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generating absorbing boundary condition for floating
bodies of arbitrary shape in the frequency domain
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A two-dimensional (2D) boundary element method is developed for the rapid assessment of the hydro-
dynamic performance of floating structures in waves. The boundary element method is based on potential
flow and has panels along all boundaries of the fluid domain – not only along the boundary of the floater –
to make the extension to second order feasible. Panels along all boundaries requires the development of
generating absorbing boundary conditions for use at radiation boundaries to send incident waves into the
domain while absorbing waves originating from the floating body at the same boundary, at the same time.
The model is verified by means of conservation of energy of a heaving wave energy converter, and by
means of the propagation of second-order waves. The performance in terms of conservation of energy
with 12 panels per wave length is good, the generating absorbing boundary condition works according to
expectation and the second-order wave propagation corresponds to theory.
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1. Background

It is convenient to have a rapid assessment method for the performance of floating
structures in free surface waves. Rapid assessment was shown to capture much of
the physical behaviour of wave interaction with a non-moving wall in Bos et al.
[2]. While Xu and Wellens [14,15] introduced rapid assessment methods for flexible
floating structures that need to be large compared to the wave lenghth, we aim to
develop a method for floating rigid structures of any shape without a restriction in
size. Boundary element methods have an order fewer unknowns compared to field
methods (Computational Fluid Dynamics, CFD), making them attractive in terms of
computational cost.
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A boundary element method (BEM) discretizes the problem at the boundaries to
solve the fluid domain. Only potential flow is considered. Potential flow theory is
based on two fundamental equations, the conservation of mass and the conservation
of momentum, that need to be solved in the fluid domain. The equation for conser-
vation of momentum stems from an equation of motion for the fluid.

Boundary conditions need to bo added to the fundamental equations. One is that
the water particles can not enter the body, so there is a no-penetration boundary
condition on the body: the velocity of the water particles is the same as the velocity
of the body. A similar boundary condition applies to free surface and bottom. The
side walls of the fluid domain need to let incident waves in and let radiated and
diffracted waves out. The body has its own equations of motion which completes the
system of equations.

The fundamental equations with boundary conditions can be solved in different
ways. There is the option to solve the system fully analytically. This has been done
for a cylinder by Dean [3] and Ursell [11], Ursell and Dean [12] up to first order.
The mathematics required to solve the system are extensive. Ogilvie [9] extended the
approach to include second order forces on a stationary cylinder, and on a submerged
cylinder that was free to respond. The analytical approaches, especially to second
order, have only be applied to a limited set of geometries that are cylindrical of
elliptical in shape.

Our chosen method for solving the system of equations for more complex shapes
is by discretization with panels along a boundary of interest. Sources are used to
satisfy the boundary condition at hand at the position of each panel. This results
in a system of equations with an equation for each panel that solves for its source
strength. The total potential that describes the flow in the entire fluid domain can be
constructed from the combination of all source strengths. Many examples of panel
methods exist.

Frank [4] used sources with Green’s functions to solve the boundary conditions
at the free surface and at infinity. An advantage of using Green’s functions is that
only the body surface itself needs to be approximated with panels. A more involved
example comes from Kim, Kim and Lucas [7] and Kim and Yue [6]. They make use
of a Green’s function to solve the second order diffraction problem for the pressures
and body motions in three dimensions. The software WAMIT uses the methods from
this work to calculate the second order flow around floating bodies. An advantage of
these methods is that the number of unknowns is low (only the body); a disadvantage
is that the mathematics are complex and that extension to third order is even more
complex.

A different approach is taken by Yeung [16] and Ballast [1]. Instead of using a
Green’s function to solve for the boundary conditions, simpler sources are used at
the positions of the panels. The boundary conditions at the free surface and at infinity
are solved by having panels on the free surface and including radiation boundary
conditions at the side walls of the fluid domain. This increases the number of panels,
but reduces the complexity of the calculations. The method of Yeung [16] is suitable
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Table 1

State of the art BEM

2D 3D Incoming
waves

Simple
sources

Frequency
domain

(G)ABC Second-
order

Kim and Yue [6] No Yes Yes No No No Yes

Yeung [16] Yes Yes No Yes Yes No No

Frank [4] Yes No Yes No Yes No No

Ballast [1] No Yes Yes Yes No Yes Yes

This research Yes No Yes Yes Yes Yes Ready

for two and three dimensions, but first order and limited to the radiation problem
only (no incident waves and diffraction).

Our objective is to develop a fast method with radiation and diffraction in the
frequency domain that can be extended to second order. To make this possible, the
approach is to place panels along all boundaries of the fluid domain and not only
along the boundary of the floating object as is commonly done (Frank [4]). The ap-
proach implies that radiation conditions, also called absorbing boundary conditions
(ABC), are imposed on the side walls of the fluid domain for the waves that leave
the domain in the radiation problem. For the diffraction problem it is required that
diffracted waves leave the domain over the same boundary and at the same time as
incident waves enter the fluid domain. Following Wellens and Borsboom [13], a gen-
erating absorbing boundary condition (GABC) has been derived for the diffraction
problem.

Table 1 shows how the research in this article relates to existing literature with
boundary element methods. The table compares methods based on a number of char-
acteristics that are important for what we would like to achieve. The first character-
istics say whether the methods are 2D, 3D or both. Some methods feature incident
waves, others do not. ‘Simple sources’ describes whether a method uses a Green’s
function which takes care of the boundary conditions of the fluid domain or not.
Whether a method works in the frequency domain or in the time domain is an in-
dication of how fast it is. ‘Coupling’ indicates whether incident waves and radiated
waves can enter and leave the domain simultaneously. And ‘second order’ states
whether a method is first or second order. Our method is ready for second order: it
features second-order wave propagation, but does not yet solve the fluid structure
interaction with the body to second order. In summary, the method presented in this
article is the only frequency domain method with absorbing boundary conditions and
an extension towards second order.

The next chapter presents the mathematical formulation of the problem. Section 3
describes how the governing equations have been discretized and included in the
method. The method is evaluated in Section 4 with the first-order response of a float-
ing wave energy converter and with second-order wave propagation. The conclusions
are summarized in the final chapter.
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Fig. 1. A fluid domain.

2. Mathematical formulation

2.1. Fundamental equations and boundary conditions

A potential � is defined such that the gradient of the potential gives the velocity
vector, ∇� = −→

u . Conservation of mass then becomes

∇2� = 0. (1)

Conservation of momentum is obtained through the Bernoulli equation

p

ρ
= −∂�

∂t
− 1

2
|∇�|2 − gy. (2)

Here, p is the pressure, t is time, g is the acceleration of gravity and y is the vertical
coordinate that is defined as positive in opposite direction to the force of gravity.

A fluid domain is given in Fig. 1. It features the right-handed axis system with y,
and x in the direction orthogonal to y. The total potential � is subdivided into �I ,
�D and �R . The explanation of these symbols and the symbols for identifying the
boundaries in Fig. 1 is given in Table 2.

At the bottom boundary B0, with position y = −h and h being the water depth, a
no-penetration boundary condition is solved

∂�

∂y
= 0 at y = −h. (3)

A kinematic condition is solved at free surface SF

∂η

∂t
+ ∇� · ∇η = ∂�

∂y
at y = η, (4)
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Table 2

List of symbols for components of the total potential and the
boundaries of the fluid domain

Abbreviation Physical meaning

�I Incident wave

�D Diffracted wave

�R Radiated wave

SB Body surface

SF Free surface

SR Radiation boundary

B0 Bottom boundary

with η the free surface. The kinematic condition states that fluid particles at the
position of the free surface follow the motion of the free surface.

A highlight of this paper is the generation of waves at radiation boundaries SR .
To achieve this, the well-known Sommerfeld radiation condition, also known as ab-
sorbing boundary condition (ABC) is changed in to generating absorbing boundary
condition (GABC) as in Wellens and Borsboom [13]. The Sommerfeld condition is
based on a propagating wave in a certain direction with phase velocity c. At the left
radiation boundary, waves that propagate to the left are absorbed; at the right radia-
tion boundary waves that propagate to the right are absorbed. For a wave propagating
to the right, at the right-hand radiation boundary, the Sommerfeld condition reads(

∂

∂t
+ c

∂

∂x

)
� = 0. (5)

The wave speed c is defined as ω/k, with ω the wave frequency and k the wave
number. In the frequency domain, for a wave mode with argument (ωt −kx), Eq. (5)
simplifies to(

∂

∂x
+ ik

)
� = 0. (6)

This is also the expression used by Yeung [16] for his radiation problem. For the
diffraction problem, the left-hand radiation boundary is also a generation boundary
for the incident waves propagating to the right. Following Wellens and Borsboom
[13], who derived a GABC for irregular waves in the time domain, the right-hand
side of Eq. (6) is given a non-zero value equal to the operators on the left-hand side
applied to a wave mode with argument (ωt+kx), yielding a GABC for the frequency
domain(

∂

∂x
− ik

)
� =

(
∂

∂x
− ik

)
�I = −2ik�I (7)

The performance of boundary condition Eq. (7) is demonstrated in Section 4.
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2.2. Linear wave theory

It is assumed that the waves are not steep, and are long enough to neglect surface
tension. For linear potential flow theory all equations are linearized around y = 0,
meaning higher than first-order terms are neglected. The kinematic boundary condi-
tion then becomes

∂η

∂t
= ∂�

∂y
at y = 0. (8)

The atmospheric pressure at the free surface is assumed to be zero

p = 0 at y = η. (9)

Linearizing the Bernoulli equation, Eq. (2), and substituting Eq. (9), leads to the
dynamic free surface boundary condition

∂�

∂t
+ gη = 0 at y = 0. (10)

Linear potential flow theory is also known as Airy wave theory. The potential
function of an Airy wave

η = A sin(ωt − kx) (11)

that satisfies the fundamental equations and the linearized boundary conditions is

� = Ag

ω

cosh(k(h + y))

cosh(kh)
cos(ωt − kx), (12)

with A the amplitude of the Airy wave.
The characteristic equation of the system of equations is the dispersion relation

ω2 = kg tanh(kh). (13)

It relates the wave frequency and the wave number. Because c = ω/k, the disper-
sion relation implies that waves of different frequency propagate at different phase
velocities c. The wave length is found from the wave number as L = 2π/k and the
wave period is found from the wave frequency as T = 2π/ω.

2.3. Second-order wave theory

In order to solve the non-linear wave propagation problem, it is common to use
perturbation theory. This was first done by Stokes [10] for free surface gravity waves.
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It was repeated by Newman [8] for waves in infinite water depth. With perturbation
theory, a function or solution variable is approximated by a series of terms of in-
creasing order

ξ = ξ (0) + εξ (1) + ε2ξ (2) + · · · (14)

Here, ξ (i) are the expansion terms in the perturbation series approximating solu-
tion variable ξ . ε is a small term (for waves it is the wave steepness), so that higher-
order terms become smaller as the order increases. An approximate solution is found
by truncating the series. From now on, approximated variables are given a superscript
(1) or (2) to indicate the order of approximation.

The second-order boundary condition (Stokes [10]) is referred to as the quadratic
forcing function (QFF)

−4ω�(2) + g
∂�(2)

∂y
= QFF, (15)

with

QFF = − ∂

∂t

(
∂�(1)

∂x

∂�(1)

∂x
+ ∂�(1)

∂y

∂�(1)

∂y

)

+ 1

g

∂�(1)

∂t

∂

∂y

(
∂2�(1)

∂t2
+ g

∂�(1)

∂y

)
. (16)

An index to find the non-linearity for waves in finite water depth is the Ursell
number

NUrsell = A/L

(h/L)3
= AL2

h3
. (17)

It is defined as the steepness/(relative depth)3. The higher the Ursell number, the
more non-linear a wave is going to behave. The second-order potential that satisfies
the second-order boundary condition at the free surface (Stokes [10]) is

�(2) = 3A2ω

8

cosh(2k(h + y))

sinh4(kh)
sin

(
2(ωt − kx)

)
(18)

2.4. Pressures and forces

To find the pressures in the domain use is made of the linearized Bernoulli equa-
tion

p(1) = −ρ
∂�(1)

∂t
− ρgy. (19)
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The forces on the body are the integration of the pressures along the body surface
Sb, see Fig. 1

F (1) =
∫

S
(0)
B

p(1) ds. (20)

The buoyancy force on the floating body is found differently. The change in buoy-
ancy in the heave direction is caught by the hydrostatic term in the Bernoulli equation
ρgy, in which y is replaced by the vertical position a of the floater. In the presence of
waves, the pressure depends on the relative position of the structure with respect to
the free surface elevation η − a. The pressure is then integrated over the waterplane
area SA

Fb =
∫

SA

ρg
(
η(1) − a(1)

)
ds. (21)

This expression for the buoyancy force is accurate for wall-sided structures and
small motions. For non-wall-sided structures it is the zeroth-order approximation.
Other motion directions require a similar evaluation.

2.5. Motions

The motions of the floating object are found from an equation of motion for the
body. For the vertical direction

ζy = F
(1)
y

−ω2(M + μ) − iωλ + K
, (22)

in which ζy is the response amplitude operator (RAO), defined as the ratio between
the body motion amplitude â and the wave amplitude A. M is the body mass, μ the
added mass, λ the damping and K the coefficient of the buoyancy. The added mass
and damping of the floating body are found from a radiation simulation. The total
force on the floater is found from the sum of forces found from a radiation simulation
and a diffraction simulation.

2.6. Power prediction & optimal damping

When the floating body is equipped with a generator to harvest wave energy, a
power take-off (PTO) device, the power produced can be estimated using the param-
eters from a BEM simulation. Assume that λPTO is the damping coefficient of the
PTO. The produced power as a function of time then becomes

PA(t) = λPTOȧ(t)2. (23)
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Velocity ȧ(t) is the time derivative of motion a(t) of the body, with â its amplitude.
The average power in one wave period T then becomes

P A = 1

T

∫ T

0
Pd(t) dt (24a)

P A = 1

T

∫ T

0
λPTOω2â2 sin2(ωt) dt (24b)

P A = 1

2
λPTOω2â2. (24c)

Using RAO ζy with the additional damping λPTO of the generator, an expression
for the average power in terms of the damping is found

ζy = Fy

−ω2(M + μ) − iω(λ + λPTO) + K
(25a)

P A = 1

2
λPTOω2ζ 2

y A2 (25b)

P A = 1

2

λPTOω2A2F 2
y

(K − ω2(M + μ))2 + (ω(λ + λPTO))2
. (25c)

The optimal damping coefficient λopt of the generator is then found from the ex-
pression obtained after taking the derivative of the average power with respect to
λPTO and finding its root(s)

∂P A

∂λPTO
= 0 (26a)

1

2

ω2ζ 2
y F 2

y ((K − ω2(M + μ))2 + ω2(λ2 − λ2
PTO))

((K − ω2(M + μ))2 + (ω(λ + λPTO))2)2
= 0 (26b)

λopt = λPTO =
√

(K/ω − ω(M + μ)2 + λ2 (26c)

2.7. Conservation of energy

Conservation of energy is used to verify the simulations in Section 4. As energy
enters and leaves the domain through the radiation boundaries SR in Fig. 1, it is con-
venient to define dimensionless numbers in terms of the directions of the wave com-
ponents encountered at those boundaries: the incident wave component, the reflected
wave component and the transmitted wave component. Reflection is the combination
of diffracted and radiated waves that propagate in opposite direction to the incident



148 M. Gabriel and P. Wellens / 2D BEM with GABC

wave. Transmission is the combination of incident, diffracted and radiated waves that
propagate in the direction of the incident wave. In equations

R = �D − ζy�R

�I

(27a)

T = �D + �I − ζy�R

�I

. (27b)

Energy is conserved when the energy flux, or power, that enters the domain, is
equal to the power that leaves the domain plus the power that is absorbed by the
generator

PI = PR + PT + PA. (28)

Because the incident, reflected and transmitted wave power are related to the inci-
dent wave amplitude, the reflected wave amplitude and the transmitted wave ampli-
tude as

PI,R,T = 1

2

ρgA2
I,R,T ω

k
, (29)

and because

PA = 1

2
λPTOω2ζ 2

y A2
I , (30)

energy conservation leads to the following relation

R2 + T 2 + ηh = 1, (31)

in which ηh = PA/PI is the efficiency of the power take-off system.

3. Model description

A boundary element method has been adopted to find the hydrodynamic proper-
ties of a floating body with an arbitrary geometry and to solve the complete system
of motion with both the diffracted as the radiated waves (leading to reflected and
transmitted wave components). The choice is made for a method with panels along
all boundaries and simple sources instead of Green’s functions, as this will make the
extension to second order more feasible. The linear problem is split in a diffraction
and a radiation problem, which, when combined, describe the complete equation of
motion of the floater. An example of a domain with panels on all boundaries is shown
in Fig. 2. The center of each panel features a collocation point.
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Fig. 2. Panel layout.

Fig. 3. Panel definitions.

3.1. Discretization

The approximate solution is achieved by solving a matrix equation for all bound-
aries simultaneously. Since this is partly a mixed type boundary condition, the poten-
tial and the normal velocity must be defined on all panels. The condition is solved for
each collocation point (observation point) in the center of each respective panel. Col-
location points are points in the fluid along the boundary of the domain, not exactly
on the boundary but with a small distance to the boundary to prevent singularities in
the integration, see Fig. 3.

Source panels are used to find the solution to the boundary problem, with sources
spread out over the whole panel. The coordinates of the panels are given in the form
of a complex vector z

z = x + iy. (32)

Using z, a linear function is created that describes the path s from the start of the
panel at za to the end of the panel at zb

z1(s) = za + s(zb − za) (33)
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The influence matrix P[m,n] describes the influence of the potential of panel m on
panel n. The influence matrix Q[m,n] is used to find the influence of panel m on panel
n with regard to the normal velocity of the panel (pointing into the fluid domain)

P[n,m] =
∫

panel

l[n]
2π

ln
(
zc[m] − z1[n](s)

)
ds (34a)

Q[n,m] =
∫

panel

l[n]
2π

∂

∂np

ln
(
zc[m] − z1[n](s)

)
ds (34b)

Here, l is a vector containing the lengths of panels.
The influence matrices can pose a challenge. A numerical approach is taken to find

the potential value influence matrix P[m,n] and the normal velocity influence matrix
Q[m,n]. The matrices are found by numerical integration of sources along each panel.
The challenge arises when m = n. At this panel, the collocation point zc is very close
to the panel surface. If the integration step is not small enough, integration errors
will occur on this panel as the distance between the panel and the collocation point
is critical in the result. To ensure a good result, the integration step size has been
reduced until the solution converges.

Linear boundary condition matrices
With these descriptions of the normal velocities and potential in the entire domain,

the boundary conditions can be written in a discretized form. To solve for all bound-
aries simultaneously, the problem must be brought into a single matrix equation.

C(1)
[n,m] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q[n,m] − ikP[n,m], n ∈ SL

Q[n,m], n ∈ Sb

Q[n,m] + kP[n,m], n ∈ SF

Q[n,m] − ikP[n,m], n ∈ SR

Q[n,m], n ∈ B0

(35)

This matrix C contains all influence matrices that need to be solved for. Another
matrix, describing the known behaviour of the fluid at its boundaries is also deter-
mined. This matrix is different for the diffraction problem and the radiation problem.

Diffraction problem:

K(1)
[n] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2ik�(1), n ∈ SL

0, n ∈ Sb

0, n ∈ SF

0, n ∈ SR

0, n ∈ B0

(36)
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Radiation problem:

K(1)
[n] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, n ∈ SL

ȧ(1)
n[n], n ∈ Sb

0, n ∈ SF

0, n ∈ SR

0, n ∈ B0

(37)

with ȧn[n] the normal body velocities

ȧn[n] = nb[n] · ub[n]. (38)

The source strengths q[n] are found as the solution of

C(1)
[n,m]q

(1)
[n] = K

(1)
[n] . (39)

And from the resulting source strengths, the potential and the free surface values
are reconstructed

�
(1)
[n] = P(1)

[n,m]q
(1)
[n] (40a)

η
(1)
[n] = −iω

g
�

(1)
[n] for n ∈ SF (40b)

Second-order boundary condition matrices
To find the second-order results, a new influence matrix G is created. This matrix

replaces the Q[m,n] matrix in finding the derivatives of the potential in y.

G[n,m] = ∂

∂y
P[n,m] = 2k tanh

(
2k(h + y)

)
P[n,m] (41)

The tanh(2k(h+y)) term originates from the transformation of the cosh(2k(h+y))

to a sinh(2k(h + y)) when taking the partial derivative in y. This matrix can only be
used for a propagating wave without a floating body in the domain, because this
use of the derivative is not valid for evanescent waves near the floating body. The
complete influence matrix becomes

C(2)
[n,m] =

{
gG[n,m] − 4ω2P[n,m], n ∈ SF

G[n,m], n ∈ B0
(42)
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Since the presented solution does not contain a body, the right-hand side is given
by

K(2)
[n] =

{
QFF[n], n ∈ SF

0, n ∈ B0,
(43)

after which the source strengths are solved from

C(2)
[n,m]q

(2)
[n] = K(2)

[n]. (44)

4. Results

The implemention of the method is verified by means of first-order simulations
with a floating cylinder featuring a power take-off device (PTO) and second-order
simulations of a propagating free surface wave.

4.1. First-order results with a floating body

The vertical motion of a floating cylinder with a circular cross section and radius
R = 1 m in waves is considered. The domain has a size of 25m on either side of
the cylinder and a depth of 100 m. The panel size was taken to be 0.52 m, so that
twelve panels fit the circumference of the cylinder and 100 panels fit the free sur-
face in horizontal direction on either side of the cylinder. In depth direction, the size
of the panels grows exponentially with each panel in downward direction being 2%
larger than the panel above it. Diffraction problems with multiple wave frequencies
are considered with unit wave height. Radiation problems are simulated for those
same frequencies with unit vertical velocity of the floater. Figure 4 shows free sur-
face of the diffraction simulation and the radiation simulation for a wave propagating
to the right with a wave frequency of 2.3 rad/s. The diffraction problem features the
incident wave component (propagating to the right) and the reflected (diffracted)
wave component (propagating to the left) on the left of the cylinder, forming a par-
tial standing wave system. Without a functional GABC at the left boundary of the
domain, the wave height to the left of the cylinder would not have a finite value.
The right side of the cylinder features a transmitted wave component, which is the
combination of the incident wave component and the diffracted wave component.
In the radiation problem, the wave components on either side propagate away from
the heaving cylinder. The wave component on the left of the cylinder adds to the
reflection, the wave component on the right adds to the transmission.
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Fig. 4. Wave profiles with body for the diffraction problem and for the radiation problem.

Fig. 5. Diffraction force on a cylinder in heave.

Diffraction force
The vertical force on the cylinder is found from the discrete potential that is re-

constructed from the vector of source strengths

Fy = iρω
∑
n

�
(1)
[n]s[n]nb,y[n] for n ∈ Sb, (45)

in which s[n] is the vector with panel sizes and nb,y[n]j the projection of the panel’s
normal vector on the y-axis.

For the diffraction problem, the vertical force is shown in Fig. 5. The panel on
the left of the figure shows the real part Re(Fy) and imaginary part Im(Fy) of the
vertical force. The panel on the right of the figure shows the force amplitude |Fy |
and the phase tan−1(Im(Fy)/ Re(Fy) of the force with respect to the wave.

Radiation force
For the radiation problem, the vertical force is determined in the same way as in

Eq. (45). From that force, the added mass coefficient μ is found from the part of the
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Fig. 6. μ and λ for a cylinder in heave.

force in phase with the motion

μ = −Re(Fy)

ω2â
. (46)

The damping coefficient λ is found as the part of the vertical force out of phase
with the motion

λ = Im(Fy)

ωâ
. (47)

The added mass and damping for the floating cylinder are shown as a function of
frequency in Fig. 6.

When the added mass and damping are made non-dimensional in a way similar
to Yeung [16] as μnd = μ/0.5ρR2 and λnd = λ/0.5ρωR2, their values can be
compared to existing literature. The non-dimensional values for the added mass and
damping are shown in Fig. 7, where they are compared with the results of Frank [4].

Equation of motion
The forces from the diffraction problem and the coefficients from the radiation

problem are combined with the buoyancy of the floating cylinder in Eq. (21) and the
mass M = 0.5ρπR2 to determine the RAO according to Eq. (25a). At first, a value
of λPTO = 0 is used as if no PTO device is present. The RAO as a function of one
over the wave length, made non-dimensional with the diameter of the cylinder, is
shown in Fig. 8, where it is compared to the results of Zhao et al. [17] and Isaacson
and Baldwin [5]. The differences with Zhao et al. [17] are small. They are just as
small as the differences between Zhao et al. [17] and Isaacson and Baldwin [5] and
due to discretization errors.

With a PTO device, and a PTO damping λPTO = λopt, see Eq. (26c), the RAO –
now as a function of frequency – becomes as it is depicted in Fig. 9. The additional
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Fig. 7. Verification hydrodynamic coefficients.

Fig. 8. RAO results.

damping of the PTO reduces the motion response of the floater. In the same figure
that contains the RAO with PTO damping, the efficiency ηh of the PTO device is
plotted. One can tell that, as expected from the derivation in Eq. (26c), the efficiency
peaks near the natural frequency of the floater.

Energy conservation
The results of the heaving cylinder with ideal damping according to the equations

in Section 2.7 are plotted in Fig. 10 and Fig. 11. Figure 10 shows the radiation co-
efficient R and the transmission coefficient (T) from the simulation with incoming
waves, radiation and diffraction. Energy is conserved when R2 + T 2 = 1. The fig-
ure demonstrates that this is very nearly the case, apart from a region of frequencies
near the natural frequency of the floater. Near that region, the radiated waves have
the most influence on the reflection coefficient and the transmission coefficient. Be-
cause there is a discretization error in the representation of the wave length (and
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Fig. 9. RAO and efficiency of ideally damped heaving cylinder.

Fig. 10. Radiation and transmission coefficients and energy conservation.

hence phase velocity of the wave), the effect of the discretization error on R, T and
R2 + T 2 is largest in the region near the natural frequency of the floater.

The results with power-takeoff (PTO) device on the floater are shown in Fig. 11.
It gives the reflection coefficient, the transmission coefficient, the efficiency of the
power-takeoff and the total energy flux to and from the system. As can be seen,
hardly any energy is lost to the system, apart from the region of frequencies near the
natural frequency of the floater. This verifies the results for first-order simulations
with a PTO present.

4.2. Second-order results for a propagating wave

Panels were placed along all boundaries of the simulation domain – instead of only
along the boundary of the floater as in many BEM implementations (Frank [4]) – so
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Fig. 11. Energy conservation with PTO.

Fig. 12. First and second-order wave surface elevation.

that second-order simulations would be possible. A second-order propagating wave
is simulated. The wave height was 2 m, the wave period was 5.6 s. The water depth
was chosen to be 100 m. The panel size was 1 m so that approximately 100 panels
were used per wave length. The size of the panels in vertical direction starts out at
1 m, but increases exponentially in vertical direction with each panel further down
2% larger than the panel above it. The linear and second order results for a propa-
gating wave generated with a GABC on the left and an ABC on the right are shown
in Fig. 12. These are compared to the analytical relations given above. It is shown
that the first and second-order components of the total surface elevation are a good
match with the analytical solution.
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5. Conclusions

A novel boundary element method is developed with panels at all domain bound-
aries and a straightforward Green’s function so that extension to second order is
feasible. Simulations are performed in the frequency domain. The diffraction prob-
lem with incident waves is solved in one part of the method, the radiation problem in
another. A generating and absorbing boundary condition for the side walls of the do-
main was derived and implemented to make the combination of incident and diffrac-
tion waves at the same boundary possible. The following conclusions are found:

1. Added mass and damping found from the radiation problem are nearly the same
as those of Frank [4].

2. The response amplitude operator found from the combination of two simula-
tions, one with incident waves and diffraction, and one with radiation, closely
resembles those in earlier literature.

3. Without a power take-off device, energy is nearly conserved in the combined
incoming wave, diffraction and radiation problem. Energy is not conserved
perfectly due to discretization errors.

4. With a power take-off device, tuned for optimal damping at the natural fre-
quency of the floating body, the energy lost to the floating system is nearly
equal to the energy taken up by the power-takeoff device. The small difference
is the result of discretization errors.

5. Following the verification with second-order wave propagation, the model is
suitable for extension to second order.

6. In first-order and second-order simulations, the GABC and ABC at the left and
right radiation boundaries function according to theory.
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