robust to the secondary analysis, and do not
align with the limited number of studies undertaken
in this area. For example, in the mixed models we
found that depression was associated with a slower
rate of change in brain aging, suggesting few age-
related brain changes occurred over three years, but
the small number of cross-sectional brain age stud-
ies, to date, have reported no association in small and
larger cohorts of community dwelling adults [90–92].
Further, regarding our findings on depression, we
could also not rule out the possibility of a ‘regres-
sion to the mean’, where an extremely negative, or
positive baseline value is followed by a three-year
estimate that is closer to the subjects mean brain-
PAD [93]. Our finding of a faster rate of change in
brain aging, and thus greater brain atrophy in people
with better cognitive function and physical HRQoL at
baseline, contradicts the well-established description
of age-related declines in physical and cognitive func-
tion [94, 95]. There have been a few cross-sectional
brain age studies that mostly report a statistically
significant negative association with verbal fluency
[26, 56]. Our prior cross-sectional analysis of verbal
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fluency and brain-PAD involved participants overlap-
ping with this study and showed no association [12].
Overall, longitudinal evidence from neuroimaging
studies is relatively sparse, inconsistent, and limited
to regional brain volumes. Our findings are a unique
contribution to the current literature, which highlight
the need for further investigation.

Strengths and limitations

This study has a number of strengths. Firstly, we
estimated brain age using a publicly sourced model
that has been previously validated using an indepen-
dent test cohort [6], and images underwent rigorous
quality assessments. We assessed the test-retest reli-
ability of this brain age algorithm over periods of
1 and 3 years, which provides strong evidence for
the validity and robustness of this measure. We con-
ducted a prospective investigation of brain age using
data from a large community-based cohort of older,
cognitively unimpaired participants, and thus focused
on an important stage of life which is characterized by
brain atrophy, and heterogeneity of aging trajectories.

Several limitations must also be considered. A high
proportion of participants were white, from a higher
SES percentile, and had completed 12 or more years
of formal education. Participants were also generally
healthy at inclusion, which limits the generalizabil-
ity of these findings. In addition, dropouts between
years of follow-up may have included individuals
with greater brain atrophy, poor cognitive function,
or physical health, which further limits these study
findings. Despite the longitudinal nature of this study,
our findings are limited to a three-year follow-up
period. Although we observed statistical significance
for some of the baseline exposures, the overall effects
were small, and given the number of tests, we would
expect at least one significant association by chance
alone.

The moderate fit of the brain age model to predict
chronological age for our study cohort was weaker
than achieved in the training sample used to develop
the model (n = 857, r = 0.973, MAE = 3.93 years), and
the independent validation cohort (n = 611, r = 0.947,
MAE = 4.90 years) [6], and may partially explain
our null findings. This may relate to the narrow age
range of our study sample, which is in contrast to the
broad age-range used to train and validate the model
(18 to 92, and 90 years, respectively), and is further
supported by the difference between the mean abso-
lute errors when adjusting for age range (0.05 and
0.07 years for the test and validation dataset vs. the

0.27 to 0.28 years identified for our study cohort).
Such discrepancies may have introduced a measure
of noise into our estimates, alongside true individual
variability. In this regard, we cannot rule out the pos-
sibility that our select cut-off value of two-years, that
was used to define participants as accelerate, deceler-
ate and stable, may be based on measurement noise,
rather than true interindividual differences.

While not a statistically significant, the weak
negative correlation between brain-PAD and chrono-
logical age may point to an age bias (i.e., statistical
phenomenon whereby the model underestimates
brain age in older populations), that could partially
explain the negative mean brain-PAD observed for
our study cohort and may confound findings with
other age-related exposures [37]. In attempt to over-
come this limitation, we include chronological age as
a covariate in all mixed models [96]. Finally, though
estimates of brain age were derived from local tissue
volume (i.e., grey and white matter volumes) from
across the whole brain, which change with aging [3],
they can provide no evidence on associations with the
change in regional brain aging.

Conclusions

This was the first study to prospectively examine
the association between a range of participant charac-
teristics and the rate of change in the brain-PAD. Here
we present consistent yet weak evidence that older
men have faster brain atrophy than women. None of
the other baseline characteristics were consistently
associated with brain aging. Given the sparsity of lon-
gitudinal research on brain age in older community
dwelling populations, future prospective studies are
needed to confirm our findings.
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