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The ship’s resistance and manoeuvrability in shallow waters can be adversely influenced by the pres-
ence of fluid mud layers on the seabed of ports and waterways. Fluid mud exhibits a complex non-
Newtonian rheology that is often described using the Herschel–Bulkley model. The latter has been re-
cently implemented in a maritime finite-volume CFD code to study the manoeuvrability of ships in the
presence of muddy seabeds. In this paper, we explore the accuracy and robustness of the CFD code in
simulating the flow of Herschel–Bulkley fluids, including power-law, Bingham and Newtonian fluids as
particular cases. As a stepping stone towards the final maritime applications, the study is carried out on a
classic benchmark problem in non-Newtonian fluid mechanics: the laminar flow around a sphere. The aim
is to test the performance of the non-Newtonian solver before applying it to the more complex scenarios.
Present results could also be used as reference data for future testing. Flow simulations are carried out at
low Reynolds numbers in order to compare our results with an extensive collection of data from the lit-
erature. Results agree both qualitatively and quantitatively with literature. Difficulties in the convergence
of the iterative solver emerged when simulating Bingham and Herschel–Bulkley flows. A simple change
in the interpolation of the apparent viscosity has mitigated such difficulties. The results of this work,
combined with our previous code verification exercises, suggest that the non-Newtonian solver works as
intended and it can be thus employed on more complex applications.
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1. Introduction

The ship’s resistance and manoeuvrability in shallow waters can be adversely
influenced by the presence of fluid mud layers on the seabed of ports and water-
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ways. With today’s computers it is possible to investigate this problem using Com-
putational Fluid Dynamics (CFD) codes [21,25]. However, modelling the complex
non-Newtonian rheology of mud is a challenging task. For engineering purposes,
on the other hand, mud can be reasonably well modelled as a Herschel–Bulkley
fluid [12,46] (see e.g. the textbook of Irgens [24] for an extensive overview of non-
Newtonian models). Hence, with the aim to investigate the effects of muddy seabeds
on marine vessels, the Herschel–Bulkley model has been recently implemented in the
CFD solver REFRESCO [45], which is developed by the Maritime Research Institute
of the Netherlands (MARIN) in collaboration with several non-profit organisations
around the world.

Our previous code verifications [30,31] ensured that the Herschel–Bulkley model
was correctly implemented. However, even if the code is correct, fully-converged
solutions for realistic non-Newtonian problems may still be difficult to obtain. In
fact, REFRESCO is optimised and verified exclusively for maritime applications,
which are typically concerned with Newtonian fluids such as air and water. The code
also presents features that are common in general commercial CFD codes, such as
the finite-volume method (FVM) and SIMPLE-type solution algorithms. While these
features are standard for maritime applications, they are less common to simulate
non-Newtonian flows. The latter are characterised by a shear-dependent viscosity
that makes the equations stiffer and thus more difficult to solve.

In this paper, the accuracy and robustness of the non-Newtonian solver of RE-
FRESCO are tested on the laminar flows of Herschel–Bulkley fluids around a sphere.
Simulations are carried out also for power-law and Bingham fluids, which are just
particular cases of Herschel–Bulkley fluids.

The flow of power-law, Bingham and Herschel–Bulkley fluids around a sphere is a
classic problem in non-Newtonian fluid mechanics. While it is probably the simplest
three-dimensional flow, it also exhibits features that are typical of the flow around
ships, such as boundary layer development and flow separation. These reasons make
the flow around a sphere a useful benchmark problem as a stepping stone towards
numerical simulations of ships navigating through fluid mud.

The non-Newtonian flow around a sphere has been extensively studied in the
past decades, both experimentally (e.g [1,2,4,5,9,27,42,44]) and numerically (e.g
[6–8,13,14,22,23,33–35,43]), because of its interest for both industrial and natu-
ral processes such as sediment and fluid transport, sedimentation and fluidisation
(the reader is also referred to the book of Chhabra [11] for an exhaustive survey on
the topic). These processes are typically found in applications concerning offshore,
dredging and ocean engineering.

The present work differs from the previous numerical studies in a number of ways.
It is remarked that, although the flow field will be discussed, the main focus is on the
comparison with literature data. Therefore, more attention is dedicated to the estima-
tion of the uncertainties, which are of utmost importance for validation. The numer-
ical uncertainties were estimated with a robust method and they are provided for the
pressure, frictional and total drag for all the considered test cases. The uncertainties
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due to the regularisation of the Bingham and Herschel–Bulkley models have been
quantified as well. The estimated uncertainties, together with the computed pressure
and frictional coefficients reported herein, will also allow detailed and rigorous vali-
dations of alternative numerical methods in the future. Finally, this article also covers
some issues related to the iterative convergence, which can often be problematic for
non-Newtonian flow simulations.

The rest of the paper is divided as follows. The governing equations and test cases
are outlined in Sections 2 and 3, respectively. The numerical methods and setup
are explained in Section 4, whereas results are discussed in Section 5. Finally, the
conclusions are summarised in Section 6.

2. Problem formulation and governing equations

The problem of a sphere d moving in an infinite medium is modelled as a sphere
fixed at the centre of a cylindrical tube with a uniform inflow U (Fig. 1). The tube
has both diameter and length equal to D. The origin of the Cartesian reference frame
is placed at the sphere centre with the z-axis aligned with flow direction.

The laminar, steady, isothermal and single-phase flow of an incompressible fluid
is governed by the following continuity and momentum equations (in Cartesian co-
ordinates):

∇ · u = 0, ρu · ∇u = ∇ · τ − ∇p, (1)

where u = (ux, uy, uz) is the velocity vector, p is the pressure, ρ is the density and τ
is the deviatoric stress tensor. For a class of non-Newtonian fluids called generalised

Fig. 1. Schematic representation of the problem.
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Newtonian fluids [24], the stress tensor can be expressed in a Newtonian-like form
as

τ ≡ τij = 2μ(γ̇ )Sij , (2)

where γ̇ = √
2SijSij is the shear rate (s−1) and Sij = 1

2 (∇u + ∇uT ) is the de-
formation rate tensor. For Herschel–Bulkley fluids, the apparent viscosity, μ(γ̇ ), is
modelled as{

μ = τ0+kγ̇ n

γ̇
τ0 � τ,

μ = ∞ τ < τ0,
(3)

where τ0 is the yield stress (Pa), τ = √
τij τij /2, n is the flow index, k (Pa sn) is

the consistency parameter which has dimensions of a viscosity when n = 1. The
infinite viscosity means that the fluid cannot deform (Sij = 0) when the stress level
is below the yield stress. This rheological characteristic is called viscoplasticity. The
Herschel–Bulkley model reduces to the Bingham model when n = 1, to the power-
law model when τ0 = 0, and to the Newtonian model (μ = k) when both n = 1 and
τ0 = 0.

The issue related to the infinite viscosity in equation Eq. (3) when τ0 > 0 is
avoided using regularisation methods (see e.g. [37] for an overview on the sub-
ject). These methods consist in approximating the original rheological model with
a smooth function that produces large but finite values of the viscosity. In this work,
the Bingham model has been modified with the popular Papanastasiou regularisation
[36]:

μ(γ̇ ) = τ0(1 − e−mγ̇ ) + kγ̇

γ̇
, (4)

where m (s) is the regularisation parameter.
For Herschel–Bulkley fluids, the Papanastasiou regularisation would still produce

an infinite viscosity for γ̇ → 0 when n < 1. This is avoided using the modification
proposed by Souza Mendes and Dutra [38]:

μ(γ̇ ) = τ0 + kγ̇ n

γ̇

(
1 − e−mγ̇

)
. (5)

In summary, the apparent viscosity of Bingham fluids is calculated using Eq. (4),
whereas Eq. (5) is used for Herschel–Bulkley fluids. In the limit of m → ∞, both
regularised models tend to their respective ideal (non-regularised) models, as shown
in Fig. 2 for Herschel–Bulkley fluids.
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Fig. 2. Effect of the regularisation parameter on the Herschel–Bulkley model.

3. Non-dimensional numbers and test cases

The Herschel–Bulkley flow around a sphere is characterised by two non-
dimensional numbers: the generalised Reynolds number

Re = ρU2

k(U/d)n

(
∼ inertia

viscous stress

)
, (6)

and the Bingham number

Bn = τ0

k(U/d)n

(
∼ yield stress

viscous stress

)
. (7)

For power-law and Newtonian fluids the Bingham number is zero, whereas when
n = 1 the Reynolds number reduces to the canonical Re = ρUd/k.

The non-dimensional friction, pressure and drag coefficients are calculated respec-
tively as

CDf = (Ff )z

1/8ρπd2U2
, CDp = (Fp)z

1/8ρπd2U2
, CD = CDf + CDp, (8)

Fp = −
∫

S

pn dS, Ff =
∫

S

τ · n dS, (9)

where S is the sphere surface having n as its outward normal vector, (Fp)z and (Ff )z
are the z-component of the pressure and frictional force vectors, respectively.

Furthermore, throughout the paper, the regularisation parameter m will be ex-
pressed in its non-dimensional form,

M = mU

d
. (10)
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Numerical simulations are performed for all the combinations of n = 1, 0.8 and
0.6, Bn = 10 and 100 and Re = 10 and 100. This choice is made to maximise the
number of considered cases for which there is published CFD data in the literature
while also running a feasible number of simulations.

In addition, simulations are performed for creep flow (Re < 1) of Bingham flu-
ids, for two reasons. First, under the latter flow regime, obtaining a fully converged
solution with a SIMPLE-type solver can be challenging (if not impossible in some
cases). Second, literature data for Bingham creep flow are in excellent agreement
with each other, contrary to data for Re = 10 and 100. For these two reasons, the
Bingham creep flow is an interesting case to test the accuracy and robustness of the
solution approach, even though it is far from the typical flow conditions encountered
in maritime applications.

For Bingham creep flow, the drag coefficient as defined in Eq. (8) becomes ex-
tremely large. The reason is that inertia is virtually zero for creep flows, hence
1/2ρU2 is no longer a suitable factor to non-dimensionalise the forces. Since vis-
cous effects are dominant, a better alternative could be to use kU/d . Nonetheless, we
have adopted the more common practice of using the Stokes coefficient [7], defined
as

CS = CD

(24/Re)
. (11)

The Stokes coefficient is thus a measure of how large is the drag force compared
to the exact drag coefficient for Newtonian creep flow. The latter is equal to 24/Re
according to the Stokes’ law [39].

4. Numerical methods and setup

4.1. Flow solver

The CFD code used for the present work is REFRESCO, in which the governing
equations are discretised with a second-order finite-volume method for unstructured
mesh with cell-centered co-located variables. Mass conservation is ensured with a
pressure-correction equation based on a SIMPLE-like algorithm [26] and a pressure-
weighted interpolation technique to avoid spurious oscillations [32]. The convective
term in the momentum equation is linearised with the Picard method and discretised
with a central difference scheme. Other features such as cavitation and turbulence
models (the latter also for Herschel–Bulkley fluids [29]) are also implemented but
not used in the present work. These and other numerical techniques are described in
detail elsewhere (e.g. [19]).
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4.2. Boundary conditions

The boundary conditions are set as follows. A uniform inflow uz = U is imposed
at the inlet (z = −D/2, see also Fig. 1), whereas outflow conditions (∂uz/∂z = 0)
are imposed at the outlet boundary (z = D/2). The no-slip/no-permeability condi-
tions (u = 0) are set at the sphere surface while the free-slip conditions (un = 0,
∂uz/∂n = 0) are applied to the outer cylindrical tube. For the pressure field, Neu-
mann conditions (∂p/∂n = 0) are applied to all the boundaries, thus a pressure
reference is imposed in one point at the inlet boundary.

4.3. Domain size

In order to mimic a sphere settling in an infinite domain, the outer cylindrical tube
diameter must be sufficiently large compared to the sphere diameter. The influence
of the tube-to-sphere diameter ratio, D/d , was assessed by computing the drag co-
efficients on four grids having size D = 25d , 50d , 100d and 200d respectively, with
the grid 50d having the second finest refinement shown in Table 1 (Section 4.4) and
the regularisation parameters in Table 3 (Section 4.5).

The uncertainty in the solution due to the domain size has been estimated with
the method of Eça and Hoekstra [17] by replacing the grid size with the tube diam-
eter D. Since this method was designed to estimate the discretisation uncertainties,
we have checked the validity of this procedure by performing additional calculations
for Newtonian creep flow, whose exact solution for the unbounded domain yields
CS = 1, by virtue of Eq. (11). With the adopted procedure the extrapolated CS for
d/D = 0 was found to be 0.99995 (Fig. 3, left), thus the procedure is deemed re-
liable for the present calculations. Note that the 4% uncertainty shown in Fig. 3 is
irrelevant in this work as the Newtonian creep flow will not be considered further.

The uncertainties were then estimated for all the test cases, and the two largest
values obtained with D = 50d were 0.12% and 0.09%, which corresponded to the

Fig. 3. Convergence of the Stokes/drag coefficients with D1/Di (Di = 200d, 100d, 50d, 25d) for New-
tonian creep flow (Re = 0.01) (left) and Newtonian and power-law flows (Bn = 0) at Re = 10 (right).
The percentages indicate the domain uncertainty for the case with D1 = 50d.
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Newtonian and power-law cases (Bn = 0) for Re = 10, respectively (Fig. 3, right).
This is not surprising since the strongest disturbance of the sphere to the flow field
occurs for such test cases (see also Fig. 8 in Section 5.1). For Bn > 0, the domain
size uncertainties were found to be less than 0.005%. Therefore all subsequent cal-
culations were performed with D = 50d .

In conclusion, the maximum domain-size uncertainty for Newtonian and power-
law fluid is about 0.1%, whereas for all the other test cases the influence of the
domain size can be safely neglected.

4.4. Domain discretisation

The domain was discretised with two series of three-dimensional multi-block
structured grids, with the layout as sketched in Fig. 4. Four geometrically similar
grids were generated for each series in order to estimate the discretisation uncertain-
ties. The number of grid cells and the size of the first cells away from the sphere
surface are reported in Table 1. One series was generated for Re = 0.01 (creep flow)
of Bingham fluids and the other for the higher Reynolds numbers (Re = 10 and 100).
Note that the series used for creep flow calculations has higher resolution in order
to better capture the steep velocity gradient near the sphere walls occurring for large
Bn.

The discretisation uncertainties on the force coefficients are given in Table 2 and
they were estimated with the method of Eça and Hoekstra [17]. All the calculations
were carried out using the regularisation parameters discussed in the following sec-
tion. Except for the two cases with Bn = 100 and n = 0.6, all the uncertainties are
below 1%. The larger uncertainties observed in CDf for Bn = 100 and n = 0.6 can
be explained by the decrease of the apparent viscosity at the sphere surface (high-
shear region) when n is decreased. In fact, the already steep velocity profile at the
sphere walls for Bn = 100 (see also Fig. 11 in Section 5.1) becomes even steeper

Fig. 4. Illustration of the coarsest grid of Series 1.
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Table 1

Grid size ratio, number of cells Ni and thickness hw of the first cell away from the sphere surface

i Series 1 Series 2

Re = 10 and 100 Re = 0.01
3√N1/Ni Ni hw/d 3√N1/Ni Ni hw/d

4 2.59 129 064 0.00800 2.60 156 808 0.00200

3 1.90 324 070 0.00571 1.91 397 072 0.00143

2 1.38 857 600 0.00408 1.38 1 054 208 0.00102

1 1.00 2 238 368 0.00292 1.00 2 761 088 0.00073

Table 2

Discretisation uncertainties in percentage of the corresponding drag component for the pressure, frictional
and total drag on the finest grid

Re n Bn = 0 Bn = 10 Bn = 100 Re = 0.01

UCDp
UCDf

UCD
UCDp

UCDf
UCD

UCDp
UCDf

UCD
Bn UCDp

UCDf
UCD

10 1 0.03 0.12 0.09 0.88 0.17 0.25 0.40 0.38 0.36 2.299 0.61 0.25 0.36

10 0.8 0.02 0.11 0.08 0.34 0.10 0.57 0.34 0.94 0.38 8.047 0.56 0.39 0.43

10 0.6 0.02 0.09 0.05 0.31 0.18 0.26 0.33 3.34 0.76 59.59 0.28 0.21 0.20

100 1 0.10 0.05 0.07 0.28 0.10 0.17 0.32 0.30 0.30 340.7 0.49 0.12 0.42

100 0.8 0.18 0.11 0.15 0.33 0.09 0.24 0.30 0.88 0.39 497.5 0.24 0.15 0.22

100 0.6 0.38 0.23 0.31 0.19 0.17 0.25 0.66 3.26 0.69 544.6 0.24 0.21 0.23

when the viscosity is reduced, which would thus require a finer grid to be more ac-
curately captured.

4.5. Regularisation methods

The use of regularisation methods produces regularisation errors, which are de-
fined as the difference between the solution obtained with the regularised and non-
regularised rheological models. Large regularisation parameters are needed to min-
imise these errors, but this may lead to very slow or even stagnating convergence of
the residuals in the iterative solver, as will be shown in Section 4.6.

For practical applications, however, low regularisation parameters may be accept-
able since the rheology of many real fluids is better captured by regularised models
(e.g. [15,18]). On the other hand, for the purpose of comparison with literature data it
is important to minimise these errors, also to avoid possible cancellation of regular-
isation and discretisation errors that can cause a spurious agreement with literature
data. Figure 5 shows an example in which CS on an a very coarse grid with M = 20
is nearly identical to the CS on a fine grid with M = 200. Despite the latter case is
numerically more accurate, both CS are very close to literature data (cf. with Table 7)
as a result of errors cancellation.

The choice of the proper regularisation parameter is found to be problem-
dependent. With regard to the laminar flow around a sphere, previous numerical
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Fig. 5. Grid convergence of the Stokes coefficient for Bn = 197.5 using M = 20 and 200. The difference
δ is between CS on an a very coarse grid with M = 20 and on a fine grid with M = 200.

Fig. 6. Convergence of the Stokes coefficient with M1/Mi (Mi = 200, 100, 50, 20) for Re = 0.01 with
Bn = 59.59 (left) and Bn = 544.6 (right). The percentages indicate the regularisation uncertainty for
M = 200.

studies used very different values, both dimensional and non-dimensional. For in-
stance, Blackery and Mitsoulis [8] used m = 200 s, whereas Beaulne and Mitsoulis
[6] suggest to keep the product MBn equal to 103. On the other hand, Gavrilov et al.
[22] and Nirmalkar et al. [34,35] have used M = 103 and m = 106 s, respectively.

For the current work, the regularisation parameter for each test case has been grad-
ually increased until the regularisation uncertainty became less than 1%. The ques-
tion, however, is how to estimate the regularisation uncertainty. Frigaard and Nouar
[20] showed that, for typical Bingham shear flows, the Papanastasiou regularisation
errors tend to zero with first order as 1/M → 0. As a first approximation, it is thus
reasonable to estimate the regularisation uncertainty with the same method used for
the discretisation uncertainty, with the grid spacing replaced by 1/M (Fig. 6). The
final selected values of M that ensured a regularisation uncertainty below 1% are
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Table 3

Selected non-dimensional regularisation parameter M = mU/d for each test case

Re = 10 Re = 100 Creep flow, Re < 1

Bn 10 100 10 100 2.299 8.047 59.59 197.5 340.7 544.6

n = 1 500 200 1000 200 2000 2000 200 200 200 200

n = 0.8 500 200 1000 200 – – – – – –

n = 0.6 500 200 500 200 – – – – – –

reported in Table 3. We found that the maximum and average regularisation uncer-
tainties in percentage of the drag coefficient are 0.77% and 0.2%, respectively.

Finally, we remark that the values reported in Table 3 may not be sufficient to
accurately capture the so-called yielded surface, i.e. the locus of points where τ = τ0
(see e.g. [10,28]). This aspect, however, is both beyond the scope of this work and
unimportant for practical maritime applications, hence it is no further discussed.

4.6. Iterative convergence and viscosity interpolation scheme

As mentioned in the previous section, iterative convergence can become difficult
when using large regularisation parameters. This issue seems rather common when
using SIMPLE-like algorithms (see e.g. [40,41]). In this work, we found that the
rate of convergence of the residuals is significantly influenced by the choice of the
interpolation scheme for the viscosity.

Within the finite-volume method, the diffusive term in Eq. (1) requires the eval-
uation of the apparent viscosity, μ, at the cell faces. Since in REFRESCO the com-
putational node coincides with the cells’ centroid, the face value must be obtained
by interpolation. Assuming for simplicity that a cell face e is halfway between two
Cartesian grid cells P and E, the simplest second-order interpolation scheme to cal-
culate μe reads

μe = μP (γ̇P ) + μE(γ̇E)

2
. (12)

Another simple alternative is to first evaluate γ̇e from linear interpolation of γ̇P and
γ̇E and then to calculate the viscosity at the face e, i.e.

γ̇e = γ̇P + γ̇E

2
, μe = μ(γ̇e). (13)

The two schemes have the same computational cost, thus, in principle, there is
no reason to prefer one scheme to the other. Furthermore, when we performed a
code verification exercise (not shown here) similar to that in [30], the two schemes
exhibited the same accuracy and rate of convergence of the residuals. However, on
the present problem, the first scheme (Eq. (12)) turned out to be more robust as it
was possible to obtain a fully converged solution using relatively large regularisation
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Fig. 7. Effect of the two viscosity interpolation schemes on the iterative convergence of the pressure
residuals. Test case: Re = 0.01, Bn = 59.59.

parameters,1 as shown in Fig. 7. With the second scheme (Eq. (13)), on the other
hand, the residuals were stagnating already with regularisation parameters that were
one order of magnitude lower than those used to obtain a fully-converged solution
with the first scheme. Therefore, an interpolation scheme that uses the cell centre
values of the apparent viscosity was eventually adopted in REFRESCO.

For this work and with the setup described above, the iterative convergence crite-
rion was set to L∞ < 10−8 and the iterative uncertainties were estimated with the
method of Eça and Hoekstra [16]. For all the test cases, we found that the iterative
uncertainties were virtually zero (<0.0005%).

4.7. Total numerical uncertainty

The final numerical uncertainty in the computed drag coefficient was calculated
assuming that all the uncertainty components are dependent on each other, hence

Unum = Udom + Udiscr + Ureg + Uiter, (14)

where Udom, Udis, Ureg and Uit are the uncertainties produced by the finite domain
size, the domain discretisation, the regularisation parameter and the iterative method,
respectively. The total numerical uncertainties are reported in Table 4 and, for all the
test cases, they do not exceed 1%.

1Sufficiently large, at least, to keep the regularisation uncertainty below 1%.
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Table 4

Total numerical uncertainties, Unum, in percentage of the computed drag coefficient

Re n Bn = 0 Bn = 10 Bn = 100 Re = 0.01

UCD
UCD

UCD
Bn UCD

10 1 0.21 0.63 0.55 2.299 0.55

10 0.8 0.16 0.85 0.50 8.047 0.53

10 0.6 0.10 0.45 0.83 59.59 0.44

100 1 0.19 0.94 0.55 340.7 0.52

100 0.8 0.24 0.85 0.56 497.5 0.30

100 0.6 0.38 1.02 0.80 544.6 0.29

5. Results and discussion

5.1. Flow field

Some features of the computed flow field are now discussed. More detailed de-
scriptions have been already discussed by other authors [7,22,34,35], thus they will
not be completely repeated here. The contours of the velocity, shear rate and viscos-
ity for Re = 10 and 100 are shown in Figs 8 to 10, respectively. Note that flow field
for Bingham creep flow (Re = 0.01) is not shown as it is very similar to the the case
with Re = 10 and Bn = 100.

For Newtonian and power-law fluids (Bn = 0), the flow is attached to the sphere
for Re = 10, whereas at Re = 100 the flow appears separated, exhibiting the char-
acteristic toroidal eddy behind the sphere (Fig. 8, top). The effect of decreasing n is
less evident. When n < 1, the apparent viscosity becomes lower than the Newtonian
viscosity in the region where γ̇ > 1 (i.e. the region within the black isoline in Fig. 9,
top). This leads to a thinner boundary layer for n < 1 compared to Newtonian fluids.
Another effect of reducing n is the smaller wake eddy. The latter observation agrees
qualitatively with the results of Dhole et al. [14] for power-law fluids.

For yield stress fluids (Bn > 0), the viscosity increases significantly, especially
in the undisturbed flow region away from the sphere (Fig. 10, middle and bottom
panels). The large viscosity damps advection, leading to the disappearance of the
toroidal eddy behind the sphere. The fore-aft symmetry typical of creep flow is thus
restored. For Bn = 100, the flow appears symmetrical with respect to the equatorial
plane (z = 0), both for Re = 10 and 100 (Fig. 8, bottom).

When Bn > 0, the fluid far upstream is undeformed with very high viscosity, i.e. it
behaves as a solid-like material (τ < τ0). The fluid is then deformed as it encounters
the sphere and the viscosity is reduced (τ > τ0). The black isoline in the middle and
bottom plots of Fig. 9 identifies the yielded surface, i.e. the locus of points where
τ = τ0. This surface shrinks with increasing Bn and decreasing n, whereas it grows
with higher Re. These observations are in line with those of Nirmalkar et al. [35].
Furthermore, small unyielded regions are observed near the stagnation points. These
regions are usually referred to as ‘polar caps’ [7,8].
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Fig. 8. Velocity contour and streamlines. The flow is from bottom to top.



S. Lovato et al. / Non-Newtonian fluids: The flow around a sphere 107

Fig. 9. Contour plot of the shear rate γ̇ . The black isoline corresponds to γ̇ = 1 s−1 for Bn = 0, whereas
it corresponds to τ = τ0 for Bn = 10 and 100.
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Fig. 10. Contour plot of μ(γ̇ )/k, which is equal to 1 for Newtonian fluids.
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Fig. 11. Axial velocity profiles for Bingham fluids (n = 1) at Re = 100; (a) along y on the plane z = 0;
(b) along the centreline (x = y = 0) near the rear stagnation point.

As Bn increases, the solid-like region (uniform undisturbed flow) tends to expand
towards the sphere, thus ‘squeezing’ the fluid close to the sphere. As a result, the
fluid has to increase its velocity in order to keep the flow rate constant along the tube
cross-sections. Another way to see this is that the streamlines become denser near
the sphere.

Furthermore, for yield stress fluids, the velocity in the equatorial plane exhibits a
local maximum, which leads to a local viscosity maximum2 (Fig. 10), as also ob-
served in [22,34]. Such steep variation of viscosity over a relative short distance was
a major cause for the difficult iterative convergence. We found in fact that the largest
residuals were always near the local viscosity maximum.

For ideal (i.e. non-regularised) Bingham and Herschel–Bulkley fluids, the fluid
region far from the sphere would have an infinite viscosity and zero shear rate. The
effect of the regularisation is evident in Figs 9 and 10: the shear rate is very low (but
not zero) and the viscosity is very large (but not infinite).

Finally, the velocity profiles for Bingham fluids at Re = 100 are plotted in Fig. 11
and compared with available literature data [22,34]. The above mentioned disappear-
ance of the recirculation region with increasing Bn is clearly visible in Fig. 11(b).
Overall, our results agree fairly well with literature data, especially with those of
Gavrilov et al. Some visible discrepancies are observed in Fig. 11(a) for Bn = 100,
which probably stem from the different settings (e.g. grids, regularisation parame-
ters, domain size, etc.) used in this work and in the work of Nirmalkar et al. [34].

In conclusion, the flow field is qualitatively in line with previous studies from the
literature, and it quantitatively agrees with the results of Gavrilov et al. and Nirmalkar
et al.

2Note that, in three dimensions, this local maximum is actually a circle around the sphere.
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5.2. Drag coefficients and comparison with literature

The drag coefficient is often the only quantity of interest in many engineering
applications. It is therefore a meaningful quantity to assess whether the present code
can reproduce the results from the literature.

The drag coefficients and its components are reported in Table 5. The ratio
CDp/CDf

is observed to increase with the non-Newtonian character of the fluid
(i.e. with higher Bn or lower n). This observation is consistent with previous numer-
ical studies [14,22,34]. Furthermore, CD appears to decrease with n, which is due to
the shear-thinning effect the reduces the viscosity in the high-shear region near the
sphere.

A direct comparison of CD with the literature data is given in Tables 6 and 7. Note
that making a rigorous validation is not possible because the numerical uncertainties
for the literature data are not known. Nevertheless, we have applied the validation
procedure proposed by ASME [3] by replacing experimental data with numerical
data from the literature. According the procedure, the modelling error, δmodel, is es-
timated by comparing two quantities: the (expanded) validation uncertainty,

Uval =
√

U2
num + U2

lit + U2
input, (15)

and the comparison error,

E = S − D, (16)

where S is our numerical solution value and D is the literature data. Uinput is the
uncertainty due to the input parameters, which is zero for the present work. Unum

is the uncertainty in our numerical data, and it is reported in Table 4. Ulit is the
uncertainty in the literature data. Since this is unknown, it was assumed Ulit = 1%.

E and Uval define an interval within which δmodel falls, i.e.

E − Uval � δmodel � E + Uval. (17)

It is however remarked that, since the comparison is made with literature instead of
experiments, the modelling errors are expected to be zero. A successful validation
with literature data must thus yield |E| � Uval.

The comparison errors and the validation uncertainties are plotted in Fig. 12, from
which the following observations are made:

• For power-law fluids (Bn = 0), the maximum |E| with Dhole et al. [14] and
Tripathi et al. [43] is about 7%, which is well outside the uncertainty range.
We found that the difference with respect to Dhole et al. lies in the pressure
component, where |E| reaches about 20% relative to our data. The reasons for
such difference are however not known. It is possible that the uncertainty in the
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Table 5

Pressure, frictional and total drag coefficients for all the considered test cases

Re n Bn = 0 Bn = 10 Bn = 100 Re < 1

CDp CDf
CD CDp CDf

CD CDp CDf
CD Bn CSp CSf

CS

10 1 1.528 2.781 4.308 25.10 18.30 43.39 223.1 97.62 320.8 2.299 3.071 3.325 6.395

10 0.8 1.641 2.537 4.178 25.00 15.22 40.22 222.9 86.25 309.2 8.047 8.599 6.668 15.27

10 0.6 1.799 2.222 4.021 24.86 12.45 37.31 222.6 77.99 300.6 59.59 55.93 26.85 82.78

100 1 0.512 0.577 1.089 2.789 1.915 4.704 22.41 9.775 32.18 340.7 181.9 71.71 253.6

100 0.8 0.494 0.446 0.940 2.764 1.570 4.334 22.39 8.632 31.02 497.5 312.7 115.3 428.0

100 0.6 0.471 0.320 0.790 2.722 1.261 3.983 22.36 7.802 30.16 544.6 499.0 175.5 674.5
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Table 6

Drag coefficient, CD , from the present calculations and the literature. All the literature data is from nu-
merical simulations and not from the correlations proposed in the respective articles

Data from Re = 10 Re = 100

n = 1 n = 0.8 n = 0.6 n = 1 n = 0.8 n = 0.6

Bn = 0 present work 4.308 4.178 4.021 1.089 0.940 0.790

Dhole [14] 4.281 4.086 3.769 1.062 0.921 0.759

Tripathi [43] 4.31 4.17 3.76 1.02 0.920 0.780

Gavrilov [22] 4.334 4.167 3.969 1.095 0.941 0.787

Bn = 10 present work 43.39 40.22 37.31 4.704 4.334 3.983

Gavrilov [22] 42.15 38.90 35.91 4.587 4.217 3.880

Nirmalkar [34,35] 43.63 40.40 37.43 4.743 4.363 4.015

Bn = 100 present work 320.8 309.2 300.6 32.18 31.02 30.16

Gavrilov [22] 307.9 295.4 284.7 30.95 29.69 28.61

Table 7

Stokes coefficients, CS , for Bingham creep flow from the present calculations and the literature

Data from Re = 0.01

Bn = 2.299 8.047 59.59 197.5 340.7 544.6

present work 6.395 15.27 82.78 253.6 428.0 674.5

Beris [7] 6.39 15.24 82.77 252.2 426.9 669.7

Liu [28] 6.38 15.21 82.67 253.6 426.0 671.9

Nirmalkar [34] – 15.25 82.83 – 427.5 673.5

literature data is actually greater than 1%, therefore assuming Ulit = 1% might
have led to an underestimation of the validation uncertainty. Nevertheless, the
agreement with the more recent results of Gavrilov et al. [22] is better, with
comparison errors are either within or very close to Uval.

• For Bingham and Herschel–Bulkley fluids (Bn > 0) at Re = 10 and 100, the
larger discrepancies are found with respect to the data of Gavrilov et al., with
|E| > Uval for all cases. On the other hand, the agreement with Nirmalkar
et al. [34,35] is excellent, with differences that are well within the validation
uncertainties.

• The best agreement with literature data is achieved for Bingham creep flow
(Re = 0.01), with all the comparison errors being within the validation uncer-
tainties.

• Our results tend to be on the over-predicting side, i.e. E leans towards the right
side of Fig. 12. We observed that CD tends to decrease with grid refinement
and to increase with higher regularisation parameters. It is thus possible that
the other authors have used finer grids and/or lower regularisation parameters.
Another possible reason for a systematic increase of the sphere drag may be
expected from the effect of the tube-to-sphere diameter ratio [11]. However, it
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Fig. 12. Comparison error (± validation uncertainty) for the drag coefficient in percentage of our data for
Re = 10 and 100 (top) and for Re = 0.01 (bottom).

was found in Section 4.3 that the uncertainty in CD due to the finite domain
size was between 0.05% and 0.12% for power-law fluids and below 0.001% for
the other non-Newtonian cases. Thus, the reasons for the over-predicting trend
remain unclear.

6. Conclusions

We have tested the viscous-flow solver REFRESCO on the laminar non-
Newtonian flow around a sphere as a stepping stone towards more practical maritime
applications.

Some difficulties were encountered when using large regularisation parameters,
which led to stagnating residuals and thus large iterative errors. A determining factor
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turned out to be the choice of the viscosity interpolation scheme. Although obtain-
ing a fully converged solutions remained challenging, the improved iterative conver-
gence provided a significant reduction of the iterative and regularisation errors. This
allowed a more compelling comparison with literature.

The flow field around the sphere exhibited the expected behaviour for the consid-
ered test cases and it is both qualitatively and quantitatively consistent with previous
numerical studies. The maximum difference in drag coefficient between the calcu-
lated values and the values from the literature reached 7% (i.e. outside the validation
uncertainty range) for power-law fluids, whereas it was insignificant for Bingham
creep flow. Overall, the agreement with previous studies is good, with discrepancies
that are, in most cases, close or within the validation uncertainties.

Combining the evidence of our previous code verification exercises [30,31] and
the results of this work, it is concluded that the power-law, Bingham and Herschel–
Bulkley models are implemented correctly and that the code is capable of reproduc-
ing literature data with good accuracy despite the high non-linearity introduced by
the non-Newtonian viscosity. This provides confidence to employ REFRESCO for
more complex applications such as a ship sailing through fluid mud. Finally, present
data can be used for future verifications and to derive new correlations for the drag
coefficient.
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[19] J.H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics, Springer, Berlin Heidel-
berg, Berlin, Heidelberg, 1996. doi:10.1007/978-3-642-97651-3.

[20] I.A.A. Frigaard and C. Nouar, On the usage of viscosity regularisation methods for visco-plastic
fluid flow computation, Journal of Non-Newtonian Fluid Mechanics 127(1) (2005), 1–26. doi:10.
1016/j.jnnfm.2005.01.003.

[21] Z. Gao, H. Yang and M. Xie, Computation of flow around Wigley hull in shallow water with muddy
seabed, Journal of Coastal Research 73 (2015), 490–495. doi:10.2112/SI73-086.1.

[22] A.A. Gavrilov, K.A. Finnikov and E.V. Podryabinkin, Modeling of steady Herschel–Bulkley fluid
flow over a sphere, Journal of Engineering Thermophysics 26(2) (2017), 197–215. doi:10.1134/
S1810232817020060.

[23] D.I. Graham and T.E.R. Jones, Settling and transport of spherical particles in power-law fluids at
finite Reynolds number, Journal of Non-Newtonian Fluid Mechanics 54(C) (1994), 465–488. doi:10.
1016/0377-0257(94)80037-5.

[24] F. Irgens, Rheology and Non-Newtonian Fluids, Springer International Publishing, Cham, 2014,
pp. 1–190. doi:10.1007/978-3-319-01053-3.

[25] S. Kaidi, E. Lefrançois and H. Smaoui, Numerical modelling of the muddy layer effect on ship’s
resistance and squat, Ocean Engineering 199 (2020), 106939. doi:10.1016/j.oceaneng.2020.106939.

[26] C.M. Klaij and C. Vuik, SIMPLE-type preconditioners for cell-centered, colocated finite volume
discretization of incompressible Reynolds-averaged Navier–Stokes equations, International Journal
for Numerical Methods in Fluids 71(7) (2013), 830–849. doi:10.1002/fld.3686.

[27] K. Koziol and P. Glowacki, Determination of the free settling parameters of spherical particles
in power law fluids, Chemical Engineering and Processing: Process Intensification 24(4) (1988),
183–188. doi:10.1016/0255-2701(88)85001-3.

[28] B.T. Liu, S.J. Muller and M.M. Denn, Convergence of a regularization method for creeping flow of a
Bingham material about a rigid sphere, Journal of Non-Newtonian Fluid Mechanics 102(2) (2002),
179–191. doi:10.1016/S0377-0257(01)00177-X.

[29] S. Lovato, G.H. Keetels, S.L. Toxopeus and J.W. Settels, An Eddy-viscosity model for turbulent
flows of Herschel–Bulkley fluids, Journal of Non-Newtonian Fluid Mechanics 301 (2022), 104729.
doi:10.1016/j.jnnfm.2021.104729.

[30] S. Lovato, S.L. Toxopeus, J.W. Settels, G.H. Keetels and G. Vaz, Code verification of non-
Newtonian fluid solvers for single- and two-phase laminar flows, Journal of Verification, Validation
and Uncertainty Quantification 6(2) (2021). doi:10.1115/1.4050131.

[31] S. Lovato, G. Vaz, S.L. Toxopeus, G.H. Keetels and J.W. Settels, Code verification exercise for 2D
Poiseuille flow with non-Newtonian fluid, in: Numerical Towing Tank Symposium (NuTTS), 2018.

[32] T.F. Miller and F.W. Schmidt, Use of a pressure-weighted interpolation method for the solution of the
incompressible Navier–Stokes equations on a nonstaggered grid system, Numerical Heat Transfer
14(2) (1988), 213–233. doi:10.1080/10407788808913641.

[33] K.A. Missirlis, D. Assimacopoulos, E. Mitsoulis and R.P. Chhabra, Wall effects for motion of
spheres in power-law fluids, Journal of Non-Newtonian Fluid Mechanics 96(3) (2001), 459–471.
doi:10.1016/S0377-0257(00)00189-0.

[34] N. Nirmalkar, R.P. Chhabra and R.J. Poole, Numerical predictions of momentum and heat trans-
fer characteristics from a heated sphere in yield-stress fluids, Industrial & Engineering Chemistry
Research 52(20) (2013), 6848–6861. doi:10.1021/ie400703t.

[35] N. Nirmalkar, R.P. Chhabra and R.J. Poole, Effect of shear-thinning behavior on heat transfer from
a heated sphere in yield-stress fluids, Industrial & Engineering Chemistry Research 52(37) (2013),
13490–13504. doi:10.1021/ie402109k.

[36] T.C. Papanastasiou, Flows of materials with yield, Journal of Rheology 31(5) (1987), 385–404.
doi:10.1122/1.549926.

https://doi.org/10.1122/1.550144
https://doi.org/10.1007/978-3-642-97651-3
https://doi.org/10.1016/j.jnnfm.2005.01.003
https://doi.org/10.1016/j.jnnfm.2005.01.003
https://doi.org/10.2112/SI73-086.1
https://doi.org/10.1134/S1810232817020060
https://doi.org/10.1134/S1810232817020060
https://doi.org/10.1016/0377-0257(94)80037-5
https://doi.org/10.1016/0377-0257(94)80037-5
https://doi.org/10.1007/978-3-319-01053-3
https://doi.org/10.1016/j.oceaneng.2020.106939
https://doi.org/10.1002/fld.3686
https://doi.org/10.1016/0255-2701(88)85001-3
https://doi.org/10.1016/S0377-0257(01)00177-X
https://doi.org/10.1016/j.jnnfm.2021.104729
https://doi.org/10.1115/1.4050131
https://doi.org/10.1080/10407788808913641
https://doi.org/10.1016/S0377-0257(00)00189-0
https://doi.org/10.1021/ie400703t
https://doi.org/10.1021/ie402109k
https://doi.org/10.1122/1.549926


S. Lovato et al. / Non-Newtonian fluids: The flow around a sphere 117

[37] P. Saramito and A. Wachs, Progress in numerical simulation of yield stress fluid flows, Rheologica
Acta 56(3) (2017), 211–230. doi:10.1007/s00397-016-0985-9.

[38] P.R. Souza Mendes and E.S.S. Dutra, Viscosity function for yield-stress liquids, Applied Rheology
14(6) (2004), 296–302. doi:10.1515/arh-2004-0016.

[39] G.G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, in: Mathe-
matical and Physical Papers, Cambridge University Press, Cambridge, 2010, pp. 1–10. doi:10.1017/
CBO9780511702266.002.

[40] A. Syrakos, G.C. Georgiou and A.N. Alexandrou, Solution of the square lid-driven cavity flow of a
Bingham plastic using the finite volume method, Journal of Non-Newtonian Fluid Mechanics 195
(2013), 19–31. doi:10.1016/j.jnnfm.2012.12.008.

[41] A. Syrakos, G.C. Georgiou and A.N. Alexandrou, Performance of the finite volume method in
solving regularised Bingham flows: Inertia effects in the lid-driven cavity flow, Journal of Non-
Newtonian Fluid Mechanics 208–209 (2014), 88–107. doi:10.1016/j.jnnfm.2014.03.004.

[42] H. Tabuteau, P. Coussot and J.R. de Bruyn, Drag force on a sphere in steady motion through a
yield-stress fluid, Journal of Rheology 51(1) (2007), 125–137. doi:10.1122/1.2401614.

[43] A. Tripathi, R.P. Chhabra and T. Sundararajan, Power law fluid flow over spheroidal particles, In-
dustrial & Engineering Chemistry Research 33(2) (1994), 403–410. doi:10.1021/ie00026a035.

[44] L. Valentik and R.L. Whitmore, The terminal velocity of spheres in Bingham plastics, British Jour-
nal of Applied Physics 16(8) (1965), 1197–1203. doi:10.1088/0508-3443/16/8/320.

[45] G. Vaz, F. Jaouen and M. Hoekstra, Free-surface viscous flow computations: Validation of URANS
code FRESCO, in: Proceedings of OMAE2009, Honolulu, Hawaii, USA, 2009, pp. 425–437. doi:10.
1115/OMAE2009-79398.

[46] R.W. Wurpts, 15 years experience with fluid mud: Definition of the nautical bottom with rheological
parameters, Terra et Aqua (2005).

https://doi.org/10.1007/s00397-016-0985-9
https://doi.org/10.1515/arh-2004-0016
https://doi.org/10.1017/CBO9780511702266.002
https://doi.org/10.1017/CBO9780511702266.002
https://doi.org/10.1016/j.jnnfm.2012.12.008
https://doi.org/10.1016/j.jnnfm.2014.03.004
https://doi.org/10.1122/1.2401614
https://doi.org/10.1021/ie00026a035
https://doi.org/10.1088/0508-3443/16/8/320
https://doi.org/10.1115/OMAE2009-79398
https://doi.org/10.1115/OMAE2009-79398

	Introduction
	Problem formulation and governing equations
	Non-dimensional numbers and test cases
	Numerical methods and setup
	Flow solver
	Boundary conditions
	Domain size
	Domain discretisation
	Regularisation methods
	Iterative convergence and viscosity interpolation scheme
	Total numerical uncertainty

	Results and discussion
	Flow field
	Drag coefficients and comparison with literature

	Conclusions
	Credit author statement
	Conflict of interest
	Acknowledgement
	References

