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Abstract. Various fungi and bacteria can colonize in the brain and produce physical alterations seen in Alzheimer’s disease
(AD). Environmental and genetic factors affect the occurrence of fungal colonization, and how fungi can grow, enter the
brain, and interact with the innate immune system. The essence of AD development is the defeat of the innate immune
system, whether through vulnerable patient health status or treatment that suppresses inflammation by suppressing the innate
immune system. External and mechanical factors that lead to inflammation are a door for pathogenic opportunity. Current
research associates the presence of fungi in the etiology of AD and is shown in cerebral tissue at autopsy. From the time of
the discovery of AD, much speculation exists for an infective cause. Identifying any AD disease organism is obscured by
processes that can take place over years. Amyloid protein deposits are generally considered to be evidence of an intrinsic
response to stress or imbalance, but instead amyloid may be evidence of the innate immune response which exists to destroy
fungal colonization through structural interference and cytotoxicity. Fungi can remain ensconced for a long time in niches
or inside cells, and it is the harboring of fungi that leads to repeated reinfection and slow wider colonization that eventually
leads to a grave outcome. Although many fungi and bacteria are associated with AD affected tissues, discussion here focuses
on Candida albicans as the archetype of human fungal pathology because of its wide proliferation as a commensal fungus,
extensive published research, numerous fungal morphologies, and majority proliferation in AD tissues.
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INTRODUCTION

Alois Alzheimer described the first case of
Alzheimer’s disease (AD) in 1906 in the epony-
mous female Auguste D. [1, 2], and found abnormal
deposits of amyloid protein plaques (amyloid beta, or
AP) and fibrous protein tangles (neurofibrillary tau)
which were considered the cause of neural deteriora-
tion. A 1939 review speculated on various causes of
AD [3], including constitution, aging related atrophy,
and an association with inflammatory conditions,
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noting the development of plaques near the site of
previous trauma mentioning “intercurrent infection”,
hinting that frequent infection is a component of
AD. Dementia can directly result from diffuse axonal
injury, identified as a sequela of traumatic brain injury
in the 1950s [4], and AD is a known sequela of brain
injury [5]. Diffuse axonal injury can manifest punc-
tate hyaline masses known as corpora amylacea, a
polyglucosan disease [6]. Corpora amylacea develop
independently in the brain tissue of AD patients
[7-9], and because corpora amylacea stain antifungal
antibodies, fungi are implicated [10]. A 1955 study
of identical twins with one of a pair that develops
AD emerging after development of rosacea, suggests
an infectious etiology [11]. The association of AD

ISSN 2542-4823/18/$35.00 © 2018 — IOS Press and the authors. All rights reserved

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).


mailto:boparady@yahoo.com

140 B. Parady / Innate Immune and Fungal Model of Alzheimer’s Disease

with infectious processes is now a current topic [12].
There are genetic associations of frequency and age
of onset of AD, which is associated with physical,
gradual damage to the brain leading to memory loss
and slower thought processes, and ultimately death
[13]. AD incidence increases exponentially with age
with the highest rates in North America and Europe
and increases most for patients in their 60s and 70s
[14].

The fungal model refers to the 2014 Carrasco et
al. fungal etiology based on AD autopsies which
exhibit fungi only in affected neural tissue [10,
15-18] and evidence that fungal infection is etio-
logical for AD was updated by Carrasco et al. [19].
Fungal genera found in AD associated tissues identi-
fied by modern sequencing methods include yeasts,
filamentous fungi, and saprophytes appropriate to
infections and allergic reactions in humans [20]:
Alternaria, Botrytis, Candida, Cladosporium, Fusar-
ium, and Malassezia. Candida (the most widespread)
antibodies tested positive in 89.6% of AD patient
serum compared to 8.8% for controls [17]. Recently
many bacteria have been found in AD brain tissue
[21, 22], of which some are associated with mucosal
C. albicans biofilms: Burkholderia and Pseudomonas
[23]; Firmicutes (dentures [24]); Staphylococcus epi-
dermidis [25]; Stenotrophomonas maltophilia [26].

AP hypothesis for Alzheimer’s disease

Amyloid peptide accumulation is associated with a
number of diseases, affecting various organs. George
Glenner postulated that AP, with AB4; associated
with AD, is a cause of AD [27]. AD causation
is controversial, and Selkoe and Hardy [28] offer
the hypothesis that genetic mutations near the A3
section of amyloid-f3 protein precursor (ABPP) are
associated with rapid onset of AD and increasing
A deposits in memory and cognitive centers. Con-
versely, a mutation that reduces ABPP is viewed as
protective of neural decline [29].

The pathological changes in AD are associated
with neurofibrillary tangles, neuropil threads, and
hyperphosphorylated tau [30]. The developing view
is that the histological evidence of A and hyperphos-
phorylated tau deposits may not represent a cause but
may be the effect of developing AD [31]. There is a
poor relationship between the manifest progression
of AD which do not correspond to the histological
evidence of lesion formation of amyloid plaques [32].

Amyloid deposition is associated with fungal dis-
ease and can begin with the deposition of serum

amyloid P (SAP) onto C. albicans cells [33, 34],
or other Candida species [35]. Peptide binding char-
acteristic of C. albicans produces adhesive affinity
colonization [36, 37] and is characteristic of all inva-
sive morphologies of C. albicans: yeasts, hyphae,
and pseudohyphae [33]. Surface amyloids expressed
by C. albicans during infection induce binding by
SAP which blocks the inflammatory response and
adhere to SAP with fungal colony expansion stretch-
ing human cell surface proteins which copiously
extrude amyloids [33]. No evidence exists that the
presence of SAP increases the risk and development
of AD, but as AD develops, SAP levels drop in
the cerebrospinal fluid (CSF), perhaps because SAP
adherence to fungal cells removes SAP from the CSF
and plasma [38].

That the upregulation of ABPP following traumatic
brain injury is protective indicates that the processes
associated with A3 are not entirely pathogenic [32].
The pathological deposition of AP after administra-
tion of sevoflurane anesthetic [39] offers a window
into pathogenesis. Sevoflurane is associated with
intestinal reperfusion injury and loss of intestinal
mucosal barrier function [40]. Loss of intestinal bar-
rier function leads to the opportunity for persorption
of bacteria and fungi into the circulatory system [41]
and thus ability to colonize in the neural cells of
the brain. The innate immune response in the brain
generates A3 which inhibits the growth of C. albi-
cans [42, 43]. Animal models in mice and worms
along with cell cultures validate that AP inhibits the
growth bacteria and fungi [44]. Conversely, treat-
ments for AD are often aimed at reducing the deposits
of AR in the brain [45, 46]. Interfering with the
innate immune response to reduce the inflammatory
response often aggravates the infection producing
inflammation (e.g., use of corticosteroids to relieve
inflammation in infections [47, 48]), and reduction
of AB (an inflammatory agent) in clinical trials has
resulted in aggravation of AD [49, 50].

Tau phosphorylation

Tau phosphorylation (hyperphosphorylation) of
proteins and the resultant degeneration (tauopathy)
through the formation of tangles was early historical
physical evidence of AD [51]. Tyrosine phospho-
rylation corresponds to tau aggregation or tangling
[52]. Although hyperphosphorylated tau tangles have
a pathological appearance, neuronal cells can survive
more than 20 years with extensive tangles [53], and
tau filamentation is neuroprotective [54].
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Cholinergic model of memory dysfunction

Loss of cognition is due to loss of central nervous
system function where the hypothetical key is the dis-
ruption of the cholinergic neurotransmitter system,
the “cholinergic hypothesis” [55]. In animal studies,
changes in choline and acetylcholine are associated
with behavior. The growth of C. albicans varies with
the availability of choline, because choline reduces
the need to synthesize PC which is energetically
favorable over synthesis via the salvage pathway [56,
57]. Because the brain intracellular space has about 6
times the concentration of choline than blood plasma
and 10 times that of the CSF [58], invagination into
brain cells becomes the preferred environment for C.
albicans.

FUNGI AND RELATION TO
ALZHEIMER’S DISEASE

C. albicans, the most prolific and morphologically
diverse fungal species in humans, was described by
Hippocrates as thrush, a formation of white plaques
inside the mouth [59] and was isolated by Ben-
nett in 1844 in the sputum of tuberculosis patients,
and by Zenker in 1861 from a brain infection in a
debilitated patient having spread from thrush lesions
[60]. Zenker’s report was interpreted as referring to
Cryptococcus neoformans [61] often confused with
C. albicans. When carried in the bloodstream as
yeasts from the intestines, C. albicans the most com-
mon commensal fungus can readily infect various
organs, and can colonize inside both resident cells and
immune cells (macrophages) as endomycosomes or
phagosomes [15]. Other pathogenic fungi can affect
hosts similarly, including Cryptococcus gattii [62],
Aspergillus spp. [63], and molds [64]. Carrasco et al.
first published postmortem evidence that fungi cause
AD in 2014 [15].

C. albicans may be partially symbiotic because of
the genes for the glyoxylate cycle and gluconeogen-
esis which are suppressed by glucose concentrations
found in vivo [65], but when C. albicans is phagocy-
tosed by macrophages and neutrophils, these paths
become expressed. The glyoxylate cycle produces
glucose from fatty acids and glucose is needed in
large quantities to enable C. albicans growth [66].
These fatty acids can be cytotoxic or suppressive to
microbes; a mechanism in C. albicans that converts
fatty acids to glucose, which is key to the viru-
lence of C. albicans [67], could also be of biological

advantage in human starvation, taking stored fats and
converting them to glucose.

Candida albicans morphologies

The virulence of C. albicans is aided by its inter-
change between four morphologies [68]. C. albicans
can appear as a 2 to 8 micron unicellular yeast (blas-
toconidia) that can grow in a colony, and when they
bud can lengthen into chains with constrictions (pseu-
dohyphae). Germ tubes appear from single cells and
extend to the first constriction, perhaps form hyphae
which are important for invasion and pathogene-
sis. C. albicans blastoconidia are less hydrophobic
than germ tubes [69] making germ tubes resistant to
phagocytosis by macrophages and monocytes, and
makes C. albicans more virulent [70].

Giant blastoconidia, an unusual form of C. albi-
cans, called chlamydoconidia (8 to 12 microns
in diameter), result from inflammatory responses
and are found in cardiac, kidney, cartilage, or
bronchial vegetations [71]; application of antifun-
gals may induce their formation. Chlamydoconidia
are important because they have been confused with
Cryptococcus neoformans [72, 73].

Virulence

Primary virulence factors of C. albicans are: con-
version of yeast-like cells to hyphae [74], lytic
secretions (aspartyl proteases [75], lipases, and phos-
phatases) and cell surface proteins [76] which enable
adhesive penetration, persorption, or phagocytosis
[77]. To enable the commensal C. albicans to invade
requires overwhelming either impaired or normal
innate immunity or the means to block innate immu-
nity [78] such as aspartyl proteases which block
the complement system increasing virulence [79]. In
oral thrush, C. albicans invades endothelial epithe-
lial cells by both endocytosis and penetration [80].
Virulence in the intestines is by proteolytic pene-
tration which aspartyl protease inhibitor pepstatin
blocks [81]. C. albicans prevents removal by the
immune system by maintaining low levels of col-
onization (commensal) which avoids activating the
MAPK alarm pathway [82]. As the fungal burden
increases, the ensuing hyphal development activates
cytokines that recruit macrophages and neutrophils.
As the immune response clears the fungal burden, the
colony falls below the virulent state returning to the
commensal state [83].
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Yeast to hyphal transition

The yeast to hyphal transition is associated with
the virulence of C. albicans because of the inva-
sion of epithelial cells by hyphae and pseudohyphae.
A C. albicans cytolytic protein, “Candidalysin”,
invades the epithelium, kills cells, and blunts the
immune response [84]. C. albicans adapts to the envi-
ronment inside macrophages by making the yeast
to hyphal transition, a defense against pyroptosis:
The macrophage cell death mechanism that attacks
pathogens with immune responses to block replica-
tion [85]. Macrophages phagocytose C. albicans as
part of the immune response, inducing C. albicans to
alter its metabolism in response the environment, and
to develop hyphae, which in turn induces macrophage
pyroptosis thereby enabling C. albicans to escape [86,
87] and to induce massive killing of macrophages
after this first phase, a non-pyroptotic macrophage
death.

In AD, the hazard is the immune evasion of Can-
dida spp. (C. spp.) by hiding inside endothelial cells
[88] whereby a victim cell is induced to extend
a pseudopod to endocytose the fungal cell. Bind-
ing to the endothelium was demonstrated for germ
tubes and buds inside the cells, forming pseudo-
hyphae without any changes to the morphology of
the endothelial cells [89]. In acidic conditions, C.
albicans can raise pH from 4 to over 7 within 12
hours, which results in self-induction of the yeast
to hyphal transition [90]. In the case of glucose
deprivation, the pathway to raise pH is the general
degradation and proteolysis of proteins to produce
ammonia [91], a base for which C. albicans has a
more powerful reaction to acidity than other fungi.
Excessive ammonia is found in the CSF and blood
of AD patients [92] which produces pathologies dur-
ing glucose deprivation such as metabolic dementia
[93].

Growth in saliva and glucose

Low submandibular saliva flow is associated with
moderate to advanced AD [94] and may be the
result of deterioration of the nerves serving the sub-
mandibular salivary glands, possibly associated with
C. albicans infection. Conversely, dementia’s effect
on executive function results in poor hygiene [95]
may increase C. albicans growth. C. albicans does
not normally grow in saliva, but its growth can be
stimulated by higher levels of dietary glucose or
serum glucose as found in diabetes patients [96].
Normally bacteria break down glucose in saliva, but

antibiotics that kill the bacteria, or glucocorticos-
teroids, can stimulate the growth of C. albicans [97].

C. albicans lipases

The lipolytic enzymes of C. albicans provide fatty
acids and glycerol as a food and energy source [98]
and create an advantage for maintaining growth in
the intestine and skin, and enabling acidification
which contributes to virulence and tissue damage.
The action of C. albicans lipases [99] produce lipid
droplets in macrophages becoming foam cells hep-
atocytes becoming, and thereby induce cytotoxicity
[100]. The effect of C. albicans lipase on the liver
(the initial defensive organ against invasion from the
gut and circulation by taking up the fungal cells) can
induce nonalcoholic steatohepatitis, and under stress,
causes liver damage [101]. The development of hep-
atic encephalitis associated dementia and the onset
of AD should be examined as parallel, not separate,
disorders.

Calcineurin

Calcineurin is a Ca2+ serine/threonine protein
phosphatase activated by calmodulin that regulates
processes in eukaryotes ranging from yeasts to
humans [102]. C. albicans expresses calcineurin
which is essential to virulence [103] and, in yeasts,
it regulates cell cycle progress, the action of polar-
ization in growth, and Na+ and CI- ions and pH.
Calcineurin in the human brain has a regulatory func-
tion similar to that of yeasts and is associated with the
pathologies of dementia [104]. Levels of calcineurin
increase greatly as one ages or suffers from injury or
infection, and high levels of calcineurin are found in
the astrocytes of the hippocampus in a mouse model
for AD, and in human AD patients [105].

Application of calcineurin inhibitors (cyclosporine
and tacrolimus) to a murine model of AD was
protective, perhaps even slowing or reversing the
progression of AD [106]. A study of kidney trans-
plants with fungal involvement showed a decreased
probability of AD, likely due to the chronic admin-
istration of calcineurin inhibitors (tacrolimus and
cyclosporine) used to limit and control tissue rejec-
tion [107]. Tacrolimus is recognized as an antifungal
[108] suggesting a connection because kidneys and
brains are receptacles of fungi [109].
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Tyrosine phosphorylation

In the bloodstream, C. albicans induces endo-
cytosis by stimulating tyrosine phosphorylation
endothelial proteins of 80 and 82 kDa [110], and thus
hyperphosphorylation may be evidence of invasion
and induction by C. albicans, and is independent of
A deposition which has been suggested as depen-
dent on introduction and formation of Af [111].
Belanger et al. show that the tyrosine kinase inhibitors
genistein and tyrophostin 47 reduced phosphoryla-
tion as C. albicans endocytoses.

Fungal markers associated with AD

Chitins, chitinase, fungal proteins, and fungal anti-
bodies may be excellent biomarkers of AD if fungi are
etiological. Chitinase appears in humans in response
to allergens (many of which contain fungi) and fun-
gal pathogens. Since there are no external sources
for chitinase in the CSF, the presence of chitinase
signals fungal infection [112]. Chitin-like polysac-
charides are an integral component of the amyloid
plaques and amyloid angiopathy of AD [113], as
demonstrated by colocalized calcofluor staining of
AD plaques, chitinase treatment, and subsequent flu-
orescence decrease indicating that plaques contain
fungal cells or detritus. Subsequently, more accurate
immuno-staining was used to identify chitins, and
two fungal proteins, enolase and B-tubulin in the brain
tissue of AD patients [18].

Chitotriosidase

Elevated levels of chitotriosidase, a human
chitinase enzyme, are a marker for AD and cere-
brovascular dementia [114] and are associated with
the deposition of AP without observation of fungal
infection. Chitotriosidase is produced by activated
macrophages associated with ischemic cardiovascu-
lar disease (CVD) and AD. Detection of chitinase
activity in the CSF with an accuracy of 86% is a
superior AD marker than A or tau both at 78%
[112], where AP is likely an immune response to
a C. albicans infection [115]. YKL-40 (chitinase-3-
like protein 1) is a superior marker for AD [116].
Radiolabeled detection of chitin using '?*I-chitinase
functioned well as a radioligand for detection of fun-
gal infections in mice [117]. In a neonate study of
chitotriosidase produced by phagocytes in response
to bacterial and fungal infections, there is a popu-
lation of 6% that cannot express chitotriosidase for
which one would expect a lowered ability to fight

chitin containing pathogens [118], and note the high
50% level of false negative fungal cultures.

Beta glucans

Beta glucans are B-D-glucose polysaccharides
found in plant, bacteria, and fungi/yeast cell walls,
and are a marker for infection which can temper the
immune response facilitating fungal survival [119].
Disseminated fungal infections seen in AD patients
are associated with the widespread observation of
beta glucans which are seen in serum along with
antibodies for yeast and fungi species [17, 112, 120].
Finding the fungal (1, 3)-B-glucan becomes evidence
for disseminated infection, and when it is found in
the CSF, it is a marker for CNS fungal infection [121,
122].

IMMUNE SYSTEM

The primary cells responsible for the removal and
destruction of C. albicans cells are the neutrophils
and macrophages. Neutrophils are found to execute
the effect of TNF-a in the course of systemic candidi-
asis [123], and according to the ARTEMIS survey
various C. spp. are found [124]. A review of neu-
trophil and macrophage activity finds that neutrophils
kills C. albicans intracellularly and extracellularly,
and blocks germ tube formation [125]; in fungal car-
bohydrate starvation, the glyoxylate cycle and the
nitric oxide (NO) stress response are upregulated only
when neutrophils phagocytose the fungus, while the
oxidative stress response (superoxide dismutase or
glutathione reductase) is active intracellularly and
extracellularly [126].

Nasopharyngeal defense

Nasal mucosal secretions are the first defense
against microbial intrusion with various proteins
and lipids. The most hydrophobic lipids are gen-
erally more anti-microbial, in particular cholesteryl
linoleate, and cholesteryl arachidonate [127]. These
non-polar lipids are most effective against bacteria,
but because C. albicans biofilms are combinations
with bacteria, often MRSA, inhibition of bacteria
effects diminution of biofilms, and thus an indi-
rect reduction in overall C. albicans colonization
[128-130]. There have been several cases of various
fungal infections, mostly mucormycoses associated
with diabetes, where hyphae have travelled through
the neural cells to the brain [131, 132]. Invagination of
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the blood vessel walls are directly involved in mycotic
aneurysms [133].

Dose related cerebral mycosis

A 1978 survey showed C. albicans to be the pre-
dominant cerebral mycosis [134] and corrected the
mistaken diagnosis of Cryptococcus spp. infection
reported in previous surveys. The authors warned that
C. albicans in large numbers from any site “portends
infection of the central nervous system.” Systemic
C. albicans infections are associated with immuno-
compromised patients, but high doses of C. albicans
can establish infection in immunocompetent sub-
jects. One experiment administering 10'? cfus of
C. albicans orally (comparable to the intestinal fungal
colonization of patients treated with broad-spectrum
antibiotics) on a healthy volunteer resulted in sys-
temic fungemia caused by persorption of C. albicans
cells across the intestinal wall [41].

Role of AB as an antifungal

Formation of A is likely a direct innate immune
response to C. albicans because A} is most specifi-
cally antimicrobial for C. albicans among organisms
tested [115], and thus protects against infection in
the brain; this action is directly contrary to efforts to
reduce A and thereby reduce AD damage. In addi-
tion, AR reduces E. coli growth by 200 times in vitro,
along with general antibacterial effects [135]. Reduc-
tion of AR in AD patients appears to have the effect
of stimulating pro-inflammatory effects would then
marshal a general immune response [115]. Large clin-
ical trials of AR immunization in order to reduce A3
found a significant increase in encephalitis in those
immunized [136], and similarly, infection increased
in those treated to reduce A3 [137]. A summary noted
that A formed plaques to trap pathogens and block
invasion [138]. Membrane destabilization is another
anti-pathogenic mechanism for A3 [139].

C. albicans antigens and arteritis

C. albicans antigens have been shown to induce
arteritis [140], and giant cell arteritis is associated
with cerebral amyloid deposits in the arteries [141]
which suggests a connection between the develop-
ment of AD and active C. albicans inflammation.
In a study of candidemia in mice, a C. albicans
water soluble beta glucan-mannoprotein complex
exhibited significant cytotoxicity and injured the

vascular endothelium through inflammatory response
increasing production of IFN-a, IL-6, and IL-10, and
myeloperoxidase [142]. Together this accounts for
arteritis and the resulting inflammation which would
be aggravated by platelet aggregation and adhesion
[143]. Note that glucan-mannoprotein complexes are
a significant component in beer and ale [144].

Immune evasion

The ability of C. albicans to reside in endomyco-
somes [15] may be the result of biological selective
pressure to survive identification and avoid destruc-
tion by the immune system. When host cells engulf
C. albicans through phagocytosis, C. albicans alters
its transcription toward starvation response with
gluconeogenic growth, fatty acid beta oxidation
(which consumes naturally anti-pathogenic short
chain FFAs, free fatty acids), and reduction of riboso-
mal translation [145]. The immune system destroys
pathogens by creating reactive oxygen species and
freeradicals (including e O27, ¢OH, C1Oe, and NOe)
inside macrophage phagosomes, where C. albicans
produces a catalase and six superoxide dismutases to
neutralize reactive oxygen species and free radicals
[146] and inhibit production of NO [147].

Cholesterol esterification, LCAT

LCAT (lecithin-cholesterol acyltransferase) is a
glycoprotein enzyme responsible for esterifying
cholesterol and is bound to high-density lipoproteins
(HDL) or low-density lipoproteins (LDL). LCAT
esterifies free cholesterol in the plasma, removes
a fatty acid from the 2 glycerol position in phos-
phatidylcholine, and combines them. In doing this,
LCAT changes the composition and conformation of
HDL from compact, dense spheroid, or floppy dis-
coid shapes, known variously as HDL3 and pre-beta,
to a larger spheroid alpha shape that is able to con-
tain the large and very hydrophobic cholesteryl ester
in its core [148]. HDL slows progression of CVD by
inhibiting cytokine induced expression of adhesion
molecules that attach leukocytes to the endothe-
lium [149] increasing adhesion to C. albicans. ApoE
deficient mice producing depleted lipoproteins and
increased VLDL show increased susceptibility to
candidiasis because of increased virulence and repro-
duction due to uptake of plasma lipids as a growth
medium [150].
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LCAT and the immune system

Poorly functioning LCAT is correlated to a com-
promised immune system because LCAT esterifies
cholesterol to antimicrobial fatty acids and trans-
ports the hydrophobic resultant into HDL. LCAT
deficiency was found to reduce the ability of HDL
to remove lipopolysaccharides (LPS) and aggravate
LPS induced inflammation [151]. LCAT deficient
HDL showed reduced levels of ApoA-I and ApoA-II
and was primarily composed of ApoE. Addition-
ally, reducing LCAT levels increased the number
of monocytes in circulation after an LPS insult.
The combined effect of poor removal of LPS, and
the increase in monocytes produced a more severe
inflammation. LCAT deficiency led to massive can-
didiasis in the upper respiratory system and mouth
in a transplant patient with familial LCAT defi-
ciency [152]. Inflammatory and anti-inflammatory
responses can be contradictory, and one study on
cholesteryl arachidonate/linoleate showed that they
may induce inflammation [153].

FFAs inhibit microbes, and DHA and EPA kill
many different cells [154]. The effect of LCPUFAs
(long chain polyunsaturated fatty acids) is to desta-
bilize lipid rafts in the following relative strength:
“stearic acid <oleic acid <EPA <DHA”. The toxicity
of triglycerides to monocyte-macrophages increases
with increasing desaturation [155]:

“Triolean = trilinolein <trilinolenin
<triarachidonin <tri-EPA = tri-DHA”

For the cholesterol esters, the order is: “cholesteryl
linolenate ~< cholesteryl oleate <cholesteryl
linoleate <cholesteryl arachidonate <cholesteryl
EPA = cholesteryl DHA”

FFAs are toxic both to microbes and macrophages,
and both compete to lipolyze triglycerides and
cholesterol esters leaving free cholesterol. To survive,
the macrophage must efflux the excess cholesterol,
i.e., “HDL function” [156], in human macrophages
[157].

Transporting lipids, especially LCPUFAs, to the
site of inflammation/infection is important in infec-
tions, as they are active [158] against numerous
pathogens, including Streptococcus mutans and C.
albicans [159]. DHA facilitates lysozyme incorpora-
tion into the membrane of Pseudomonas aeruginosa
bacteria, common in lung infections, which allows
influx of more DHA, leading to bacterial cell death
[160]. Many medium chain FFAs are antimicrobial
against C. albicans [161], and more potent are short
chain FFAs of which capric acid was applied as an
antifungal [162].

C. albicans may enter into the cranial cavity
through the nasopharyngeal nerve complex and then
into the olfactory bulb, aregion implicated in the early
development of AD and dementia [163]. Oropharyn-
geal mucous contain the antimicrobial cholesteryl
arachidonate, transported by HDL with other anti-
pathogenic fatty acids fluids [127]. Arachidonic acid
(AA) released by cPLA2a has a demonstrated role in
protecting the lung from C. albicans infection [164].
Since the brain is one of the largest stores of AA
[165, 166], expect its availability to play a role in
host defense against invasion by C. albicans. In the
AD brain, there is an observable decrease in AA, EPA,
and 22:4 [167]. Comparing the decrease in AA to the
observation that C. albicans induces release of AA
[54] suggests the conversion of AA to various oxi-
dized metabolites that can affect C. albicans viability
[168].

LCAT and ApoE

The biochemical relationship between ApoE and
AD is significant because of the linked roles of LCAT
and ApoE, both in the formation of HDL types and
in the transportation of cholesterol, triglycerides, and
cholesteryl esters. Coupling LCAT knockout mice
with LDL receptor (LDLr) knockout and APOE
knockout, there is a notable reduction in HDL, an
increase in LDL, and an increase in the saturation of
cholesteryl esters in LDL [169] which resulted in sig-
nificantly more cholesterol deposited in the aorta. A
study of disseminated candidiasis in ApoE deficient
mice [150] found increased mortality for ApoE defi-
ciency, elevated lipids, and elevated apolipoproteins.
Given that omega 3 fatty acids (which are antimi-
crobial) in the 2 position in phosphatidylcholine are
preferentially esterified by LCAT, deficiency results
in saturated lipids (and proteins) as food sources for
Candida and an impaired immune response due to
increasing saturation of FFAs.

The combined effects of LCAT and ApoE defi-
ciency reduce the macrophage cholesterol efflux
capacity of HDL and are a predictor of atheroscle-
rotic CVD [170], and for AD the APOE-£4 alleles
are associated with degraded cholesterol efflux from
macrophages. Similar to LCAT knockout, there is
an increase in CVD for APOE-g4/e4 macrophages
because of impaired efflux capacity [171]. Because
excess cholesterol is considered toxic to macrophages
and CNS astrocytes, sufficient cholesterol efflux will
avoid loss of immune function. ApoE2 HDL exhibits
delayed clearance because it interferes with the LDL
receptor site and effluxes cholesterol more efficiently,
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and ApoE4 has the highest cellular reuptake of
cholesterol [172].

LCAT: AD and Down’s syndrome
AD and Down’s syndrome (DS) share similar

characteristics, because after age 40, DS patients
can develop aspects of AD [173]: amyloid depo-
sition, deterioration of cognition, and reduction of
the cholesterol esterification rate as serum choles-
terol increases. Reduction of the fractional LCAT
cholesterol esterification rate was the only difference
observed in DS subjects [174]. DYRKI1A kinase is
overexpressed in DS due to trisomy 21 and activates
STAT3 which affects LCAT expression and decreases
LCAT activity because of activation a tyrosine phos-
phatase, SHP2 [175]. Similarly, for AD patients with
dementia, LCAT esterification is also limited [176],
and is perhaps due to the binding of A to HDL which
inhibits LCAT [177].

SUMMARY

In the fungal model of AD, defeat of the innate
immune system allows colonization of neural cells
with fungi. AP is a natural antifungal and target-
ing its inhibition should be questioned, PUFAs and
short chain FFAs inhibit infection, ApoE and LCAT
function are interrelated, ingesting high levels of sol-
uble beta glucans and chitin can interfere with fungal
immunity, and untreated mycoses are problematic.
Superior markers for AD are chitins and chitinase.
Severe head injuries resulting in diffuse axonal injury,
canresultin fungal corpora amylacea that increase the
risk of AD.

Like a trojan horse, fungi defeat the innate immune
system by hiding inside neural cells as endomyco-
somes. To control fungal and pathogenic infections
in the brain, humans likely evolved an immune sys-
tem that was just sufficient to attain reproductive age.
Primitive man survived by sequestering fungi in neu-
ral cells instead of letting fungi reproduce and destroy
the host. Sequestration was the only means to control
fungal growth in a horrible diet that persorbed prodi-
gious pathogens into human circulation and thence
to the brain. Only now with improved diet and health
these slower long-term debilities such as AD become
manifest.
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