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A significant part of all structural damage to conventional ships is caused by complex free-surface
events like slamming, breaking waves, and green water. During these events air can be entrapped by
water. The focus of this article is on the resulting air pockets affecting the evolution of the hydrodynamic
impact pressure that loads the ship’s structure.

COMFLOW is a computationally efficient method based on the Navier–Stokes equations with a
Volume-of-Fluid approach for the free surface, designed to perform multiphase simulations of extreme
free surface wave interaction with maritime structures. We have extended COMFLOW with a Continuum
Surface Force (CSF) model for surface tension, thereby completing our method for representing gas-water
interaction after free surface wave impacts. The implementation was verified with benchmark cases ad-
dressing all relevant aspects of the dynamics of entrapped air pockets. The implementation was validated
by means of a dam-break experiment, a characteristic model for green water impact events.

The method – having been verified and validated – was applied to a dam-break simulation for a different
setting in which the impact on a wall leads to an entrapped air pocket. Surface tension was found not to
have an influence on entrapped air pocket dynamics of air pockets with a radius larger than 0.08 [m]. For
wave impacts it was found that the effect of compression waves in the air pocket dominates the dynamics
and leads to pressure oscillations that are of the same order of magnitude as the pressure caused by the
initial impact on the base of the wall. The code is available at: https://github.com/martin-eijk/2phase.git.

Keywords: CFD, compressible two-phase flow, Volume-of-Fluid, surface tension, wave impact, dam-
break

1. Introduction

Hydrodynamic impact loading accounts for more than 10% of structural damage
to conventional ships [33]. There are multiple classes of wave impact such as those
resulting from slamming, waves breaking against the structure, and green water.

In rough seas, large amounts of water can flow over the ship’s deck; this is called
green water. Green water from the side of the ship has already been recorded to cause
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Fig. 1. Green water event after slamming (C. Sun (2013), Monsoondiaries).

damage midships and further aft on several maritime vessels [6,32]. A green water
event is illustrated in Fig. 1. During green water events involving a complex configu-
ration of the free surface, air and water interact in a way that can lead to entrained air
and entrapment of large air pockets. By entrapping an air pocket between the water
and the structure, the pocket can have a cushioning effect on the peak pressure on the
one hand [5,27]. On the other hand, it can give an increase of the acting force on the
structure during a wave impact [5,26] and the pressure oscillations in the air pocket
can increase pressure levels on the structure being impacted [27] as well as induce
resonant fluid-structure interaction [3]. Naval architects are interested in determining
these pressures for design.

The pressures on marine structures and parts of these structures can be predicted
by modelling the dynamics of both water and the entrapped compressible air. To
model the interaction between water and air accurately, a sharp representation of the
free surface is needed. One method capable of simulating extreme free-surface flow
in a computationally efficient way is COMFLOW, which has been under develop-
ment for maritime applications since [12].

COMFLOW, with its most recent implementation described by [36], is based on
the Navier–Stokes equations for the motion of an aggregated fluid with varying prop-
erties to model the combination of an incompressible liquid and a compressible
gas phase. A fixed Cartesian grid is used with a staggered configuration of vari-
ables within a cell. The convective term is approximated with a second-order up-
wind scheme and the time integration is based on a second-order Adams–Bashforth
scheme. The pressure is solved from a Poisson equation, after which the velocity is
solved from the newly computed pressure gradients. To describe the free surface the
Volume-of-Fluid (VoF) method is used with piecewise-linear line segments to recon-
struct the position of the free surface within cells (PLIC). The treatment of the density
at the free surface lead to serious errors in the form of so-called spurious velocities
[30], which affected the evolution of the impact pressure. A gravity-consistent aver-
aging method for calculating the density at the cell faces was developed to prevent
these spurious velocities.



M. van der Eijk and P.R. Wellens / Compressible two-phase flow model 317

We have made an implementation based on ComFLOW to investigate the effect
of surface tension on the dynamics of the pressure in entrapped air pockets during
wave impacts. The important aspects to entrapped air pockets are:

• the position of the free surface,
• surface tension,
• viscosity,
• compressibility.

The added value of this paper is to show the relevance of compressibility of air and
surface tension during a wave impact in which an air pocket gets entrapped. The
novelty of this article lies herein. With respect to [36] we have

• investigated the difference between piecewise-constant (SLIC) and piecewise-
linear representation (PLIC) and the role of gravity-consistent density averag-
ing,

• implemented a surface tension model based on [4],
• evaluated the effect of the term μ∇uT that is often omitted in the representation

of the diffusive stresses in the momentum equation

to obtain the first complete model for the representation of entrapped air pocket dy-
namics in wave impact events.

We have performed a verification study with a – to our knowledge – unique set of
cases that test all relevant aspects of entrapped air pocket dynamics

• standing capillary waves and an oscillating initially square rod that tests the
combined effect of surface tension and viscosity,

• a rising bubble to test for the combination of buoyancy (gravity) and surface
tension,

• a shock tube to test for compressibility.

The verified implementation is validated with a dam-break experiment. The imple-
mentation having been verified and validated, is used for a dam-break simulation in
new setting to quantify the pressure dynamics in an entrapped air pocket. The code
is available at: https://github.com/martin-eijk/2phase.git.

2. Mathematical model

The flow of two phases is modelled as an aggregated fluid with variable properties
representing incompressible water and compressible air. By relaxing the pressure
of the two phases to a common value, the flow can be described by one continuity
equation and one momentum equation [25]. This assumption leads to a continuous
velocity field. The continuity equation is given by∫

V

∂ρ

∂t
dV +

∮
S

(ρu) · n dS = 0, (1)

https://github.com/martin-eijk/2phase.git
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where u is the velocity vector [u, v]T , n is the normal direction to the boundary of
the control volume and ρ the mixture density, defined in Eq. (8).

The momentum equation in integral form is given by

∫
V

∂(ρu)

∂t
dV +

∮
S

ρu(u · n) dS +
∮

S

pn dS

−
∮

V

∇ ·
(

μ
(∇u + ∇uT

) − 2

3
μ∇ · u

)
dV +

∫
V

ρF dV = 0, (2)

where p is the relaxed pressure, μ is the dynamic viscosity for a mixture and F are
the body forces for gravity and capillary stresses, F = g − 1

ρ
(σκnδ� − (∇σ)δ�).

The parameter κ indicates the curvature of the free-surface interface, σ is the surface
tension coefficient and δ� is a delta function concentrated on the interface � between
air and water.

The liquid is modelled as incompressible, while the density in the air is allowed
to vary. This requires an additional equation with respect to solving the Navier–
Stokes equations for incompressible media. Instead of solving for conservation of
energy explicitly, an equation of state is used for the air density. The temperature
is assumed constant, the air density is assumed barotropic, ρg = ρg(p), and the
polytropic energy equation

ρg

ρ0
=

(
p

p0

) 1
γ

, (3)

is used to close the system, where the polytropic coefficient γ = 1.4 for pure air.
Instead of using ρ0 = ρn, the initial values are used for ρ0 and p0 to reduce ’drift’
of the pressure [35].

The free-surface indicator function is displaced as follows:

DS

Dt
= ∂S

∂t
+ (u · ∇)S = 0, (4)

where S(x, t) = 0 gives the position of the free surface. S is not solved for directly.
Instead, the volume fractions Fs that indicate the ratio of liquid volume to cell vol-
ume are updated, after which S is reconstructed from the volume fractions.

All domain boundaries in this article are assumed closed, u · n = 0 with n the
direction normal to the domain wall, and free slip, τ · n = 0. The top boundary is
used to define a pressure reference.
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3. Numerical discretisation

3.1. Algorithm

The governing equations are discretized by means of a finite volume method on a
fixed Cartesian grid with staggered variables. The velocities are defined on cell faces
while the density, the pressure and the curvature are defined in cell centers.

Using cell labelling, we distinguish between the liquid phase, the gas phase and
representations of structures in the domain. Cells completely filled by structures are
labelled B(ody) cells. The cells filled with air are labelled E(mpty) (the E-label name
is a residue from when ComFLOW was one phase). Cells with some liquid, adjacent
to E-cells are labelled S(urface) cells. All other cells are labelled F(luid) cells. This
means that a F-cell never connects with an E-cell. Note that a F-cell is not necessarily
completely filled with liquid.

Time integration of the momentum equation is implicit for the pressure, and ex-
plicit for the convective and diffusive terms of the momentum equation. The convec-
tive and diffusive terms are integrated in time with a second-order Adams–Bashforth
scheme. The time discrete version of the continuity equation is

ρn+1 + δtρn∇ · un+1 = ρn − δtun · ∇ρn, (5)

and of the momentum equation

un+1 + δt
1

ρn
∇pn+1

= un + δtFn

− 3

2
δt

(
1

ρn
∇ · (

ρnunun
) − 1

ρn
∇ · (

μn
(∇un + (∇un

)T )))

+ 1

2
δt

(
1

ρn−1
∇ · (

ρn−1un−1un−1)

− 1

ρn−1
∇ · (

μn−1(∇un−1 + (∇un−1)T )))
, (6)

where n indicates the time level. The momentum equation is formulated in a non-
conservative way to reduce computational cost [35].

By substituting Eq. (6) in Eq. (5), a Poisson equation for the pressure is obtained

δt∇ ·
(

1

ρn
∇pn+1

)
= 1 − Fn

s

ρn

(
ρn+1

g − ρn
g

δt
+ ∇ · (ρgu)n − ρn

g∇ · un

)

+ ∇ · ũn. (7)
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The term ũ is an intermediate velocity, containing contributions of the momentum
terms evaluated at time level n and n−1 e.g. the diffusive, convective and body force
term. The first part in between parentheses on the right-hand side of Eq. (7) corre-
sponds to the compressibility of the aggregated fluid. It represents the Lagrangian
derivative of the density. Separately, these terms can be large due to the variety in
density of the two phases at the free surface. Together, however, these terms need to
be equal to zero for the liquid phase.

The density in the cell center at time level n is calculated by

ρn = ρlF
n
s + ρn

g

(
1 − Fn

s

)
, (8)

where ρl and ρg are the constant liquid density and the variable gas density, respec-
tively. Because of the constant liquid density within a cell, the Lagrangian derivative
of the density simplifies to

Dρ

Dt
= (1 − Fs)

Dρg

Dt
. (9)

When the density of the gas is much smaller than the density of the liquid, the con-
tribution of the Lagrangian derivative to the intermediate velocity at the free surface
is relatively small. The density of the gas at the next time level is found by solving
Eq. (3) for ρn+1

g (pn+1). Before the highly non-linear term is transferred to the left-
hand side of the pressure in Eq. (7), a Newton approximation is used to linearize the
term ρn+1

g (pn+1) by eliminating the power 1
γ

. The pressure at the new time level is
found from the linear system of equations by solving it iteratively with Gauss–Seidel.

The liquid fraction is indicated by Fs and solved using Eq. (4) by reconstructing
the free surface with SLIC in every cell. The flux through a cell face is calculated as
the velocity times the area of the cell face times the time step [20].

3.2. Viscosity

Wemmenhove [35], and also Plumerault [27], neglect the term (∇u)T in the vis-
cous term, as is common to do. Wemmenhove et al. [36] do include the term in
their mathematical description, but do not evaluate its effect. The effect of neglect-
ing this term is evaluated for the 2D rising bubble case in Section 5.3. In matrix form
the stresses become as follows. For readability the compressible term is left out of
Eq. (6). For the final simulations in the Results section, the compressible term is
included.

[
∂
∂x

τxx + ∂
∂y

τxy

∂
∂x

τyx + ∂
∂y

τyy

]
=

⎡
⎢⎣

∂
∂x

( 2 μ∂u
∂x

) + ∂
∂y

(μ∂u
∂y

+ μ∂v
∂x

)

∂
∂x

(μ ∂v
∂x

+ μ∂u
∂y

) + ∂
∂y

( 2 μ∂v
∂y

)

⎤
⎥⎦ , (10)



M. van der Eijk and P.R. Wellens / Compressible two-phase flow model 321

Fig. 2. Corner points of μ for staggered control volume.

where τ indicates the shear stress. The boxed terms are added when the term (∇u)T

is not neglected. As the viscosity is variable around the interface and ∇ · u �= 0 for
air, the term ∇ · (μ(∇u + ∇uT )) is not equal to ∇ · (μ∇u) as assumed by others
[27,35].

The dynamic viscosities at the top and bottom of the staggered control volume in
horizontal direction are needed to find the derivative, see Fig. 2. These are found by
linear interpolation between the corner point viscosity values μn,w and μn,e, μs,w

and μs,e, respectively. These corner point values between adjacent cell centers are
found by harmonic averaging [27]. For computing the local average viscosity at a
pressure point, Eq. (8) is used for μ(Fs, μl, μg), where μl is the dynamic viscosity
of the liquid and μg of the gas.

4. Free-surface displacement

The free surface is displaced with the discretization of Eq. (4) using Fs by
calculating the fluxes at the cell faces. In [36] the free surface is reconstructed
with piecewise-linear interface reconstruction (PLIC). For this article, we evaluate
piecewise-constant interface representation (SLIC), with grid-aligned interfaces, and
compare to PLIC, because of the significantly lower computational cost for almost
the same accuracy in situations with highly distorted free surfaces such as wave im-
pact simulations. This is in agreement with the results in Section 5.5.

4.1. Local height function

SLIC has flotsam and jetsam (small droplets disconnecting from the surface) as
major drawback. As a remedy, SLIC is combined with a local height function, con-
sisting of three cells around the S-cell in all axis directions [14]. Instead of updating
the volume fraction of the S-cells separately, the height function is updated, after
which the water is redistributed depending on its original surface orientation. With
a local height function flotsam and jetsam are practically absent from simulations.
We use the same height function to assess the local curvature for the application of
surface tension.
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Fig. 3. Notation for curvature κ .

4.2. Curvature

To implement surface tension, the curvature κ needs to be calculated in every
center of a S-cell. To calculate the mean curvature, the local height function based
on the surface orientation is used [20]. The grid-aligned free surface orientation is
determined by rounding the gradient of the height function. When the free surface
is oriented in x-direction (i.e. horizontally), the curvature for the free surface can be
calculated from (see Fig. 3)

κc = 1

δxc

( ∂Hy,e

∂x√
1 + (

∂Hy,e

∂x
)2

−
∂Hy,w

∂x√
1 + (

∂Hy,w

∂x
)2

)
, (11)

where

∂Hy,e

∂x
= Hy,e − Hy,c

1
2 (δxe + δxc)

and
∂Hy,w

∂x
= Hy,c − Hy,w

1
2 (δxw + δxc)

.

The curvature can be determined from the height function in a similar way when the
free surface is oriented in y-direction (i.e. vertically), but then with grid distances δy

and the appropriate values for the height function.

4.3. Gravity-consistent density interpolation

Like the pressure, the density is defined at cell centers. In the discretization of the
governing equations, the density is also needed at the cell faces. Several alternatives
for calculating the density at cell faces are available. We employ a cell-weighted
average of the adjacent-cell center values, see Fig. 4

ρf = δxwρw + δxeρe

δxw + δxe

, (12)
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Fig. 4. Notation for cell-weighted averaging.

Fig. 5. SLIC (dashed lines) of interface for density interpolation to cell faces.

It is demonstrated by several authors [13,16,30,36] that this method leads to spuri-
ous velocities around the free surface. From the perspective of offshore applications
where the gravity force dominates, spurious velocities are caused by an imbalance
between gravity and the pressure gradient.

To balance these forces, both terms need to be discretized in the same way. The
requirement ∇ × (ρg) = 0 can be found from the momentum equation. To solve
in a way that meets the requirement, [36] came up with a gravity-consistent method
(without reference to whether it is applicable for SLIC)

ρf = d1ρl + d2ρg

d1 + d2
, (13)

where d1 and d2 are the distances to the free surface, see Fig. 5.
Applying the gravity-consistent averaging method with SLIC, it prevents spurious

velocities in many, but not all circumstances. Especially near cells with volume frac-
tions of 0.5, the gravity-consistent method gives large errors in combination with
SLIC. This because of the lower accuracy of the free surface reconstruction com-
pared to PLIC. As an example, the requirement ∇ × (ρg) = 0 rewritten in integral
form

∮
ρg dS = 0 is calculated, assuming that both S-cells in Fig. 5 have a vol-

ume fraction of nearly 0.5 with the same free surface orientation. This is worked
out with numbers in Table 1; it gives the sum of ρg over the dashed red lines, us-
ing a gravity vector of g = [−10,−10]T [m/s2] perpendicular to the free surface.
The non-zero residue of the gravity-consistent method in Table 1 yields spurious
velocities, whereas the cell-weighted method of density averaging does not. Note
that besides the free surface configuration illustrated in Fig. 5, there are many other
configurations that have non-zero residues, leading to spurious velocities.

The effect of the residuals in Table 1 is illustrated in Fig. 6 for a domain size
of 1 [m] × 1 [m], 30 × 30 cells, and the orientation of the gravity vector and free
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Table 1

Cell-face densities multiplied by the gravity and the
normal direction of the dashed line for Fig. 5

Gravity-consistent Cell-weighted

(ρgy)1 −10,000 −7,500

(ρgx)2 −10 −2,500

(ρgy)3 10 2,500

(ρgx)4 5,000 7,500∮
ρg −5,000 0

Fig. 6. Liquid fraction- and velocity field: (b) gravity-consistent averaging (max. 0.4 [m/s]) versus (c) cel-
l-weighted averaging (max. 1 · 10−9 [m/s]).

surface mentioned above. The maximum spurious velocity reached after 3 [s] us-
ing the gravity-consistent method is 0.4 [m/s] while using cell-weighted density
method a maximum velocity of 1 · 10−9 [m/s] is obtained. It was found that gravity-
consistent density averaging combined with SLIC produces spurious velocities, just
like cell-weighted averaging. The errors for cell-weighted density averaging appear
to be smaller and more similar for different free surface configurations than gravity-
consistent density averaging. For this reason, combined with the fact that it requires
less computational effort, we chose cell-weighted averaging together with SLIC for
the remainder of this article.

4.4. Capillary forces

Because we chose an aggregated-fluid approach to keep computational costs in
check, the capillary force is added to the momentum equation as a body force. Two
options considered for the implementation of the body force are Continuum Surface
Force (CSF) [4] and Sharp Surface Force (SSF) [13]. Of the two, SSF is formally
more accurate, but CSF is less involved and has similar practical accuracy, because
the error resulting from the imbalance between pressure and surface tension is dom-
inated by how the curvature of the free surface is estimated [1].
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Fig. 7. Cell face value of κ when using SLIC.

The density in CSF is averaged between phases (ρ̃ = 1
2 (ρl + ρg)) to reduce spuri-

ous velocities in high density ratio flows [4]. The delta function δ� in F below Eq. (2)
is equal to |∇Fs | and the surface tension coefficient σ is assumed constant. The force
is discretized over a (momentum) control volume consisting of two half (continuity)
cells where either cell can have a surface orientation with a certain curvature. It was
demonstrated by [13] that a face-centered CSF implementation performs better than
a cell-centered one. Our discretization of

∫
V

1
ρn Fn

σ dV in x-direction becomes

− 1

ρ̃n
σκf

(
Fn

s,e − Fn
s,w

)
δyc, (14)

where,

κf =

⎧⎪⎨
⎪⎩

(κw + κe)/2, if κe and κw are defined,

κw, if κe is not defined,

κe, if κw is not defined.

The subscripts indicate the position of the variable in the staggered control volume.
An example is shown in Fig. 7, where in this case κf = κe.

5. Verification and validation

Our implementation is verified with several cases chosen to test for all essential
aspects of the dynamics of entrapped air pockets. They are: a 2D standing viscous
capillary wave to compare the interaction of surface tension and viscosity near the
free surface to an analytical solution; a 2D planar oscillating rod to compare the same
interaction along the circumference of a circle with a benchmark; a 2D rising bubble
to compare the interaction of buoyancy (gravity) and surface tension to a benchmark;
and a 1D shock tube to compare the effect of compressibility after impacts to an
analytical solution.

5.1. 2D standing viscous capillary wave

Standing wave simulations can be used to asses the performance of the numerical
method for free-surface waves. All important free-surface dynamics are included,
while the domain is conveniently limited [34]. Standing capillary waves are driven
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Fig. 8. Setup for simulation of capillary wave.

by surface tension. We simulated them with zero gravity to verify the CSF model
used for the representation of surface tension described in Section 4.4. The setup
with a domain of 1 [m] × 2 [m] is shown in Fig. 8. The density and the dynamic
viscosity of the compressible air is ρg = 1 [kg/m3] and μl = 0.01 [kgm/s]. The
density and viscosity of the liquid are varied in three simulations. The dispersion
relation for a non-viscous capillary wave at zero gravity is given by [22].

ω2
0 = σ

ρl + ρg

∣∣k3
∣∣, (15)

where the wave number k is equal to 2π over the wave length λ = 1 [m]. The initial
wave height H in all simulations is 0.01 [m]. The time step limit for the simulation
of capillary waves is given by [4].

δt �

√
ρδx3

4πσ
. (16)

The analytical solution by [28] is used to compare the numerical results to, as done
also by e.g. [8,9]. Note that the solution can only be used when the kinematic vis-
cosity is the same for both fluids. Two ratios of density and dynamic viscosity of the
liquid are used, indicating the ratio of top layer over bottom layer: ρ̄ = ρg/ρl and
μ̄ = μg/μl . By varying these ratios, three sets of numerical results are compared
to the analytical solutions. A CFL number of 0.01 is used to keep advection errors
small [2]. The results for σ = 1 [N/m] are shown in Fig. 9. The numerical results
are almost identical to the analytical solution of [28], which verifies the method for
the effect of surface tension. The period is almost the same as the inviscid solution
in Eq. (15) if one considers that viscosity makes the wave period slightly larger.

5.2. 2D planar oscillating rod

Another test case for the CSF model is an initially square 2D planar rod of liquid
in gas where oscillations are generated by capillary forces. This case has a direct re-
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Fig. 9. Capillary standing wave for different ratios compared with analytical solutions (a) ρ̄ and
μ̄ = 1,000; (b) ρ̄ and μ̄ = 100; (c) ρ̄ and μ̄ = 10.

lation to an oscillating air pocket entrapped by a wave impact. Our numerical results
are compared with the results of [31] who used ANSYS Fluent.

For the simulation, a square of liquid with an area of 4 · 10−4 [m2] is used. This
2D square should become, due to the capillary forces, a 2D circle with a diameter
of approximately 2.26 · 10−2 [m]. The surface tension coefficient in the simulations
equals σ = 2.36 · 10−2 [N/m]. The domain size is 0.04 [m] × 0.04 [m] with 40
equally spaced cells in both directions. A fixed time step of 1.0 · 10−3 [s] is used.
The liquid density and gas density are unvarying and equal to ρl = 790 [kg/m3] and
ρg = 1.2 [kg/m3], respectively. The dynamic viscosity of the gas and liquid phase is
1.0 · 10−3 [Pa · s]. These settings were also used by [31]. A major difference is that
we used 1,600 cells, where they used 25,262 prism elements.
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Fig. 10. (a) Diameter and (b) average pressure of the bubble over time compared with [31].

The simulation results are presented in terms of diameter as a function of time,
shape of the rod and the pressure. The change of the rod diameter over time is com-
pared with the results of [31] in Fig. 10(a).

The figure shows that the diameter oscillates towards the theoretical diameter and
that the oscillations decrease over time as a result of both physical and numerical
dissipation (the latter becoming less with grid refinement). The pressure in the bubble
at equilibrium should be equal to 2σ/D = 2.09 [Pa]. The pressure in Fig. 10(b)
converges to a value somewhat higher than the analytical value due to a systematic
error made for the curvature [29]. Renardy and Renardy [29] showed that the integral
effect of the curvature converges to a value different than the analytical value. This
is also confirmed by the results of [7] for an initially static 2D droplet. According to
[15], in the inviscid limit, the angular frequency of oscillation for a 2D planar rod is
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Fig. 11. Volume fraction against time compared with [31] (left); (a) 0.01 [s], (b) 0.05 [s], (c) 0.09 [s],
(d) 0.13 [s].

Fig. 12. Pressure against time compared with [31] (left); (a) 0.49 [s], (b) 0.51 [s], (c) 0.67 [s], (d) 0.75 [s],
(e) 0.79 [s].

given by [22] as

ω2 = (n)
(
n2 − 1

) 8σ

(ρl + ρa)D3
, (17)

where n is the mode of oscillation, equal to 4 for an initial square. This results in an
oscillation period of ≈ 0.178 [s]. The period in our numerical results is smaller than
2% different from the analytical value, which we attribute mostly to the presence of
viscosity in our model.

In Figs 11 and 12 the volume fraction and pressure over time are compared. Note
that a different color scale is used than by [31], but these graphs are presented to
demonstrate that our shape and our pressure maxima and minima match with their
results, especially at the beginning. There is less of a match in Fig. 12(e). This is
because the size of the oscillations in our method did not attenuate by the same
amount as in [31] at the time of the snapshot; our method has less dissipation. The
same conclusion is found from Fig. 10(b).

5.3. 2D rising bubble

The following test case is for the combination of buoyancy (gravity), viscosity and
surface tension. Our results are compared with the benchmark for a rising bubble
[17]. This benchmark was created due the absence of analytical solutions and used
for quantitative comparison of incompressible interfacial flow codes. The initial fluid
configuration of the 2D rising bubble test case is shown in Fig. 13.
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Fig. 13. Flow domain for 2D rising bubble.

Table 2

2D rising bubble parameter variations. Simulation 3 corresponds to the
benchmark values

Test μw [ kg
ms ] μa [ kg

ms ] σ [ N
m ] Re [–]

Benchmark 10 1 24.5 35

1 0.01 1 · 10−3 0 35 · 103

2 0.01 1 · 10−3 24.5 35 · 103

3 10 1 24.5 35

In the benchmark, both water and air are incompressible. The density of the water
and air are 1,000 [kg/m3] and 100 [kg/m3], respectively. Further parameter values
are shown in Table 2.

The spatial mean rise velocity vc is found from the simulations and compared with
the benchmark. It is calculated as

vc =
∫
Vb

v dV∫
Vb

dV
=

∑
b v · (1 − Fs)V∑

b(1 − Fs)V
, (18)

where Vb is the volume of the bubble region, V the cell size, and b the number of
cells which are covered by the bubble.

Before making the comparison between our implementation, the results of [36]
and the benchmark, we investigated the setup with parameter variations. These sim-
ulations are indicated in Table 2 with numbers ranging from 1 to 3. For these simu-
lations, a grid of 40 × 120 cells was used. Figure 14 shows the spatial mean velocity
of the rising bubble for the three simulations. Figure 15 shows the different rising
bubble geometries.



M. van der Eijk and P.R. Wellens / Compressible two-phase flow model 331

Fig. 14. Spatial mean velocity for all the rising bubble cases using the original method ComFLOW with a
grid size of 40 × 120.

Fig. 15. Snapshots of the 2D rising bubble in order of time for the three cases given in Table 2.

From the figures, we find that the evolution of the spatial mean velocity and the
geometry of the bubble are highly dependent on surface tension and viscosity. With-
out surface tension (simulation 1), the rising velocity after the penetration of the jet is
lower than with surface tension, because the bubble becomes wider as it rises. With a
high surface tension for simulation 2, the bubble does not become as wide and does
not slow down as much. The bubble reaches a higher maximum velocity and the bub-
ble’s acceleration (after 2.2 [s]) occurs earlier in simulation 2 than in simulation 3
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Fig. 16. Spatial mean velocity compared with the benchmark of [17] with a grid resolution of 80 × 240.

due to larger viscous stresses in simulation 3. Simulation 3 has the same parameters
as the benchmark.

With the implementation in [35], we found by varying parameters, that we were
never able to capture the benchmark’s spatial mean velocity when it is at maximum.
After more careful consideration, it was concluded that the viscosity model was in-
complete. Upon adding the boxed terms in Eq. (10) a better comparison with the
benchmark was obtained. This is demonstrated in Fig. 16. With the same grid size of
80 × 240 and only the implementation of the missing viscous stress components, the
difference in mean spatial velocity with the benchmark was reduced from 3.0% [35]
to 0.3% (present implementation).

To investigate how our method deals with two merging interfaces, the free surface
and the air-water interface of the bubble, an additional simulation was performed
with a similar air bubble interface configuration and a lowered free surface. It is
shown in Fig. 17 for a numerical simulation how the rising air bubble protrudes
through the free surface. Note that this event was not part of the benchmark.

5.4. 1D shock tube

By entrapping an air pocket between the water and the structure, the pocket is com-
pressed and can have a cushioning effect on the peak pressure during a wave impact
[5,27]. The modelling of the compressibility of the air is tested with the simulation
of a shock wave. Note that in our case a non-conservative momentum equation is
solved which results in diffused shock waves. The interest for our slamming applica-
tions, however, is not in the exact position of the shock, but rather on the associated
pressure levels.

The simulation is based on [10], who derived an analytical solution for a 1D shock
tube. The tube is simulated with unit length in two simulations. It is completely filled
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Fig. 17. Snapshots of the 2D rising bubble passing through the interface in order of time.

by gas (Fs = 0), using 400 cells for one simulation and 600 cells for the other. On
either side, the velocity and the gradient of the pressure are set to zero. The time step
is unvarying and equal to 3.33 · 10−7 [s] and the specific ratio for air, γ = 1.4. The
initial values in the domain are

p =
{

106 [Pa], x < 0.5 [m],
105 [Pa], x > 0.5 [m],

, u = 0 [m/s],

ρa =
{

6.908 [kg/m3], x < 0.5 [m],
1.33 [kg/m3], x > 0.5 [m].

Figure 18 shows the initial configuration of the shock tube, divided in a driver
section with the higher pressure and a driven section with a lower pressure. The
figure also shows the relevant stages of the evolution of the pressure. When released,
two propagating fronts are created, moving in opposite direction, the shock front
and the rarefraction. The pressure immediately upstream of the shock is called the
contact surface (p2). The Mach number associated with these two pressure levels can
be found from

p2 = p1

(
1 + 2γ

γ + 1

(
Ma2 − 1

))
, (19)

yielding a value of Ma = 1.71 when p2 = 324 [kPa].
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Fig. 18. Initial condition and relevant stages of the pressure in a shocktube simulation.

The pressure downstream of the shock after reflection from the domain wall has
taken place (p3 in Fig. 18) can be calculated with

p3 = p2

(
(α + 2)

p2
p1

− 1
p2
p1

+ α

)
, (20)

where

α = γ + 1

γ − 1
.

This results in p3 = 875 [kPa].
The results of the numerical simulations are plotted in Fig. 19. The figure shows

the pressure in the domain for different moments in time. The simulated shock front
moves with an average speed of ≈ 560 [m/s] which corresponds with Ma = 1.71.
This is in agreement with the analytical results.

When using 400 grid cells, pressure values p2 = 324 [kPa] and p3 = 915 [kPa]
are found. When using 600 grid cells, pressure levels p2 = 324.5 [kPa] and p3 =
908.7 [kPa] are found. Figure 19 shows wiggles near the shock front that originate
from using central discretization of the pressure with an underresolved shock. As
expected, the wiggles and the range in space over which they occur become smaller
with increasing grid resolution.

It is demonstrated that the simulation results for the 1D shock tube converge for
a larger number of grid cells and that they converge to the analytical values. The
wiggles observed near the shock front become smaller with an increased number of
grid cells. They do not grow in time and are not expected to interfere with our inter-
pretation of the pressure levels in wave slamming events with enclosed air pockets.
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Fig. 19. (Reflected) shock front in terms of the pressure at different time levels (400 grid cells and 600
grid cells in the enlargement.

Fig. 20. Setup dam-break 2D case.

5.5. Dam-break experiment

The final comparison before moving on to our main result is for the onset of a
wave impact event. The present implementation is validated against the experiments
of [23] who focus on the evolution of the free surface in a dam-break event. A dam-
break is a characteristic model for wave impact events.

The domain and initial condition for the experiment by [23] is shown in Fig. 20.
The size of the domain is a = 0.584 [m] and b = 0.350 [m]. The size of the dam
of water is l0 = 0.292 [m] and h0 = 0.146 [m]. The parameters for water and air
are set to ρw = 1 · 103 [kg/m3], ρg = 1 [kg/m3], μw = 1 · 10−3 [kg/ms] and
μg = 1 · 10−4 [kg/ms]. The gravitational constant is set to g = 9.81 [m/s2] and the
surface tension is equal to σ = 7.2 · 10−2 [N/m].

When the dam is released, the initial water level drops and a front propagates to-
wards the opposite end of the domain. The free surface in [23] was measured along
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Fig. 21. Change of 2D dam over time in (a) height (h) and (b) length (l).

the left wall as an elevation h(t) and as a position of the front l(t) along the bot-
tom. The simulation results are shown in Fig. 21, where h(t)/h0 is plotted against
dimensionless time. The simulation results are compared to the experiment of [23]
as well as more recent experimental and numerical results [11,19,21]. Three differ-
ent grid resolutions, 20 × 12, 40 × 24 and 80 × 48, were used. It is intriguing to
observe that the simulation results converge away from the experimental results, i.e.
the coarsest-grid simulation has the best agreement with the experiments. This is
consistent with [19], but at present there is no explanation. The differences may be
caused by not representing the friction between fluid and bottom well and by 3D
effects [19,24].
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6. Main result

As mentioned, a dam-break is a representative case for wave impact phenomena,
especially for green water. The objective is to demonstrate with dam-break simu-
lations that oscillations in entrapped air pockets can cause pressure level variations
of the order of the impact pressure. Our simulations are run in 2D, because of the
increased likelihood of entrapping a pocket of air. Also, because the ratio of buoy-
ancy force over viscous forces is lower in 2D, the rising velocity is smaller and air
pockets persist longer. The simulation results are to be compared to the experiments
conducted at MARIN (Maritime Research Institute Netherlands), in which the free
surface and impact pressure on a wall in the path of the flow were measured.

The setup of the experiment is similar to before, see Fig. 20. The domain is a =
3.22 [m] × b = 1.0 [m] and has normally a width of 1.0 [m]; the ceiling of the
domain was kept open. A door was used to fill a column of water to a height of
h0 = 0.55 [m] and a width of l0 = 1.22 [m]. The water height is measured over
time with vertical wave probes at positions H1 = 0.58 [m] and H2 = 2.72 [m] with
respect to the origin. The pressure P1 was measured at the wall at the downstream
end of the domain at a height of 0.03 [m]. Experiments were conducted as follows:
the door was pulled up, releasing the water. The water flows towards the opposite
domain wall. There, an impact takes place with significant run-up and overturning,
after which the disturbance propagates back and forth in between the domain walls.

Our main interest goes out to finding the impact pressure in the most efficient way
possible. A major factor determining the efficiency of the method is how the free sur-
face is reconstructed. In the next simulation, Young’s PLIC with gravity-consistent
density averaging is compared to SLIC with cell-weighted density averaging for the
dam-break in the MARIN experiment. The peak pressure is measured at the foot
of the wall (P1). The results are shown in Fig. 22. A difference in gauge pressure

Fig. 22. Difference in pressure for SLIC with height function and PLIC Youngs.
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(p − p0) of 2% is found, equal to 110 [Pa]. The time difference of meeting the wave
is 2.3 · 10−3 [s]. This result contributes to the statement in the introduction by [35]
saying that SLIC with the local height function can achieve similar results as PLIC.
The results with SLIC were obtained with a factor of 3 less computational effort than
PLIC, making SLIC more efficient.

Two more simulations were run for two different grids, 48 × 15 and 115 × 36.
The parameters for water and air at a temperature of 20° were used and the surface
tension coefficient was chosen equal to σ = 7.2 · 10−2 [N/m]. Our 2D simulation
results are shown in Fig. 23, where they are compared to the 3D experiments and
to the 3D results of [35]. The water heights and the pressure in Fig. 23 correspond
reasonably well to the experiment and almost completely to [36], until t = 1.54 [s].
It is consistent with the original method that no true convergence is observed when
increasing the grid resolution.

Special attention goes out to the pressure oscillations at P1, see the enlargement
in Fig. 23(c). These are due to the air pocket that is entrapped at around t = 1.54 [s]
after the run-up on the domain wall has overturned. Note that the entrapped air pocket
was not part of the 3D numerical results nor the experiment. The air pocket is shown
in Fig. 25 at time instance t = 1.54 [s] when the pressure in the air pocket is lower
than the atmospheric pressure.

When averaging the pressure in the air pocket in space, a high frequency oscil-
lation of 14.0 [Hz] is found. The same characteristic high frequency oscillation is
found in the signal for pressure sensor P1 at the wall. In P1, also a low frequency
of around 3.0 [Hz] can be found. This corresponds to the global motion of the air
pocket in space. By a Fourier transform of the pressure signal after 1.2 [s], the fre-
quencies are compared. The results are illustrated in Fig. 24. The higher frequency
peaks observed in Fig. 24 are due to higher harmonics and they are generated when
the pocket is split in two parts [27].

When using an equation for the natural frequency of cylindrical bubbles of this
size [18]

R0f0 = 1.10, (21)

with R0 = 0.08 [m] the radius of the bubble, see Fig. 25, we find a natural frequency
of the bubble of f0 = 14 [Hz]. This is of the same order of magnitude as the fre-
quency found in the simulation. It is demonstrated that the pressure oscillations in
the air pocket affect the pressure level at the wall and that the magnitude of the os-
cillations is of the same order as the magnitude of the impact pressure at the wall.
The frequency of the oscillations is of the same order as what can be found by using
simplified theory for compressible gas pockets.

When the simulations were run without surface tension, the results were not any
different. This means that compressibility and inertia govern the entrapped air pocket
dynamics at this scale.
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Fig. 23. The results of the present model for the dam-break case compared with experimental results of
MARIN and numerical results of [36]; (a) the water height H1 in time, (b) the water height H2 in time,
(c) the gauge pressure P1.
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Fig. 24. Normalized Fourier transform.

7. Conclusion

Our objective was to evaluate the effect of compressibility of air on the pressure
exerted on an object during an impact with water. For this we extended the method of
ComFLOW to obtain a complete model for representing the dynamics of air pockets
entrapped after wave impact events. The extended implementation was verified by
means of test cases relevant to the dynamics of entrapped air pockets. The extended
method was validated by means of a dam-break experiment and applied to a dam-
break in a new setting with a wall, in which the impact leads to an entrapped air
pocket. The following conclusions were found:

• PLIC does not lead to better results than SLIC for the grid resolutions used for
the dam-break simulations in this article.

• Gravity-consistent density averaging as in [36] does not improve the results
with SLIC as it does with PLIC; cell-weighted averaging gives comparable re-
sults at lower computational cost. The combination of SLIC and cell-weighted
averaging reduces the computational effort with a factor of 3 with respect to
PLIC and gravity-consistent density averaging.

• Our implementation compares well to test cases relevant to air pocket dynamics
and compares well to dam-break experiments.

• Our extended method compares well to the 3D dam-break experiment per-
formed by MARIN until the air pocket is enclosed.

• At the scale of the enclosed air pocket in our dam-break simulation (diameter
0.16 [m]), the effect of compression waves in the air dominates the dynamics.

• The frequency of the pressure oscillations in the air pocket is of the same order
as the analytical natural frequency of an adiabatic cylindrical bubble.

Reflecting on our main objective, we found that surface tension at this scale has no
effect. Furthermore, we found that compressibility of air in an enclosed air pocket
during an impact with water causes compression waves and subsequent pressure
oscillations with a magnitude of the same order as the pressure of the initial impact
itself.
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Fig. 25. Entrapment of air pocket (diameter 0.16 [m]) at 1.0 [s] (a), 1.4 [s] (b) and 1.6 [s] (c) with pressures
in [Pa].
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