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Abstract. A novel control strategy based on finite time control and super-twisting observer is proposed to improve the control
performance and robustness for permanent magnet synchronous linear motor (PMSLM) drive system. First of all, the velocity-
current single loop control which called non-cascade structure control is proposed by the finite time control, then the response
velocity of the PMSLM drive system can be improved. Secondly, to improve the disturbance rejection performance, a super-
twisting observer is designed to feedforward the load. Furthermore, the strictly convergence of the proposed control strategy
is implemented. Finally, comparative simulations and experiments are designed on PI control, sliding mode control, and the
proposed control method. Results demonstrate that the proposed method has better robustness and control performance.
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1. Introduction

Due to simple structure and high thrust density, permanent magnet synchronous linear motor
(PMSLM) [1] have attracted much attention in high-velocity and precise drives, which have been widely
applied in railway [2], logistics and distribution [3], electromagnetic launch [4], industrial manufactur-
ing [5] and so on. Despite these advantages, the transient performance and disturbance rejection per-
formance of the PMSLM system are constrained by end effects, cogging effects, parameter perturbation,
sensors errors, dead zone of the inverter, and load disturbance [6–8]. To overcome the above shortcomings,
a lot of advanced control methods and disturbance rejection compensation strategies have been proposed,
such as adaptive control [9], sliding mode control (SMC) [10], H-∞ control, model predictive control
(MPC) [11], extended state observer (ESO) [12], sliding mode observer (SMO), etc.

Compared to the current and velocity separated controlled under the cascade control, the non-cascade
control can realize the velocity-current single-loop control, then the bandwidth can be improved, the
structure can be simplified and the parameters can be reduced [13]. However, transient response property
and disturbance rejection performance are still need to be improved under the non-cascade control
structure. The research of these two areas will be analyzed in the following.

On the one hand, lots of methods have been proposed to improve the transient performance. In [14], an
improved predictive current control is proposed to enhance the current response velocity and the steady-
state response. However, the velocity regulation performance has not been well considered. In [10], to
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deal with the control gain of the controller, an adaptive fuzzy fractional-order sliding-mode control
strategy is proposed, which can decrease the chattering and improve the tracking performance. In [15],
an adaptive jerk control and modified parameter estimation methods for the PMSLM servo system is
investigated to improve the control accuracy and transient performance. In [16], an internal model control
PID is designed to reduce the tracking error and ensure the disturbance rejection performance. In [17],
an adaptive predictive model involved the disturbance and optimized current change rate coefficient is
designed, solving the problem of the current regulation performance will be affected by the parameter
variations. In [18], a SMC with a dynamic boundary layer is designed to improve the position tracking
property, and a multi-kernel neural network is proposed to enhance the disturbance rejection performance.

In short, although lots of methods have been applied to enhance the performance of PMSLM, all based
on cascade control structure, and as far as our knowledge, the non-cascade control has not been retrieved.

On the other hand, the disturbance rejection performance is another difficult issue for PMSLM. In [19],
the parameter disturbance observer and load disturbance observer is proposed to overcome parameter
mismatch and load thrust disturbance. However, more observers increase the complexity of the system.
In [20], the lumped disturbances which contains parameters perturbation, non-modeled dynamics, and
load thrust disturbance, are compensated by an adaptive disturbance observer. In [21], the problem of time-
varying parameters and load changes of the PMSLM is solved by an active disturbance rejection control,
in which a reduced-order extended state observer is proposed to compensate the disturbances. In [22], the
position estimation error, timely and accurate estimation of the load disturbance, and rotor position are
estimated and compensated by an ESO, by which the sensorless control performance can be improved
greatly. In [23], the high-order super-twisting observer is proposed to deal with the state variables, and
the efficiency and superiority can be enhanced. However, the higher the order of the observer, the greater
the disturbance and steady-state error will be. In [24], to overcome the thrust ripple and the nonlinear
friction of rolling guide, the linear ESO and the friction feedforward controller is investigated, then the
slow-varying disturbance is compensated by the linear ESO, and the nonlinear friction is eliminated by the
feedforward controller. Nevertheless, design difficulty is increased by the design of multiple observers.

In summary, as far as the research concerned, all the methods deal with the disturbances of cascade
structure, which is not applicable to the non-cascade control structure.

To obtain higher response velocity [25], higher precision [26], and better disturbance rejection per-
formance [27], finite-time control (FTC) has received a lot of attention. Compared with the exponential
convergence of the extended state observer and the sliding mode observer, the super-twisting observer has
faster convergence [28] and higher precision [29] for it is finite-time convergence.

To improve the disturbance rejection property and transient performance of the PMSLM system under
the non-cascade control, finite-time control based on super-twisting disturbance observer is investigated.
Compared with previous work, the novelty of this paper can be organized as follows.

(1) Unlike the traditional control scheme in which the velocity and current are controlled separately,
based on finite time control, a velocity-current single-loop control is controlled by a finite time control
which realize the non-cascade control.

(2) The mismatched disturbance of the PMSLM in non-cascade structure is compensated by a super-
twisting observer, which improves the disturbance rejection performance.

(3) The rigorous stability analysis about the proposed finite time control and super-twisting observer is
implemented.

The rest of the parts are organized as follows. In Section 2, the non-cascade mathematical model
of the PMSLM is established. In Section 3, the super-twisting observer and finite time controller are
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Fig. 1. Schematic diagram of PMSLM.

designed, and the rigorous stability analysis in implemented. Section 4 is the comparative simulations
and experiments. Section 5 is the conclusion and future research direction.

2. The mathematical model

There are many types of PMSLM structures, the flat type linear motor and cylinder type linear motor
are most widely used. The cylindrical linear motor has a larger thrust density but a shorter stroke, while
the flat linear motor on the contrary. The experimental object of this paper is flat type linear motor, and its
structure is shown in the Fig. 1. To facilitate the understanding of its working principle, it can be regarded
as a permanent magnet synchronous motor (PMSM) cutting in the radial direction [30].

The flux equation of the PMSLM under the vector control can be expressed as follows.

[
𝜓𝑑
𝜓𝑞 ] = [

𝐿𝑑 0
0 𝐿𝑞] [

𝑖𝑑
𝑖𝑞 ] + [

𝜓fd
𝜓fq] (1)

Where, Ld and Lq are the d-axis inductance and q-axis inductance, repectively. Since the PMSLM studied
in this paper is surface-mounted, we consider Ld = Lq = L. 𝜓 fd and 𝜓 fq are the permanent magnet flux on
the d-axis and the q-axis, respectively. As the vector control strategy with id = 0 is considered, 𝜓 fd = 𝜓mf ,
𝜓 fq = 0, and 𝜓mf is the permanent magnet flux.

The d-axis and q-axis voltage equations can be expressed as follows.

⎧
⎪
⎨
⎪
⎩

𝑢𝑑 = 𝑅𝑖𝑑 + d𝜓𝑑
d𝑡 − 𝜓𝑞𝜔𝑒

𝑢𝑞 = 𝑅𝑖𝑞 +
d𝜓𝑞

d𝑡 + 𝜓𝑑𝜔𝑒

� (2)

Where, ud , uq are the d-axis and q-axis voltages, respectively. And id , iq are the d-axis and q-axis currents,
respectively.

For PMSLM, the three-phase current changes one cycle when the rotor goes through a pair of poles
which the distance is 2𝜏, therefore the following can be obtain.

𝜔𝑒 = 2𝜋 𝑣
2𝜏 = 𝜋 𝑣

𝜏 . (3)
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Further the electromagnetic thrust Fe can be expressed as follows.

𝐹𝑒 = 3𝜋
2𝜏 [𝜓mf𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞) 𝑖𝑑𝑖𝑞] . (4)

Because a flat PMSLM’s permanent magnet is attached on the stator track which is similar to implicit
pole PMSM, Ld = Lq, the above equation can be further simplified as follows.

𝐹𝑒 = 3𝜋
2𝜏 𝜓mf𝑖𝑞. (5)

The mechanical equation of PMSLM can be obtained as follows.

𝑚d𝑣
d𝑡 = 𝐹𝑒 − 𝐹𝑙 − 𝐵𝑣 (6)

Where m is the rotor’s mass, v is the velocity, Fl is the load thrust disturbance, and B is coefficient of
viscous friction.

The equations of motion and voltage of simultaneous PMSLM can be expressed as follows.

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑑𝑖𝑑
𝑑𝑡 = −𝑅

𝐿 𝑖𝑑 + 𝜋
𝜏 𝑣𝑖𝑞 + 𝑢𝑑

𝐿
𝑑𝑖𝑞

𝑑𝑡 = −𝑅
𝐿 𝑖𝑞 + 𝜋

𝜏 𝑣𝑖𝑑 +
𝑢𝑞

𝐿 −
𝜋𝜓𝑓

𝜏𝐿 𝑣

𝑚𝑑𝑣
𝑑𝑡 = 3𝜋

2𝜏 𝜓𝑓 𝑖𝑞 − 𝐹𝐿 − 𝐵𝑣.

� (7)

3. Controller design

3.1. Super-twisting observer

From Eq. (7), the following we can obtain.
𝑑𝑣
𝑑𝑡 = 3𝜋

2𝑚𝜏 𝜓𝑓 𝑖𝑞 − 𝐹𝐿
𝑚 − 𝐵𝑣

𝑚 . (8)

Taking d = FL as the estimated of load thrust, then the Eq. (8) can be re-written as follows.
𝑑𝑣
𝑑𝑡 = 3𝜋

2𝑚𝜏 𝜓𝑓 𝑖𝑞 − 𝑑
𝑚 − 𝐵𝑣

𝑚 . (9)

Then the super-twisting observer can be designed for the load thrust disturbance as follows.

⎧⎪
⎨
⎪⎩

̇̂𝑣 = 3𝜋
2𝑚𝜏 𝜓𝑓 𝑖𝑞 −

̂𝑑
𝑚 − 𝐵𝑣

𝑚 − 𝜆1𝑠𝑖𝑔
1

2 (𝑣 − ̂𝑣)
̇̂𝑑 = −𝜆2𝑠𝑖𝑔(𝑣 − ̂𝑣)

� (10)

Where ̂𝑣 and ̂𝑑 are the estimated values of v and d, respectively. 𝜆1 > 0, 𝜆2 > 0 are the gains of super-
twisting observer, and 𝜆1 =  2k, 𝜆2 = k2, k > 0. And sig𝛼(x) = |x|𝛼 sign (x).

Assumption 1. − M ≤ d ≤ M,M is a constant, which means that the thrust of PMSLM has a maximum
value. What’s more, due to the short sampling time, the sampling value is considered to be constant ̇𝑑 = 0,
which means that the load thrust is slow time-varying.
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Define the estimate error as 𝑒1 = ̂𝑣 − 𝑣, 𝑒2 = ̂𝑑 − 𝑑. Then the error of system (10) minus (9) can be
expressed as follows.

⎧⎪
⎨
⎪⎩

̇𝑒1 = −𝑒2

𝑚 − 𝜆1𝑠𝑖𝑔
1

2 (𝑒1)

̇𝑒2 = −𝜆2𝑠𝑖𝑔(𝑒1) −
̇𝑑

𝑚.
� (11)

Define the vector 𝜍𝑇 = [𝜍1, 𝜍2] = [|𝑒1|
1

2 sign(𝑒1), 𝑥2], then the following can be obtained.

̇𝜍 = 1
|𝜍|𝐴𝜍, 𝐴 =

⎡⎢⎢⎣

−1
2

𝜆1 −𝑚
2

−𝜆2 0

⎤⎥⎥⎦
(12)

Where, |𝜍1| = |𝑒1|
1

2 , and A is Hurwitz, which means that the eigenvalues of A have negative real parts.
Construct the Lyapunov function as

𝑉 (𝑒) = 𝜍𝑇 𝑃 𝜍. (13)

The derivative of V with respect to time can be calculated as

̇𝑉 = −|𝑒1|− 1

2 𝜍𝑇 𝑄𝜍 (14)

Where, the relationship of P and Q can be expressed as follows.

𝐴𝑇 𝑃 + 𝑃 𝐴 = −𝑄. (15)

Since A is Hurwitz, and 𝜆1 > 0, 𝜆2 > 0. For any Q = QT > 0, the solution P = PT > 0 can guarantee V
be a strict Lyapunov function, which means that V > 0,  ̇𝑉 < 0 always hold up.

In addition, the convergence time and convergence region of the system can be expressed as

𝑇 (𝑥0) = 2
𝜎 𝑉

1

2 (𝑥0) (16)

𝜎 =
𝜆

1

2
min{𝑃 }𝜆min{𝑄}

𝜆max{𝑃 } (17)

Where, T (x0) is the maximum convergence time, 𝜎 is the maximum convergence area, 𝜆min{𝑄}, 𝜆min{𝑃 }
are the minimum eigenvalues of Q and P, respectively, and 𝜆max{𝑃 } it the maximum eigenvalue of P. □

Furthermore, from the reference [31], it can be seen that the observed error e can be guaranteed to
converge to zero in finite time when 𝜆1 and 𝜆2 are selected properly.

From the above analysis, it can be obtained that in a finite time, ̂𝑑 convergence and actual load FL can
be guaranteed, ̂𝑑 converges to ̇𝐹𝐿.

3.2. Non-cascade structure finite time controller

From the Eq. (7) the following can be acquired.

̇𝑣 = 3𝜋
2𝜏𝑚𝜓𝑓 𝑖𝑞 − 𝐹𝐿

𝑚 − 𝐵𝑣
𝑚 .
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Thus, the derivative of velocity v with respect to time can be expressed as follows.

̈𝑣 =
3𝜋𝜓𝑓

2𝑚𝜏 (−𝑅𝑖𝑞 − 𝜋𝑣𝑖𝑑
𝜏 +

𝑢𝑞

𝐿 −
𝜋𝜓𝑓

𝜏𝐿 𝑣) −
̇𝐹𝐿

𝑚 − 𝐵 ̇𝑣
𝑚 . (18)

Let x1 = vref − v, where vref is the reference velocity, we can have �̇�1 = 𝑥2 = ̇𝑣ref − 3𝜋
2𝜏𝑚 𝜓𝑓 𝑖𝑞 + 𝐹𝐿

𝑚 + 𝐵𝑣
𝑚 ,

in this equation, FL is compensated by the super-twisting observer estimated value ̂𝑑. Then the following
can be obtained.

⎧⎪
⎨
⎪⎩

�̇�1 = 𝑥2

�̇�2 = ̈𝑣ref +
3𝜋𝜓𝑓

2𝑚𝜏 (𝑅𝑖𝑞 + 𝜋𝑣𝑖𝑑
𝜏 −

𝑢𝑞

𝐿 +
𝜋𝜓𝑓

𝜏𝐿 𝑣) + ̇𝐹𝐿
𝑚 + 𝐵 ̇𝑣

𝑚 .
� (19)

The non-cascade structural controller in which the velocity and current is controlled by one controller
as follows.

𝑢𝑞 = 2𝑚𝜏𝐿
3𝜋𝜓𝑓 [(𝑘1𝑠𝑖𝑔𝛼1𝑥1 + 𝑘2𝑠𝑖𝑔𝛼2𝑥2) + ̈𝑣𝑟𝑒𝑓 + 𝐵 ̇𝑣 + ̇𝐹𝐿

𝑚 ] + (𝐿𝑅𝑖𝑞 +
𝜋𝜓𝑓 𝑣 + 𝐿𝜋𝑣𝑖𝑑

𝜏 ) (20)

Where k1 > 0, k2 > 0, 0 < 𝛼1 < 1, 𝛼2 = 2𝛼1
1+𝛼1

.

3.3. Convergence analysis

Definition 1. For the system [32]

�̇� = 𝑓(𝑥), 𝑥 ∈ 𝑈 ⊆ 𝑅𝑛, 𝑓 (0) = 0 (21)

Where f : U → Rn is a continuous function of x on the open region U (including the origin). For∀x0 ∈U0
⊂ Rn, there is a continuous function 𝑇 (𝑥) ∶ 𝑈0 ⧵ {0} → (0, +∞), making the solution of (18) satisfied:
when 𝑡 ∈ [0, 𝑇 (𝑥0)), 𝑥(𝑡, 𝑥0) ∈ 𝑈0 ⧵ {0} and limt→T (x0) x (t, x0) = 0; When t > T (x0), x (t, x0) = 0, if U =
U0 = Rn, the system is globally finite time stable.

Theorem 1. For the system (18), if the vector function f (x) is homogeneous, the system is then called
homogeneous [27].

From the Assumption 1, ̇𝑑 = ̇𝐹𝐿 = 0, and because the estimated value ̂𝑑 by super-twisting observer
can converge to the actual value FL, the state variable x2 is accurate.

Take the following Lyapunov function.

𝑉 = 𝑘1

1 + 𝛼1
|𝑥1|1+𝛼1 + 1

2
𝑥2

2. (22)

The derivative with respect to V can be obtained.

̇𝑉 = 𝑘1𝑠𝑖𝑔𝛼1(𝑥1)𝑥2 + 𝑥2(−𝑘1𝑠𝑖𝑔𝛼1(𝑥1) − 𝑘2𝑠𝑖𝑔𝛼2(𝑥2))
= −𝑘2|𝑥2|1+𝛼2 . (23)

According to Eq. (23), ̇𝑉 ≤ 0 always hold up. So the system (19) is globally asymptotically stable under
the strategy of the finite time controller (20) and super-twisting observer (10).
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Fig. 2. Control diagram of FTC-STO.

Table 1
The parameters of PMSLM

Parameters Values

d-axis reactance Ld 4.4 mH
q-axis reactance Lq 4.4 mH

Rotor mass 30 kg
Coefficient of viscous friction 152 N/(m/s)

Thrust of sliding friction 42.5 N
Resistance R 0.3 Ω
Pole pitch 𝜏 0.005 m

Flux linkage 𝜓 f 0.0891 Wb

Besides, according to the homogeneous system definition, when r1 = 1, 𝑟2 = 1+𝛼1
2

, 0 < 𝛼1 < 1, 𝛼2 = 2𝛼1
1+𝛼1

,
the vector field of the system (19) under the action of (20) satisfies

𝑓(𝜀𝑟1𝑥1, 𝜀𝑟2𝑥2) = (
𝜀𝑟2𝑥2

−𝑘1𝜀𝛼1𝑟1𝑠𝑖𝑔𝛼1(𝑥1) − 𝑘2𝜀𝛼2𝑟2𝑠𝑖𝑔𝛼2(𝑥2))

= (
𝜀𝑟1+𝑘 0

0 𝜀𝑟2+𝑘) (
𝑥2

−𝑘1𝑠𝑖𝑔𝛼1(𝑥1) − 𝑘2𝑠𝑖𝑔𝛼2(𝑥2))

= (
𝜀𝑟1+𝑘𝑓1(𝑥1, 𝑥2)
𝜀𝑟2+𝑘𝑓2(𝑥1, 𝑥2)) . (24)

Thus, the homogeneity of the system is 𝑘 = 𝛼1−1
2

< 0.
In summary, we know from Theorem 1 that the system (19) is finite time stable under the action of the

finite time controller (20) and super twisting observer (10).
The PMSLM drive system framework is based on the proposed strategy is shown in Fig. 2.



182 Y. Pang et al. / Non-cascaded finite time control

4. Simulations and experiments

4.1. Simulations

In order to verify the effectiveness of the proposed method, the comparative simulations among
traditional PI, SMC, and the proposed finite time control based super twisting observer (FTC-STO) are
carried out. The PMSLM parameters used in the simulations are shown in Table 1. To ensure fairness, all
simulation bus voltage is set as 36 V. Three groups of simulations are conducted, as described below.

The PI parameters of velocity controller can be designed as follows.

𝑘𝑠𝑝 = 𝜏 ∗ 𝑚
150 ∗ 𝜓𝑓 ∗ 𝑇PWM

(25)

𝑘𝑠𝑖 =
𝑘𝑠𝑝

𝜏 = 𝑚 ∗ 𝜏
1500 ∗ 𝜓𝑓 ∗ 𝑇 2

PWM

(26)

Where, ksp is the gain of velocity PI controller, and ksi is the integration of the velocity PI controller, TPWM
is the interrupt time.

The PI parameters of current controllers can be designed as follows.

𝑘𝑝 = 𝐿
3𝑇𝑠

, 𝑘𝑖 = 𝑅
3𝑇𝑠

(27)

Where, kp and ki are the gain and integration of the current controller, T s is the interrupt time.
The parameters designed method of SMC is described as follows.
The sliding mode controller designed in this paper is expressed as follows.
Define the state variables as x1 = vref − v, 𝑥2 = �̇�1 = ̇𝑣𝑟𝑒𝑓 − 3𝜋𝜓𝑓

2𝑚𝜏 𝑖𝑞 + 𝐹𝐿
𝑚 + 𝐵𝑣

𝑚 , and the sliding mode
surface is defined as s = cx1 + x2, then the sliding mode controller can be designed as follows.

𝑖∗
𝑞 = 2𝑚𝜏

3𝜋𝜓𝑓 ∫
𝑡

0
[𝑐(𝑥2) + 𝜂𝑠𝑖𝑔𝑛(𝑠) + 𝑞(𝑠)] (28)

Where, c > 0, and 𝜂 > 0 are the gains of the sliding mode surface.
The whole contents can be written as follows.

𝑖∗
𝑞 = 2𝑚𝜏

3𝜋𝜓𝑓 ∫
𝑡

0
[𝑐( ̇𝑣𝑟𝑒𝑓 − ̇𝑣) + 𝜂𝑠𝑖𝑔𝑛(𝑐(𝑣𝑟𝑒𝑓 − 𝑣) − ̇𝑣) + 𝑞(𝑐(𝑣𝑟𝑒𝑓 − 𝑣) + ( ̇𝑣𝑟𝑒𝑓 − ̇𝑣))]

= 2𝑚𝜏
3𝜋𝜓𝑓 ∫

𝑡

0
[𝑐�̇�1 + 𝜂𝑠𝑖𝑔𝑛(𝑐𝑥1 + �̇�1) + 𝑞(𝑐𝑥1 + �̇�1)]

= 2𝑚𝜏
3𝜋𝜓𝑓 ∫

𝑡

0
[𝑞𝑐𝑥1 + (𝑐 + 𝑞)�̇�1 + 𝜂𝑠𝑖𝑔𝑛(𝑐𝑥1 + �̇�1)]

= 2𝑚𝜏
3𝜋𝜓𝑓 ∫

𝑡

0 [𝑞𝑐𝑥1 + ∫
𝑡

0
(𝑐 + 𝑞)�̇�1 + ∫

𝑡

0
𝜂𝑠𝑖𝑔𝑛(𝑐𝑥1 + �̇�1)] . (29)

The SMC controller and PI controller are analyzed by analogy. In SMC controller, 2𝑚𝜏
3𝜋𝜓𝑓

∫𝑡
0 𝑞𝑐𝑥1 can be

regarded as kp of PI controller in velocity loop, and 2𝑚𝜏
3𝜋𝜓𝑓

∫𝑡
0(𝑞 + 𝑐)�̇�1 can be regarded as ki of PI controller

in velocity loop, and 2𝑚𝜏
3𝜋𝜓𝑓

∫𝑡
0 𝜂𝑠𝑖𝑔𝑛(𝑐𝑥1 + �̇�1) is the switch function.
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Table 2
The parameters of PI controller

Parameters Values

Velocity loop proportional gain 50
Velocity loop integral gain 500

Current loop proportional gain 14.7
Current loop integral gain 1000

Table 3
The parameters of SMC controller

Parameters Values

c in the SMC 10
𝜂 in the SMC 0.1
q in the SMC 100

Current loop proportional gain 14.7
Current loop integral gain 1000

The parameters of q and c in SMC are designed according to the PI parameters calculated above.
2𝑚𝜏

3𝜋𝜓𝑓
𝑞𝑐 = 𝑘𝑠𝑝, 2𝑚𝜏

3𝜋𝜓𝑓
(𝑞 + 𝑐) = 𝑘𝑠𝑖. (30)

The solutions of q and c can be obtained. And the switch coefficient 𝜂 is adjusted according to
experience.

The SMC parameters is calculated as follows when the above methods are adopted.
The parameters of the proposed strategy can be designed as follows.
The order of magnitude relationship is similar to the traditional PID parameters. And the order of

magnitude of 3𝜋𝜓𝑓
2𝑚𝜏𝐿 × 𝑘1, 3𝜋𝜓𝑓

2𝑚𝜏𝐿 × 𝑘2, can be determined similarly to ksp and ksd of the PID controller in the
velocity loop.

Although the parameters of sliding mode control, PI, and proposed method can be adjusted by the
above method, the coefficients need to be adjusted according to the actual operation effect in the actual
debugging.

The parameters used in the simulations are shown in Table 2, Table 3, and Table 4, respectively.
The first group is the step response comparison, PMSLM starts initially with 2 N load, and the reference

velocity is 0.2 m/s. Figure 3 shows the step response comparison curves of the two algorithms including the
response curve of the d-axis current id , q-axis current iq, q-axis voltage uq and velocity v. PI control takes
0.11 s reaching steady state and have 0.0215 overshoot. FTC-STO takes 7.3 × 10−3 s reaching steady state
without any overshoot. The comparative results show that FTC-STO can achieve the reference velocity
faster than PI, and the fluctuation of q-axis voltage and current is less.

The second group is the contrast of loading in steady state. The load changes from 2 N to 8 N after 0.5 s
when PMSLM reaches steady state of 0.2 m/s. Figure 4 shows the response curves of the two algorithms
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Table 4
The parameters of FTC-STO

Parameters Values

k1 7 × 106

k2 8 × 103

𝛼1 0.6
𝛼2 0.75
𝜆1 2 × 103

𝜆2 6 × 107

Fig. 3. Initial startup comparison of the two algorithms.

respectively including the velocity, id and uq. As a result, we can obtain that the velocity decline value of
FTC-STO is smaller than that of PI and the recovery velocity is faster than that of PI respectively.

The third group is a sinewave tracking comparison. The given reference velocity curve is 0.2sin(2𝜋t
×10), PMSLM starting with loading. Figure 5 shows the response comparison curves of the two algorithms
respectively including the response curve of the d-axis current id , q-axis current iq, q-axis voltage uq and
velocity v. It can be observed from Fig. 5, compared to PI and SMC, the reference velocity can be better
tracked by FTC-STO, and the amplitude and phase can be followed accurately, which verified that the
FTC-STO has higher bandwidth than PI and SMC.
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Fig. 4. The loading comparison results of the two algorithms.

Table 5 list the comparative results about PI, SMC, and FTC-STO. It can be illustrated that FTC-STO
has a better robustness and disturbance rejection performance.

4.2. Experiments

For further validation, comparative experiments are implemented on PI, SMC and the proposed strategy.
The PMSLM control experimental platform is shown in Fig. 6. The control part includes a DSP main

control board, an inverter drive board, a DC adjustable power supply, a 15 V auxiliary switch power supply,
and a grating ruler. The DSP main control board is powered by a 5 V power adapter, and the inverter drive
board is powered by a 15 V switch power supply. The bus voltage is 33 V, and the grating ruler resolution
is 5 μm. The controlled object is a PMSLM, using a 5 kg standard weight as the load.

As can be seen from the performance comparison curves of the three control methods in Fig. 7, the FTC-
STO control method proposed in this paper can reach the reference velocity faster than the traditional
SMC and PID control method in the PMSLM startup phase without overshoot. The d-axis controller
adopts PID controller with the same parameter setting. The amplitude of the d-axis current of FTC-STO
is obviously smaller than that of SMC and PID. By comparing the q-axis response curves, it can be seen
that the q-axis current of FTC-STO reaches the steady-state value faster than the traditional SMC and PID
controller. Moreover, the chattering amplitude of q-axis current is significantly lower than that of SMC
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Fig. 5. The response comparison curves of the two algorithms.

Table 5
The performance of the controllers

Algorithms Steady-state
time

Velocity
decreased

Recovery to
steady-state

Fluctuation of
q-axis current

Fluctuation of
q-axis voltage

PI 0.03 s 0.01 m/s 0.3 s 0.25 A 18 V
SMC 0.04 s 0.012 m/s 0.3 s 0.25 A 3.5 V

FTC-STO 0.01 s 0.001 m/s 0.0001 s 0.35 A 3 V

and PID controller. As can be seen from A-phase current comparison curves, phase current chattering of
FTC-STO control strategy is smaller than SMC and PID controller.

When load sudden change, it can be seen from figure that the velocity of the PID controller will be from
the steady-state value of 0.2 m/s to increase or decrease of 0.014 m/s, SMC from steady-state value at a
velocity of 0.2 m/s to increase or decrease of 0.017 m/s, and FTC-STO from steady-state value at a velocity
of 0.2 m/s to increase or decrease 0.019 m/s, and FTC-STO control method to a steady velocity need only
0.0003 s, SMC and PID control methods will need 0.06 s to restore the steady-state velocity, which verifies
that the method proposed in this paper greatly improves the velocity tracking performance of PMSLM.
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Fig. 6. The experimental platform.

Fig. 7. The experiment curves of FTC-STO. (a) Velocity, id , iq; (b) ud , uq.

Fig. 8. The experiment curves of SMC. (a) Velocity, id , iq; (b) ud , uq.



188 Y. Pang et al. / Non-cascaded finite time control

Fig. 9. The experiment curves of PI. (a) Velocity, id , iq; (b) ud , uq.

Similarly, the d-axis current, q-axis current and A-phase current of FTC-STO have less jitter than SMC
and PID controllers. Compared with SMC and PID controller, q-axis current of PMSLM controlled by
FTC-STO reaches steady-state current value more quickly.

It can be seen from Figs 7–9 that the response curves of FTC-STO are faster than SMC and PI, including
velocity, d-axis current, q-axis current, q-axis voltage, which verified that the proposed control strategy
has a better disturbance.

5. Conclusion

A finite time controller is designed to directly adjust the velocity loop of PMSLM under the non-
cascade structure. Based on this, a super-twisting observer was developed to increase the anti-disturbance
performance. The simulation result shows that proposed method has fast tracking velocity, no overshoot
and better disturbance rejection. The non-cascade structure control method is adopted to improve the
bandwidth of the controller. As a consequence of lots of parameters and broad bandwidth, it was
very important for engineering applications to know how to design parameters in a way that was both
accurate and based on theory. The control performance will be seriously restricted by the multi-sources
disturbances of the PMSLM system, so future we will deal with the simultaneous cancellation for them.
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