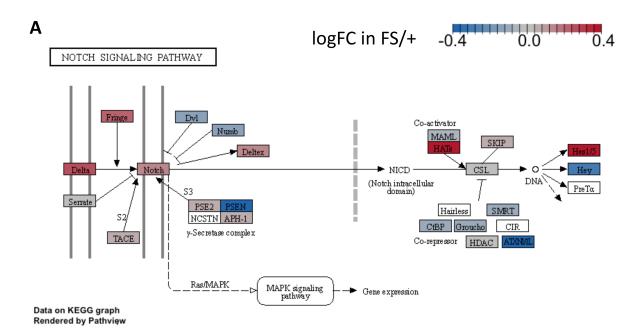

Supplementary Material

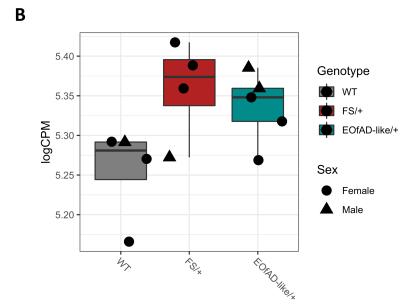
In-Frame and Frameshift Mutations in Zebrafish presenilin 2 Affect Different Cellular Functions in Young Adult Brains

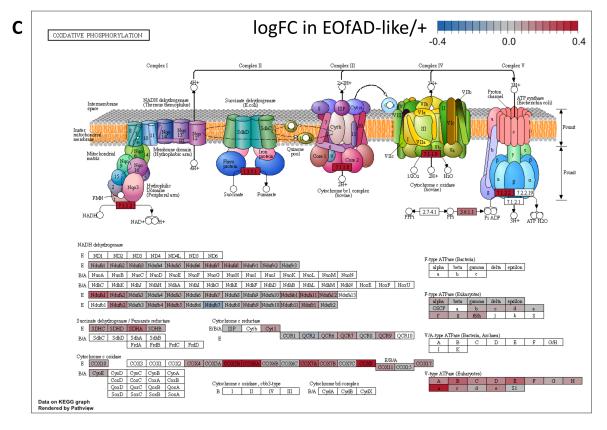
Supplementary File 1. RNA-seq data quality control

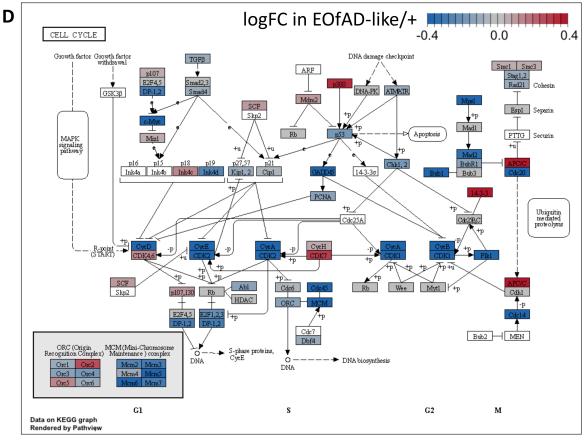
A) Allele-specific expression (in counts per million, CPM) of *psen2* transcripts in young adult zebrafish brains. Reduced expression of the *psen2*^{N140/s} allele is observed in FS/+ brains, consistent with our previous observation that transcripts of this allele are subject to nonsense-mediated decay [1]. Sample 8_FS_4 does not express the wild type allele of *psen2* and is actually a transheterozygous (transhet) sample. Therefore, it was omitted from the analysis. B) Sample weights as calculated by the *voomWithQualityWeights* algorithm on all samples sequenced. Sample 12_WT_4 is highly downweighted relative to all other samples and was omitted from subsequent analysis. C) Sample weights recalculated after exclusion of samples 8_FS_4 and 12_WT_4. D) Principal component 1 (PC1) against PC2 from a principal component analysis (PCA) on all samples of the experiment. Sample 12_WT_4 does not cluster with the other samples. E. PCA plot of the *RUVseq*-normalised counts after exclusion of samples 8 FS 4 and 12 WT 4.

Supplementary File 2. Full results of differential gene expression analysis. This is available separately from the main manuscript as a .csv file.

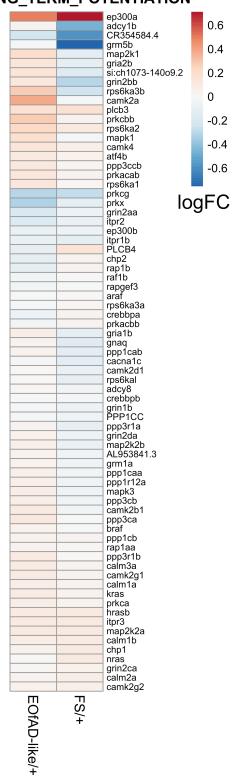

Supplementary File 3. Over-representation analysis using goseq.


Supplementary Table 1. The KEGG [2], GO [3, 4], and IRE [5] gene sets approaching over-representation in the DE genes list due to the FS mutation of *psen2*. The 5 DE genes due to the EOfAD-like mutation are not found in any of the gene sets. Therefore, the results of the over-representation analysis for the EOfAD-like mutation are not shown.


Gene set	р	Number of DE genes in gene set	Number of genes in gene set	FDR adjusted p
GO_PHOSPHOTRANSFERASE_ACTIVITY_NIT	1.94E-05	2	5	0.28952
ROGENOUS GROUP AS ACCEPTOR				
GO TRNA 3 END PROCESSING	6.94E-05	2	9	0.517902
GO_NUCLEOSIDE_DIPHOSPHATE_METABOLI	1.01E-03	3	142	1
C_PROCESS				
KEGG_ALZHEIMERS_DISEASE	1.11E-03	3	146	1
GO_NCRNA_3_END_PROCESSING	1.39E-03	2	39	1
GO_PYRIMIDINE_NUCLEOBASE_TRANSPORT	2.85E-03	1	2	1
GO UREA TRANSMEMBRANE TRANSPORTE	2.85E-03	1	2	1
R_ACTIVITY				
GO TRNA BINDING	3.58E-03	2	63	1
GO GLYCEROL CHANNEL ACTIVITY	4.26E-03	1	3	1
GO UREA TRANSPORT	4.27E-03	1	3	1


Supplementary File 4. Additional RNA-seq visualisations

A) Pathview [6] visualisation of the logFC of genes in the KEGG_NOTCH_SIGNALLING_PATHWAY gene set in FS/+ brains. Pathway Maps are displayed with copyright permission from KEGG. B) Expression of *psen1* in log counts per million (logCPM). C) Pathview [6] visualisation of the logFC of genes in the KEGG_OXIDATIVE_PHOSPHORYLATION gene set in EOfAD-like/+ brains. D) Pathview [6] visualisation of the logFC of genes in the KEGG_CELL_CYCLE gene set in EOfAD-like/+ brains. E. Heatmap of the logFC of genes in the KEGG_LONG_TERM_POTENTIATION gene set in EOfAD-like/+ brains.



KEGG_LONG_TERM_POTENTIATION

REFERENCES

- [1] Jiang H, Newman M, Lardelli M (2018) The zebrafish orthologue of familial Alzheimer's disease gene PRESENILIN 2 is required for normal adult melanotic skin pigmentation. *PLoS One* **13**, e0206155.
- [2] Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes.

 Nucleic Acids Res 28, 27-30.
- [3] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
 Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A,
 Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000)
 Gene Ontology: tool for the unification of biology. *Nat Genet* 25, 25-29.
- [4] The Gene Ontology Consortium (2021) The Gene Ontology resource: enriching a GOld mine. *Nucleic Acids Res* **49**, D325-D334.
- [5] Hin N, Newman M, Pederson SM, Lardelli M (2020) Iron responsive element (IRE)-mediated responses to iron dyshomeostasis in Alzheimer's disease. *bioRxiv*, 2020.2005.2001.071498.
- [6] Luo W, Pant G, Bhavnasi YK, Blanchard SG, Jr., Brouwer C (2017) Pathview Web: user friendly pathway visualization and data integration. *Nucleic Acids Res* **45**, W501-W508.