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Abstract.

Background: The multiple appearance phenotypes in Alzheimer’s disease (AD) are manifested in epidemiologic sexual
dimorphism, variation in age of onset, progress, and severity of the disease.

Objective: In this study, we focused on sexual dimorphism, aiming to untie some of the complex interconnections in AD
between sex, disease status, and gene expression profiles. Two strategic decisions guided our study: 1) to value transcriptomic
multi-layered profiles over alterations in single genes expression; and 2) to embrace a sexual dimorphism centered approach,
as we suspect that transcriptomic profiles may dramatically differ not only between healthy and sick individuals but between
men and women as well.

Methods: Microarray dataset GSE15222, fulfilling our strict criteria, was retrieved from the GEO repository. We performed
cluster analysis for each sex separately, comparing the proportion of healthy and AD individuals in each cluster.

Results: We were able to identify a biased, female, AD-typified cluster. Furthermore, we showed that this female AD-typified
cluster is highly similar to one of the male clusters. While the female cluster constitutes mostly sick individuals, the male
cluster constitutes healthy and sick individuals in almost identical proportion.

Conclusion: Our results clearly indicate that similar transcriptomic profiles in the two sexes are “physiologically translated”
in to a very different, dramatic outcome. Thus, our results suggest the need for a sex-based and transcriptomic profile-based
study, for a better understanding of the onset and progression of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neu-
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architecture starts to emerge [1, 2], mainly the extra-
cellular deposited amyloid-f3 (A) peptide known as
amyloid plaques, and the intracellular hyperphospho-
rylated tau protein accumulation as neurofibrillary
tangles [3].

AD prevails worldwide with the highest incident
rate in North America and Western Europe. The
most dominant risk factor of AD is aging, with an
exponential growth of incident rate with age. AD
is a multifactorial disease with genetic (70%) and
environmental (30%) causes: i.e., risk factors are
categorized as genetic, non-modifiable, or multiple
modifiable lifestyle related ones [4, 5].

Two sub-populations of AD patients are diag-
nosed: early onset individuals, developing AD prior
to the age of 65 years, and late onset AD, account-
able for 95% of all AD patients (age 65 years and
above). Early onset AD is associated with inherited,
dominant rare mutations in amyloid precursor pro-
tein (APP) and in presenilin (PSENI and PSEN2)
[6-8]. Late onset AD is known to be associated with
Apolipoprotein E (APOE) €4 allele [9]. APOE gene
transcribes into three variants: APOE &2, €3, and &4.
Heterozygotes for APOE &4 allele are at 2-3 fold
higher risk for AD, while homozygotes show four
times higher risk for AD than the heterozygotes [4,
5, 10]. APOE g2 allele, on the other hand, shows
a protective effect, and is under-represented in AD
patients in comparison to the healthy population [4,
9-13]. Furthermore, genome wide association studies
indicate the involvement of three biological pathways
associated with AD: the immune system and inflam-
matory responses; cholesterol and lipid metabolism;
and endosomal vesicle recycling, in a yet unknown
manner [8].

Sexually dimorphic occurrence rate of AD is
reported around the world, with an approximately
twofold higher rate of AD in women [14, 15]. Yet,
recently, a large-scale meta-analysis combining the
results of nearly 58,000 individuals, reported that
the risk of developing AD in individuals with APOE
€3/e4 genotype was found to be similar between men
and women, while women have an increased risk at
younger ages, indicating the complex interconnec-
tions between an individual’s sex and genotype [16].

Understanding the role and mode of influence of
the various factors interconnected in AD may poten-
tially lead to the alteration of AD from untreatable to
an improvable disease, and maybe even toward diag-
nosis and extension of the pre-symptomatic phase [5].

As in many complex diseases, the AD patient
population is composed of several sub-groups of

phenotypes expressed in different onset, progress,
and severity of the disease. Thus, we are witnessing
multiple appearances under the same disease name.
Under these circumstances, identifying “elite genes”,
directly involved in AD pathology onset and progress,
is central, yet far from being sufficient. We would like
to suggest that the profound distinction between AD
patients and healthy controls does not lie in any single
specific gene but rather in a complex pattern of gene
expression. Moreover, we suspect that this pattern
may dramatically differ between men and women.

Thus, we implemented two strategic decisions:
first, to embrace a sexual dimorphism centered ap-
proach, stressing the notion that the differences
between healthy and sick individuals are not neces-
sarily synonymous when it comes to the sex of the
individuals studied, and might even reflect a mirror
image of each other; and second, to value transcrip-
tomic multi-layered profile over alterations in single
genes expression.

Following the split of the dataset according to sex
criteria, we performed K-means cluster analysis. We
then studied the proportion of healthy and AD sub-
jects in the two defined clusters. Thus, we were able
to identify a biased, female, AD-typified cluster.

METHODS

Data were retrieved from Gene Expression Omni-
bus (GEO) repository [17]. We analyzed GSE15222
experiment datasets which include human brain from
363 cortical samples. Transcriptome analysis was
performed on these 363 individuals: 177 women, out
of which 85 were healthy individuals and 92 AD
patients; and 199 men, out of which 102 were healthy
individuals and 88 AD patients.

This specific dataset was chosen due to its large
size and moreover a sufficient number of cases from
each sex by disease status combination.

To guarantee that only substantially expressed
probes will be included in this analysis, a thresh-
old was set such that probes were only considered
if at least 50% of each group subjects had an expres-
sion level above the overall 95 percentile. We used
the bisection algorithm in order to find the appro-
priate percentile of expression level over the entire
experiment’s data set.

K-means cluster analysis was implemented, in
order to reveal whether we could untie some of the
complexities of AD, in terms of the interconnec-
tions between sex, disease state, and gene expression
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Uneven distribution of healthy and sick women between the two gene expression profiles clusters.
Table 1 presents the different interconnections between disease status and sexes in each cluster,
by sex and by disease status. p-value of disease status and sex of individual’s distribution is presented

Dataset ID GSE15222

Sex Female (n=177) Male (n=190)
Cluster ID [size]/ Disease state Cluster I Cluster II Cluster I Cluster II
Healthy 78 7 76 26
AD 59 33 55 33

P <0.001 Not significant

patterns. This algorithm was chosen as it can pro-
vide adequate partitioning of a dataset without prior
knowledge, while enabling the user to control and
determine the suitable number of clusters.

For each dataset of gene expression, two clus-
ter analyses were carried out. Clusters were defined
according to a criterion of expression level distance.
Thus, within each cluster the distance of the probes’
expression levels aims to be the smallest, while
attempting to achieve the largest distance between
clusters. According to this algorithm, each individ-
ual was ascribed to one of the groups, thus we could
determine whether group ascription is associated with
additional characteristics (i.e., disease status). Each
group was characterized by its own probe expression
pattern.

Since the main goal of our study was to detect genes
significantly contributing to sexual dimorphism char-
acteristic of AD, we performed the cluster analysis for
men and women separately, due to our concern that
expression profiles unique to one gender would be
masked.

We used multiple logistic regression in order to
test for the effects of gender and cluster assignment
on disease status, and the Chi-square test as follow-
up analysis in order to correlate cluster assignment
with disease status separately for men and women
and learn the nature of the interaction. We considered
results as statistically significant at p <0.05.

RESULTS

Gene expression data were split into subsets
according to sex. K-means clustering algorithm was
implemented to create two clusters. Clusters were
formed based on a vector of their probe’s expres-
sion levels, such that subjects that were assigned to
the same cluster were similar in their probe expres-
sion levels vector, while subjects not assigned to the
same cluster differed in it. Consequently, in each

group (190 males or 177 females) subjects were sep-
arated into two clusters, substantially different from
each other. No correlation between age and clusters’
assignment was found for either sex.

We were interested in the interaction between
gender and cluster assignment that affects disease
status—namely, to test if the assignment of healthy
and AD individuals into two clusters differ between
men and women. In order to test the interaction,
we conducted binary logistic regression. As cluster
names are arbitrary, we had to verify that gender dif-
ferences in cluster assignment are a result of true
differences in the cluster patterns, as opposed to a
result of the randomly given cluster name. There-
fore, we marked as “cluster I”’ the cluster to which
the majority of the individuals were assigned in each
gender. However, we repeated the test with opposite
cluster names in one gender, obtaining even more
significant results. For reasons of parsimony, we will
only present the results from the first model.

While neither of the main effects of gender or
of cluster were significant (odds ratio (OR)=0.26,
p=0.052 and OR =0.46, p=0.318, respectively), we
found a significant gender by cluster interaction
(OR =3.81,p=0.015).In order to more deeply under-
stand the nature of the interaction, we conducted
separate Chi-square tests for men and women, to test
the relation between cluster and disease status. We
found that while clusters did not differentiate between
healthy and AD men, they were highly correlated
with disease status among women. In detail, a cross-
match of female clusters with disease status revealed
most intriguing results. Cluster II was almost solely
composed of AD women (~83%; p <0.001; Table 1),
while cluster I and both male clusters showed a more
even proportion of AD and healthy distribution. The
differences between the two transcriptomic profiles
in women are visually demonstrated in Fig. 1.

The split of the dataset according to sex enabled us
to uncover differences in correlation between tran-
scriptomic profiles and disease status, in women
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Fig. 1. A) Women transcriptomic profiles, cluster I (blue) and II (green); B) Women transcriptomic profiles, cluster I (blue) and II (green)

zoom in on probes 1-100.
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Fig. 2. A) Women and men transcriptomic profiles, cluster I (blue - women; red men) and II (green - women, grey - men; a list of the probes
by name is presented in Supplementary Table 1); B) Women and men transcriptomic profiles, cluster I (blue - women; red men) and II (green

- women, grey — men) zoom in on probes 1-100.

alone, a tendency that would have been masked if
male and female data were analyzed together.
Second to the identification of the sexually dimor-
phic effect on the uneven distribution of AD versus
healthy individuals in female cluster II, we focused
on evaluating whether we can identify similarities
between the two clusters of men and women. In other
words, we wanted to see if the transcriptomic pro-
files of cluster I and II are similar among the men and
women. Figure 2 displays a clear picture; while clus-
ter I profiles of the men and women almost totally
overlap, cluster II profiles are spaced one from the

other, with a small elevation in the mean expression
levels of the women’s probe in comparison to the men
ones. Yet, though the differences between the two
profiles of cluster II do not seem very dramatic, they
hold a striking difference in terms of the proportion
of subjects populated them. While female cluster 11
constitute mostly sick, AD individuals male cluster
IT holds healthy and sick patients in almost identi-
cal proportion. In order to statistically support this
observation, we calculated a standard deviation-like
measure, i.e., the square root of mean squared dis-
tances between cluster centers. We compared the two
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Square root and medians of the squared distances between cluster centers. Table 2 presents the
square root of mean squared distance, and the median squared distance of the two sexes in each
cluster and of the two clusters within each sex

Cluster I, Cluster II, Male, Female,
male versus male versus cluster I cluster I
female female versus versus
cluster IT cluster IT
Square root of mean squared distance 359.3 1321.4 2868.8 3778.3
Median squared distance 8,715 43,708 137,058 177,754

sexes within each cluster, contrasted with comparing
the two clusters within each sex. The results, pre-
sented in Table 2, show that the distance between men
and women in cluster I is smaller than the same dis-
tance in cluster II, while the differences between the
two clusters within each sex are dramatically larger,
up to over 10 times. Medians of the squared distances
lead to the same conclusion.

DISCUSSION

In this study, we reanalyzed documented gene
expression levels of AD and healthy individuals’
brain samples. Following the split of data according
to subjects’ sex, we implemented K-means cluster-
ing separating each sex into two clusters, based on
a vector of each individual probes’ expression level.
Consequently, strongly dissimilar transcriptomic pro-
files for each sex were obtained. We were interested
in whether any of those profiles were indicative of
AD and if this indication differs between the sexes.
A sexual dimorphism is indeed evident, with a greater
representation of AD subjects in one of the clusters in
females, but not in males. Specifically, we identified
a biased, female, AD-typified transcriptomic profile.

Disease-oriented functional genomics strive to
detect the change that unless occurred, the normal
phenotype would have stayed intact, thus promoting
our understanding of the molecular base of a given
disease. This strategy is beneficial, yet often tells us
only part of the story. Our results clearly demonstrate
the need for studying entire gene interaction. Here
we showed that the expression profiles of healthy and
AD subjects are highly dissimilar up to the point of
profiles’ segregation, and more so when considering
a more complex pattern which involves the sex of
the subject, attributing sexual dimorphism its proper
contribution.

Epidemiological studies indicate that a major risk
factor for AD is being female [14]. Thus, identifying
such a striking biased cluster raises the possibility

that healthy women expressing this transcriptomic
profile are more prone to develop AD, possibly due
to genetic predisposition. Namely, we might be look-
ing at a transcriptomic profile characterizing not only
AD female patients but also pre-clinical ones. Further
study is needed to explore this possibility. Obvi-
ously, no long-term follow-up is relevant, due to the
nature of the samples taken (postmortem autopsy).
Yet, familial heritage analyses may provide an indi-
rect clue to the potential of this hypothesis, hence, the
enrichment of these individuals with an AD inherited
background.

We further showed that small differences in the
transcriptomic profiles of cluster II in men and
women holds dramatic surprise in terms of the pro-
portion of AD and healthy subjects populating these
clusters. While most women presenting this profile
were diagnosed with AD, men presenting a very
similar profile showed no significant distribution
between AD and healthy individuals. It is intriguing
to decipher the way similar transcriptomic profiles
are “physiologically translated” in to a very different,
dramatic outcome.

In cancer research, decreased disease incidents
in women is evident from the age of menarche
to menopause and declines in postmenopausal age,
stressing possible female hormones protective effect
[18, 19]. Indeed, rodents models of glioblastoma mul-
tiform and gastric cancer demonstrated survival rate
improvement with the administration of estradiol [20,
21]. Sex hormone effects were suggested to be medi-
ated via gene-specific DNA methylation and histone
modification, stressing the role of epigenetics in sex-
ual dimorphism [22].

The phenomenon observed in which similar tran-
scriptomic profiles produce dramatic variation in the
rate of sickness among the individuals presenting
the profile, according to their sex, raises the ques-
tion of whether sex hormones effect is involved. Yet
since the youngest person in this study (male and
female) was 65 years old, no direct hormonal effect
is expected. However, we would like to raise the
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possibility that long-exposure effect of sex hormones
might be accountable for different pathology-related
sexual dimorphism, possibly via epigenetic mecha-
nism.

Profound efforts are being made to develop sen-
sitive measurement tools that will enable early
diagnosis and consequently early interventions for
the benefit of newly-diagnosed AD patients, includ-
ing care planning, quality of life improvement, and
access to new therapies that can slow down the dis-
ease process. Our results emphasize the need for
sex-based and transcriptomic profile-based separa-
tion in the models produced. Further research is called
for in order to better specify the expression profiles
that are related to disease characteristics, formation,
and progression.

AD is a multiple appearance disease. The popula-
tion of AD patients is composed of several sub-groups
of phenotypes manifested in different onset, progress,
and severity of the disease. Thus, while studying AD
gene expression profiles, one must bear in mind that
a substantial “noise” and “gene expression mask-
ing” exist. While reanalyzing microarray datasets
the problem of partial annotation is of significance.
The number of studies in the GEO database lacking
sex (and age) annotation is beyond understanding,
skews what we know on gene expression patterns in
human diseases, and hampers efforts to evaluate sex-
ual dimorphism effect. Furthermore, the size of the
dataset is a crucial limitation, which explains why our
study is based on one dataset solely.

We identified a biased, female, AD-typified cluster.
We speculate that the nature of the small subgroup of
healthy women in the otherwise, AD-typified cluster,
may represent pre-clinical individuals. Furthermore,
we showed that this female AD-typified cluster dis-
plays high similarity to one of the male clusters, yet
while the female cluster constitutes mostly sick indi-
viduals, the male cluster includes healthy and sick
individuals in almost identical proportion. Namely,
similar transcriptomic profiles in the two sexes, are
“physiologically translated” in to a very different,
dramatic outcome.

CONCLUSIONS

In this study we presented a distinction in tran-
scriptomic profiles between male and female, AD
and healthy individuals. While further research is
required in order to determine the precise nature of
these differences, this may be the key to genetically

targeting individuals at risk for AD. Hence, utilizing
the newly acquired knowledge about the sex-based
differences may serve to increase early detection of
AD onset and of progression.
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