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Abstract.
Background: Alzheimer’s disease (AD) is the most common form of dementia. AD is also the leading cause of morbidity
and mortality due to dementia worldwide. It has been shown that AD is associated with type 2 diabetes mellitus (T2DM)
and brain insulin resistance. Rs1801278 is a polymorphism in insulin receptor substrate-1 (IRS-1) gene which changes the
amino acid Arg972. This polymorphism has been found to be associated with susceptibility to AD in some populations.
Objective: In the present study, our aim was to investigate the association of Arg972 IRS-1 (rs1801278) gene polymorphism
and late-onset Alzheimer’s disease (LOAD) in an Iranian population.
Methods: In this case-control study, 150 patients with LOAD and 150 unrelated healthy controls were recruited. Polymerase
chain reaction (PCR) was performed to amplify a DNA segment of 263 base-pair (bp) length containing the single nucleotide
polymorphism (SNP). The PCR product was then incubated with MvaI restriction enzyme to undergo enzymatic cleavage.
Electrophoresis was thereafter carried out using agarose gel and DNA safe stain. The gel was ultimately visualized under a
UV trans-illuminator. Allelic and genotypic frequencies were then compared.
Results: A allele (mutant) of the gene was significantly associated with the risk of AD after adjustment for sex and age
(p = 0.04, adjusted OR:1.77, 95% CI:1.00–3.11). Only AA genotype (mutant homozygote) was significantly associated with
the risk of AD after adjustment for sex and age (p = 0.01, adjusted OR:2.39, 95% CI:1.22–4.66).
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Conclusion: SNP rs1801278 is significantly associated with the risk of developing AD in the studied Iranian population.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
form of dementia and also the leading cause of mor-
bidity and mortality due to dementia worldwide [1].
AD is characterized by neuronal cell death [2] which
arises from extracellular amyloid-� (A�) plaques and
intracellular tau neurofibrillary tangles (NFTs) [3].
The World Alzheimer Report indicated about 47 mil-
lion AD or AD-related dementia throughout the world
in 2015 [4]. It is anticipated that, as the world’s popu-
lation is aging, the number of patients with dementia,
will grow to 130 million worldwide in 2050 [1, 4].
AD is classified into two forms of familial early-onset
AD and sporadic late-onset AD (LOAD), constitut-
ing 3% and 97% of the AD cases, respectively [5].
The progression of LOAD occurs normally after 65
years of age [6].

It is believed that AD is associated with some
gene mutations. Mutations of A� precursor protein
and presenilin 1 and 2 in familial AD or LOAD and
mutations of �4 allele of APOE (APOE �4) gene in
sporadic cases of AD have been reported [7, 8]. AD is
also associated with polymorphisms of TREM2 [9],
MS4A6A [10], and CD33 genes [11].

Epidemiological and experimental studies suggest
that insulin resistance is a key risk factor for type
2 diabetes mellitus (T2DM), AD, and other AD-
related dementias [12]. An epidemiological study
showed that T2DM is associated with an increased
risk of AD [3]. The incidence of dementia increases
by 50–100% relative to people without diabetes [13].
In Iran, prevalence of impaired fasting glucose and
total DM were 14.60% (95% CI: 12.41–16.78) and
11.37% (95% CI: 9.86–12.89) among individuals
with 25–70 years of age, respectively, in 2011 [14].
The number of DM patients is estimated to rise to 9.24
million cases by 2030 in Iran [15]. In a cohort study
carried out in Guilan province of Iran (2014–2017),
prevalence of DM was 24.1% [16].

Recently, it has been shown that the central ner-
vous system (CNS) insulin resistance can be present
apart from peripheral insulin resistance of T2DM in
individuals with LOAD [17–20].

Neuronal growth, development, and neurogene-
sis have important roles in insulin function in the
CNS [18, 19]. The role of insulin in neuronal cells is

mediated by two main signaling pathways, that is to
say, insulin – insulin receptor substrate (IRS) – pro-
tein kinase B (AKT) pathway and mitogen-activated
protein kinase pathway [20]. Insulin – IRS1 – PI3K
(phosphoinositide 3-kinase) – AKT – TBC1D4 sig-
naling induces cognition and emotional function in
hippocampus. In addition, insulin – IRS1 – PI3K –
AKT – GSK3� (glycogen synthase kinase 3) has a
role in neuroplasticity and neurogenesis [20].

In animal models, brain insulin level alterations can
influence neuronal glucose uptake and metabolism
due to glucose transporter type 4 (GLUT4) translo-
cation arising from insulin – IRS1 – AKT signaling
pathway in the basal forebrain, hippocampus, amyg-
dala, and to a lesser degree, in the cerebral cortex
and cerebellum [21–24]. Under the condition of high-
energy demand during spontaneous alternation tests
of spatial working memory, this mechanism can pro-
mote cognitive activity in the hippocampus in rats
[21–23].

Brain insulin resistance can result from insulin-
like growth factor-1 (IGF-1) resistance and IRS-1,
2 malfunctions induced by A� accumulation [25].
There is a two-sided relationship between brain
insulin resistance and A� plaque deposition in the
brain [26].

Arg972 IRS-1 gene polymorphism (rs1801278)
results in a Gly/Arg substitution at codon 972
(Arg972) that impairs IRS-1 ability to activate the
downstream PI3K signaling pathway. Therefore, it
can lead to insulin signaling malfunction [6]. Lack of
insulin signaling is proposed to upregulate amyloido-
genic and Tau NFT-genic pathways. There is a higher
prevalence of this polymorphism in T2DM [27] and
AD patients [28].

Albegali et al. [29] and Alharbi et al. [30] have
found significant association of rs1801278 variant
with T2DM (p < 0.001 and p = 0.04, respectively).
Li et al. [31] in a meta-analysis, found significant
association between rs1801278 and T2DM risk in
recessive model (AA versus GA + GG, p = 0.043) and
codominant model (AA versus GG, p = 0.007).

In contrast, some studies have shown no asso-
ciation of IRS-1 gene polymorphisms with AD in
Caucasian populations [27, 32–35], but a Chinese
study evaluating the association of rs1801278 poly-
morphism with AD in a Han Chinese population
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revealed a significant association of the polymor-
phism and AD [28].

An explanation for this discrepancy could be the
possible effects of ethnic populations on the men-
tioned association [28].

As little is known about the association of Arg972
IRS-1 (rs1801278) with AD in the Iranian ethnic
population, we set out the present study to test the
hypothesis of the presence of the association between
the polymorphism and AD in an Iranian population
in the north of Iran.

MATERIALS AND METHODS

Subjects

Given the results of previous published research
[28] and considering type 1 error (�) = 0.05, type 2
error (�) = 0.1 (power of study = 90%), and a case-
control ratio of one-to-one, a minimum sample size
of 148 participants in each group was calculated and
considered as a prerequirement for this study. There-
fore, 150 patients with LOAD and 150 unrelated
healthy subjects were enrolled in Guilan province
in the north of Iran. Inclusion criteria included
patients with probable LOAD diagnosed according
to the National Institute on Aging and Alzheimer’s
Association (NIA-AA) diagnostic criteria of AD
[36]. Exclusion criteria for the patients were the
history of head trauma, stroke, motor neuron dis-
ease, congenital dementia, neurological infections,

neuropsychologic systemic lupus erythematosus, sar-
coidosis, multiple sclerosis, other neurodegenerative
diseases, and familial history of AD in first-class rel-
atives. Informed consent was obtained from all the
participants. This study was approved by the ethics
committee of Guilan University of Medical Sciences.

Genotyping

Five milliliters of peripheral blood sample were
collected from the participants and stored in Tris-
EDTA 5% buffer at –30◦C. DNA was extracted by
a salting-out method from white blood cells. For-
ward and reverse primers were synthesized and used
for PCR amplification. Restriction enzyme MvaI was
used for Restriction Fragment Length Polymorphism
(RFLP) as previously described [37].

PCR amplification was performed for all samples
using respective forward and reverse primers. In the
next step, PCR products were incubated and digested
by MvaI. PCR-RFLP characteristics are shown in
Table 1.

Table 1
Enzymatic digestion reaction characteristics

Forward primer 5′- CTT CTG TCA GGT GTC CAT CC-3′
Reverse primer 5′- TGG CGA GGT GTC CAC GTA GC-3′
Restriction enzyme MvaI
Recognition 5′ . . .C C↓W G G. . . 3′

sequence 3′ . . .G G W↑ C C. . . 5′
Restriction GG genotype: 263 bp

fragments GA genotype: 263, 180, and 83 bp
AA genotype: 180 and 83 bp

Fig. 1. Electrophoresis of undigested PCR products. M, marker ladder; NTC, no template control ladder.
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Fig. 2. Electrophoresis of restriction products. 83 bp band cannot be visualized in this figure due to usage of 3% agarose gel, which can
show DNA fragment size of larger than 100 bp. GG (wild type homozygote genotype) −→ Bands No. 1, 2, 8–12 (263 bp). GA (heterozygote
genotype) −→ Bands No. 3, 6 (263, 180, and 83 bp). AA (mutant homozygote genotype) −→ Bands No. 4, 5, 7 (180 and 83 bp).

Electrophoresis was carried out using 3% agarose
gel and visualized by DNA-safe stain using a UV
trans-illuminator (Figs. 1 and 2). A few samples were
sequenced to illustrate wild-type and variant allele
sequences.

Statistical analysis

Hardy-Weinberg equilibrium analysis was per-
formed with chi-square goodness-of-fit test. Categor-
ical variables were expressed as n (%) and analyzed
with chi-square test or Fisher’s exact test where
appropriate. Continuous variables were expressed as
mean ± standard deviation (SD) and analyzed with
independent samples T-test. Comparison of genotype
and allele frequencies between patients and controls
were made using the logistic regression analysis to
assess odds ratio (OR) and 95% confidence interval
(CI). Statistical analyses were performed using SPSS
(version 26). � = 0.05 was used as statistical level of
significance.

RESULTS

Data from 300 subjects in two groups of cases
and controls were collected and analyzed. The
mean ± SD of age in the case and control groups
was 83.01 ± 7.24 and 76.94 ± 9.54, respectively
(p < 0.001). Thirty-eight (25.3%) and sixty-two
(41.3%) were male in the case and control groups,
respectively (p = 0.002).

The genotype frequencies of the IRS-1 gene
rs1801278 polymorphism were not in Hardy-Wein-
berg equilibrium in both groups.

Figure 3 displays sequencing results of the wild-
type and variant alleles of the Arg972 IRS-1 gene
polymorphism (rs1801278).

The prevalence of A (mutant) allele in case and
control groups were 31.67% and 19.67%, respec-
tively. By using logistic regression analysis and
considering age, sex, and allelic frequencies as cov-
ariates, A allele was significantly associated with the
risk of AD after adjustment for sex and age (p = 0.04,
adjusted OR: 1.77, 95% CI: 1.00–3.11) (Table 2).

The prevalence of AA (mutant homozygote IRS-1
polymorphism) genotype in case and control groups
were 26% and 11.33%, respectively (Table 2). The
prevalence of GA (heterozygote IRS-1 polymor-
phism) genotype in the case and the control groups
were 11.33% and 16.67%, respectively. By using
logistic regression analysis and considering age, sex,
and genotypic frequencies as covariates, only AA
genotype was significantly associated with the risk
of AD after adjustment for sex and age (p = 0.01,
adjusted OR: 2.39, 95% CI: 1.22–4.66). GA geno-
type was not associated with the risk of AD after
adjustment for sex and age (p = 0.37, adjusted OR:
0.71, 95% CI: 0.34–1.48).

DISCUSSION

In this case-control study, we enrolled 150 LOAD
patients and 150 unrelated controls for evaluation of
the association of Arg972 IRS-1 gene polymorphism
with the risk of AD in an Iranian population. A allele
was significantly associated with the risk of AD, com-
pared to G allele after adjustment for sex and age.
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Fig. 3. Sequencing results for the Arg972 IRS-1 (rs1801278) gene polymorphism (1: wild-type allele; 2: variant allele).

Furthermore, AA genotype was significantly associ-
ated with the risk of AD, in contrast to GG and GA
genotypes after adjustment for sex and age.

To the best of our knowledge, only one study eval-
uated the association of Arg972 IRS-1 (rs1801278)
gene polymorphism with the risk of AD [28]. Wang
et al. [28] in a case-control study in 2014, evalu-
ated 1113 AD patients and 1113 healthy controls
which were matched for sex, age, body mass index,
residence area, and education level. The authors
showed that 5.7% of the patients and 2% of the
controls had AA genotype (mutant homozygote),
respectively and 42.3% of the patients and 20.1% of
the controls had GA genotype (heterozygote Arg972

IRS-1), respectively. Moreover, the authors found
that both genotypes were significantly associated
with an increased risk of AD after adjustment for
comorbidities including T2DM, coronary artery dis-
ease, and hypertension (p < 0.001) [28]. Also, 26.8%
of the patients and 12% of the controls carried
the mutant A allele, respectively and the A allele
was significantly associated with an increased risk
of AD after adjustment for the above-mentioned
comorbidities (p < 0.001). On the other hand, in
each age sub-group of the cases, the prevalence
of AA genotype, unlike GG genotype, in patients
with a Mini-Mental State Examination (MMSE)
score ≤ 14 was high, compared with that in patients
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Table 2
Comparison of genotypic and allelic frequencies of Arg972 IRS-
1 gene polymorphism between AD cases (N = 150) and healthy

controls (N = 150)

Genotype & Cases Controls Adjusted OR p
Allele N (%) N (%) (95% CI)

GG 94 (%62.67) 108 (%72) 1.00 a –
(Reference)

GA 17 (%11.33) 25 (%16.67) 0.71 a 0.37
(0.34–1.48)

AA 39 (%26) 17 (%11.33) 2.39 a 0.01
(1.22–4.66)

G 205 (%68.3) 241 (%80.3) 1.00 b –
(Reference)

A 95 (%31.67) 59 (%19.67) 1.77 b 0.04
(1.00–3.11)

aAdjusted OR is based on the logistic regression with covariates
to be age, sex, and genotypic frequency. bAdjusted OR is based on
the logistic regression with covariates to be age, sex, and allelic
frequency.

with MMSE score ≥ 15–26 (p < 0.001). Furthermore,
it was demonstrated that patients with GG genotype
had higher MMSE score in each age group, com-
pared with GA and AA genotypes (p < 0.05). It was
concluded that Arg972 IRS-1 (rs1801278) gene poly-
morphism is significantly associated with AD in Han
Chinese population. Moreover, the authors stated that
this polymorphism may also have a prognostic value
for AD [28].

The findings of the study of Wang et al. [28], were
in agreement with those of our study demonstrating
a significant association of A allele and AA geno-
type with increased risk of AD. Unlike the findings
of Wang et al. [28], we did not find a higher prevalence
of GA genotype in the patients even after adjustment
for sex and age.

Hamilton et al. [33] investigated the role of insulin
signaling-related candidate gene polymorphisms in
954 LOAD patients higher than 60 years of age and
1,106 controls in a Caucasian population in Eng-
land. The authors showed that there was no significant
association of IRS-1 polymorphism (rs1801123) with
AD.

Giedraitis et al. [32] used available data from
two genome-wide association studies [34, 35]. They
showed that IRS-1 polymorphism (rs10187726) had
a significant association with LOAD in one of the
mentioned studies [34].

In addition, the literature suggests no association
of other IRS-1 gene variants (rs2234931, rs2943634)
with AD in Caucasian populations [28, 32, 33, 35,
38, 39].

The above-mentioned studies suggest possible eth-
nic influences on the association between IRS-1 gene
variants and the risk of AD.

There are caveats with respect to the present study.
First, data concerning comorbidities and clinical
characteristics such as T2DM, plasma glucose, heart
disease, hypertension, weight, height, body mass
index, and waist/hip ratio of the participants were not
collected and therefore we were not able to adjust the
results accordingly. For example, an association of
rs1801278 with the risk of T2DM has been reported
[29–31]. Therefore, future studies with adjustment
of these parameters would be helpful. Second, the
genotype frequencies of the gene variant were not
in Hardy-Weinberg equilibrium. However, inasmuch
as 10% of all genotype–phenotype association stud-
ies show deviation from Hardy-Weinberg equilibrium
[40], the results of our trial cannot be considered
abnormal. Nevertheless, we suggest future investi-
gations with larger sample sizes.

To sum up, the findings from the present study indi-
cate a significant association of mutant A allele and
mutant homozygote AA genotype with the risk of AD
after adjustment for sex and age. Further investigation
is needed to assess the effects of rs1801278 poly-
morphism on the severity of cognitive impairment to
assess prognostic values.
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