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Abstract. For traffic management entities, the ability to forecast traffic patterns is crucial to their suite of advanced decision-making10

solutions. The inherent unpredictability of network traffic makes it challenging to develop a robust predictive model. For this11

reason, by leveraging a spatiotemporal graph transformer equipped with an array of specialized experts, ensuring more reliable and12

agile outcomes. In this method, utilizing Louvain algorithm alongside a temporal segmentation approach partition the overarching13

spatial graph structure of traffic networks into a series of localized spatio-temporal graph subgraphs. Then, multiple expert14

models are obtained by pre-training each subgraph data using a spatio-temporal synchronous graph transformer. Finally, each15

expert model is fused in a fine-tuning way to obtain the final predicted value, which ensures the reliability of its forecasts while16

reducing computational time, demonstrating superior predictive capabilities compared to other state-of-the-art models. Results17

from simulation experiments on real datasets from PeMS validate its enhanced performance metrics.18
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1. Introduction20

Given its fundamental part in people’s daily activities, transportation also exerts a substantial influence21

on environmental conditions [1]. As the count of cars and drivers has swelled, so too have the problems22

of traffic congestion and safety on our streets become increasingly severe. To solve this problem, many23

countries are committed to developing intelligent transportation systems (ITS) to achieve efficient traffic24

management [1]. Traffic control and guidance are the keys to the ITS, and traffic prediction is the25

prerequisite of scientific management and control [2]. However, traffic network data has strong temporal26

and spatial correlation and nonlinearity, which brings challenges to the establishment of accurate traffic27

prediction models.28

With the deepening of research on traffic prediction algorithms, researchers have proposed plenty of29

high-performance prediction models, the algorithms of deep neural networks, which can mine complex30

nonlinear relationships between data from a large amount of historical data, thereby achieving higher31

prediction accuracy and stronger generalization ability [3,4]. For instance, Yu et al. [5] characterized the32
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traffic and speed data of the traffic network into a static image, and then captures the spatio-temporal33

correlation through the spatio-temporal loop convolutional network, and verifies its superior performance34

on a traffic network in Beijing. Wu et al. [6] introduced an advanced predictive model for traffic flow35

that integrates various deep learning techniques. The model harnesses the power of Long Short-Term36

Memory (LSTM) networks and Convolutional Neural Networks (CNNs) to explore the intricate spatial and37

temporal dimensions of traffic data. It synthesizes historical traffic metrics, including velocities and traffic38

volumes, with the aid of attention mechanisms, effectively highlighting the DNN-BTF model’s capacity39

to tackle predictive challenge. Yang et al. [7] put forth an advanced LSTM framework, crafted to elevate40

the performance of traffic flow forecast methodologie, which mines extremely long distance temporal41

correlations through attention, effectively improving the memory ability of the LSTM model. Yang et al. [8]42

introduced a ranking system based on ideal solution similarity to differentiate road segments into distinct43

categories. Following this, they employed convolutional LSTM networks for spatiotemporal data mining of44

pivotal road segments, which allows for the accurate prediction of their diverse states. Zhang et al. [9] have45

crafted a specialized CNN for anticipating short-term traffic patterns by conducting an analysis of the data’s46

spatio-temporal progression. The system selects pertinent features through CNN-based mining, thereby47

boosting the predictive power of the forecasting model. Zhao et al. [10] employed hierarchical clustering48

to segment traffic flow data into distinct groups, followed by an analysis of spatial correlations among49

road networks and segments within these groups using the conventional Euclidean space framework. By50

pinpointing the top-k most relevant road segment data strongly associated with the segment of interest,51

the LSTM is fed features that boost its forecasting precision. X Zhang and Q Zhang. [11] fused the52

predictive capabilities of LSTM networks with the robustness of XBoost’s ensemble learning to focus on53

estimating forthcoming traffic volumes, thereby circumventing the overfitting tendency inherent in LSTMs54

and bolstering the models’ predictive performance across various scenarios. Cai et al. [12] have utilized the55

correlation entropy as a robust loss function for LSTM, aimed at mitigating the impact of non-Gaussian56

noise on short-term traffic flow predictions and improving the model’s noise immunity. Xia et al. [13]57

combined distributed modeling frameworks with LSTM networks to solve the problem of difficulty in58

training and using models caused by large traffic data, improving the efficiency and usability of projecting59

near-future traffic patterns. Zhang and Jiao [14] implemented a gated convolutional module with an array60

of kernel sizes to unearth the temporal and spatial interdependencies in historical traffic datasets. They61

also crafted an attention mechanism that incrementally augments the model’s width to assign importance62

to key hidden features, which maintains high accuracy with a relatively low computational cost. Fang et63

al. [15] enhanced their LSTM model for predicting short-term traffic flows by embedding an attention64

mechanism. This addition enables the model to discern and emphasize key informational inputs, leading to65

more accurate predictive outcomes66

Standard algorithms for convolutional and recurrent neural networks are designed for data within67

Euclidean domains and are not suitable for the graph-based data from complex traffic networks that exist in68

non-Euclidean spaces. Graph Neural Networks [16,17], however, can adeptly process this type of data by69

leveraging various aggregation methods to discern the relationships between nodes and extract underlying70

features. Their ability to represent the spatial connections within traffic networks makes them well-suited71

for data mining tasks in non-Euclidean contexts. For example, Yu et al. [18] crafted an STGCN for the72

purpose of traffic forecasting, leveraging the model’s ability to capture spatial and temporal dependencies73

within traffic data. It mined the spatiotemporal correlation of road network information through stacking74

gated convolutional network and graph convolutional network structure, and it outperformed the ensemble75

CNN-RNN model in terms of forecasting accuracy, reflecting its enhanced predictive capabilities. Guo76

et al. [19] introduced an attention mechanism into the ASTGCN for the initial time to perform traffic77

flow predictions. They dissected spatio-temporal correlations through three unique temporal branches and78

employed attention to weigh the significance of hidden features across each branch’s layers, which resulted79
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in higher prediction accuracy. Zhao et al. [20] presented a novel neural network for traffic prediction that80

synergizes GCN with GRU within the T-GCN framework, adeptly seizing the evolving dynamics within81

traffic datasets and outperforming other advanced models. Bai et al. [21] designed a module that adaptively82

learns each spatial node and applied it to a graph convolutional recursive network to generate an adaptively83

learning graph convolutional framework(AGCRN) designed for anticipating traffic patterns, allowing the84

model to automatically capture different fine-grained traffic spatio-temporal correlations. Zheng et al. [22]85

crafted the GMAN framework, which incorporating an encoder-decoder approach, the model projects the86

evolution of traffic patterns over differing time spans. The model fuses spatial and temporal attention with a87

gating technique to enhance the significance of spatiotemporal embeddings, demonstrating effectiveness in88

long-term predictive tasks through real-data trials. Song et al. [23] developed a groundbreaking framework89

known as the STSGCN, designed to address the complexities of spatial-temporal dynamics in traffic flow90

prediction through a synchronized graph convolutional approach, thereby markedly enhancing predictive91

precision over methods that analyze these correlations asynchronously. Wang et al. [24] Unveiled an92

innovative strategy employing a multi-graph adversarial neural network for the autonomous detection of93

spatial-temporal features in traffic data. This technique allows for the real-time extraction of these states94

and the subsequent generation of traffic forecasts constrained by the GAN framework. Yin et al. [25]95

introduced an innovative traffic forecasting framework known as the MASTGN. The model adopted96

encoder-decoder structure and mixed spatial attention. The three forms of attention, internal attention and97

temporal attention, integrate hidden features from different angles and achieve a very high accuracy. Zhang98

et al. [26] crafted a unique Spatiotemporal Graph Attention Network for forecasting traffic flow, capable of99

unearthing both global and local spatial interactions and incorporating various levels of temporal dynamics.100

Moreover, By tapping into the traffic data’s semantic nuances, it secures remarkable outcomes in predictive101

analytics. Li et al. [27] have engineered a pioneering model for understanding the spatial-temporal patterns102

present in traffic data, adeptly visualizing the temporal and spatial features, fully harnessing the natural103

connections of time and space, and markedly improving the accuracy of traffic flow forecasts. Na et104

al. [28] developed an adaptive approach for computing adjacency matrices that, in conjunction with graph105

convolutional networks, adeptly uncovers the temporal variations in spatial relationships of road networks.106

It outperforms the conventional fixed-matrix methods for local hidden feature aggregation in terms of107

both accuracy and adaptability. Ni and Zhang [29] employed a multi-graph framework to depict the108

transportation network, then uses an interpretable spatiotemporal graph convolutional network (STGMN)109

for hidden feature information mining, and Elevated the network’s depth by stacking additional layers110

within a residual framework, which prediction results have advantages compared to the advanced models111

previously proposed. Yin et al. [30] combined spatiotemporal graph neural network and transfer learning to112

mine spatiotemporal traffic patterns of specific nodes, and introduces clustering mechanism to elevate the113

predictive capabilities for the intended outcome. Jin et al. [31] designed a transformative traffic prediction114

model known as Trafformer, which combines spatial and temporal insights into a singular transformer115

model, adept at uncovering complex dependencies across space and time. Yu et al. [32] took into account116

the diverse spatiotemporal dynamics in traffic forecasting by employing a causally-driven spatiotemporal117

synchronous graph convolutional network to uncover spatial-temporal relationships, which led to superior118

predictive outcomes. Chen et al. [33] derived adjacency matrices from traffic flow data, leveraging the119

power of attention mechanisms, they constructed a transformer encoder in tandem with graph convolutional120

networks to act as a proficient feature extractor for traffic’s spatial-temporal correlations, augmenting the121

model’s forecasting efficacy. Liu [34] combines SAE, GCN, and BiLSTM to predict the passenger flow of122

urban rail transit, and evaluates it through real data at different granularities, proving its high accuracy and123

good robustness.124

Despite the applicability of existing forecasting models to data from complex traffic networks, there125

remains a need to address issues related to increasing the accuracy of calculations and decreasing the126
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duration of the computation process. These mainly contain three parts. 1) Creating a localized spatiotem-127

poral graph allows for a more nuanced representation of the intricate spatial and temporal dynamics within128

traffic data, but the number of nodes in each local spatiotemporal graph has multiplied than the original129

graph, resulting in a significant increase in the calculation time. 2) Traffic monitoring sensors can detect130

and record various indicators of traffic conditions, encompassing flow, occupancy, and speed.. How to131

effectively use this information’s spatiotemporal dependence to enhance the precision of the predictive132

model is of utmost importance. 3) When leveraging a graph neural network for the concurrent extraction of133

temporal and spatial correlations, it is essential to account for the ancillary data among nodes across time134

and space to accurately aggregate their latent representations. To solve these problems, the current research135

designs a spatiotemporal synchronization graph transformer with mixture of experts (MOE-STSGFomer)136

for anticipating traffic flow. The innovative points of this research include:137

Firstly, by combining Louvain algorithm with local time sliding window, traffic network data set is138

divided into several local time-gap subgraph data sets. Then, each subset is pre-trained to obtain several139

expert models, and then these expert models are migrated and the expert gated network is fine-tuned to140

obtain the prediction model of the entire road network map, which can effectively reduce the prediction141

time while ensuring a high prediction accuracy.142

Secondly, the graph Transformer network is used in each expert model, only encoder structure is used in143

the network, and the self-attention multi-head structure in the graph Transformer is replaced by trainable144

edge information, so that both node information and edge information are considered when extracting145

spatiotemporal correlation synchronously. The model can more fully and accurately express and Leverage146

the traffic network’s dynamic interplay of space and time147

Finally, the current research uses two real datasets on PeMS for simulation experiments, and the148

experimental outcomes unequivocally show that our model’s forecasting capabilities surpass those of149

current state-of-the-art predictive models150

2. Preliminary151

Envisioning traffic flow forecasting as the anticipation of future sequences, each influenced by multiple152

variables. These data come from multiple traffic nodes on the road network. Under the assumption, Xt153

symbolizes the features of nodes at time t, and Xf
t stands for the collective traffic flow properties of the154

nodes at that instant. The objective of forecasting traffic flow is to learn a complex nonlinear formula155

through historical traffic data to estimate future traffic flow over a specified period, as follows:156 (
Xf
t+1, . . . , X

f
t+τ1

)
= F [(Xt−τ2+1, . . . , Xt)] (1)

In addition, we have defined some of the concepts used in the method, as shown below. Traffic network157

data can be represented by an undirectedgraph G = (V,E) structure, where V ∈ RN represents the set of158

nodes (all sensors) and E represents the set of edges (connecting edges between sensors). Whether there is159

a link edge between nodes is expressed by the critical matrix A ∈ RN×N Setting Ai,j = 1 to 1 creates an160

edge between node i and node j; setting it to 0 eliminates any such link.161

3. Methodology162

To ensure high prediction accuracy and solve the problem that training the model presents consider-163

able difficulties by using local space-time graph for feature extraction, this paper designed the MOE-164

STSGFormer method for short-term traffic forecasting tasks. Figure 1 illustrates that the technique is165

fundamentally made up of several stages: Construct local spatio-temporal subgraphs, Pre-training and166
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Fig. 1. The structure of MOE-STSGFormer.

Fine-tuning. Firstly, Louvain algorithm and local time sliding window are combined to reconstruct the167

historical input features into multiple local time-gap subgraphs. Then, the transformer network is used for168

pre-training and each model is saved and defined as an expert model. Finally, the final predicted value is169

obtained by combining all the fixed parameter expert models and fine-tuned gated network to train the170

historical input features. The framework of this model is described in detail below.171

3.1. Construct local spatio-temporal subgraphs172

To segment the optimal set of subgraph structures, this paper first quotes a general standard for evaluating173

the rationality of community segmentation: modularity. The principle is the difference between the module174
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cohesion of certain segmentation results and the cohesion of random segmentation results. The calculation175

process is as follows:176

Q =
∑
C

[∑
in

2m
− γ

(∑
tot

2m

)2
]

(2)

where Q is modularity. C is the total number of segmented subgraphs.
∑

in and
∑

tot tot are the sums of177

weights of edges and edges connected to nodes in the subgraph, respectively. m is the sum of the weights178

of all edges. γ is the resolution. The higher it is, the more communities are segmented; the lower it is, the179

less communities are segmented.180

Louvain algorithm [35] is an algorithm based on modularity to search for optimal community segmenta-181

tion. The algorithm first sets the resolution, selects the interval [0, γmax] and the sampling interval s (s can182

be divisible by γmax), then the set of modularity resolution that can be selected is, and then calculates the183

subgraph segmentation set of the maximum modularity under each resolution. The specific process is as184

follows:185

1) Each node in the network is assigned a different number so that there are subgraphs with the same186

number of vertices in the initial subgraph segmentation.187

2) Add node i to the subgraph c of its neighbor node j in turn to calculate the overall modularity gain.188

The community modularity after node joining is as follows:189

Qcadd =

∑
in + ki,in
2m

− γ
(∑

tot + ki
2m

)2

(3)

where ki,in is defined as the cumulative weight connected by node i to subgraph c and ki is indicative190

of the degree of node i. There is only one node in subgraph c′ before node i is moved, then the191

modularity of subgraph c′ before node i is removed:192

Qc
′

= 0− γ
(
ki
2m

)2

(4)

The modularity of community c′ after node i moving out is:193

Qc
′

rem = 0 (5)

Then, the modularity gain obtained is:194

∆Q = (Qcadd −Qc) +
(
Qc

′

rem −Qc
′
)

=
ki,in
2m
− γ ki

∑
tot

2m2
(6)

3) Add each node to the subgraph whose modularity gain is greater than 0 and has the maximum195

modularity gain. If the modularity gain calculated by the surrounding subgraphs is less than 0, the196

current node is not added to any subgraph.197

4) The results obtained in the previous step are reconstructed. Each subgraph is merged again, and the198

original graph is converted into a new hypergraph. It can be considered that the new subgraph is a199

large node, and the edge weight between these two significant nodes is the cumulative weight of the200

edges that interconnect all nodes across both subgraphs. After constructing the new hypergraph, the201

modularity transformation is iteratively calculated again.202

5) After repeating steps 2–4 repeatedly, stop the algorithm until the overall modularity no longer changes203

or the predefined iteration count is met.204

Louvain algorithm decomposes the spatial graph structure of historical traffic data into multiple sub-205

graph structures. Utilizing a local time sliding window, the subgraph configuration for every historical206

traffic dataset is reconstructed. Assume that the q-th subgraph Gq, has an input feature identified by207
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Fig. 2. The new adjacency matrix.[
Xq
t−τ2+1, . . . , X

q
t

]
, and the number of time channels of the time sliding window used for feature recon-208

struction is τ3, then the input feature after reconstruction is:209 
[
Xq
t−τ2+1

∥∥· · ·∥∥Xq
t−τ2+τ3

]
,[

Xq
t−τ2

∥∥· · ·∥∥Xq
t−τ2+τ3−1

]
,

...[
Xq
t−τ3+1 ‖· · · ‖X

q
t

]
 (7)

Considering N q as the count of initial input feature nodes, the reconstructed model yields τ3N q nodes.210

After reconstruction, the new adjacency matrix represents each channel’s graph structure connection mode,211

as shown in Fig. 2. It can be seen that it is composed of the original adjacency matrix, the identity matrix,212

and the zero matrix, and its dimension is τ3N q × τ3N q.213

3.2. Pre-training214

The graph transformer network uses a stacked graph self-attention network (GSA) for data mining.215

Figure 3 displays the structure of a one-layer graph self-attention network, which calculates the spatio-216

temporal dependence between any two locations through the linear transformation of the three branches217

and allows the model to more effectively seize the comprehensive details of historical data.218

With H l as the input feature for the node at the lth layer, it is a composite of the node’s input feature and219

the position encoding in the first layer. Position encoding is usually in the form of trigonometric functions:220

P li,j =

sin
(

j

10000
i
n

)
, i ∈ odd

cos
(

j

10000
i
n

)
, i ∈ even

(8)

where P li,j is the position coder feature, i and j are the indexes of the reconstructed input feature nodes and221

time channels. The specific calculation process of Query, Key, and Value for self-attention is as follows:222 
Ql =

(
H l + P l

)
W l
q

K l =
(
H l + P l

)
W l
k

V l =
(
H l + P l

)
W l
v

(9)
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Fig. 3. The structure of GSA.

where Ql, K l and V l are respectively the Query of the first layer, Key and Value, and W l
q , W

l
k and W l

v are223

respectively the weights of the three perceptrons of the first layer.224

If it is not in the first layer, the input feature is only node input features. The specific calculation process225

of Query, Key, and Value of self-attention is as follows:226 
Ql = H lW l

q

K l = H lW l
k

V l = H lW l
v

(10)
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The correlation Z l between each vector is obtained by calculating the dot product of each vector in227

Query with each vector in Key:228

Z l = Ql ×
(
K l
)T

(11)

Then, correlation Z l and edge information El are multiplied by corresponding positions to obtain a229

vector correlation matrix αl with edge information, which Softmax normalizes to make its gradient stable230

during training:231

αl = Soft max
(
El ⊗ Z l

)
(12)

where αl is the normalized vector correlation matrix with edge information. El ∈ RN×N×Ce is the edge232

information. Ce is the channel number of edge information. The edge information of each layer is obtained233

by multiplying the trainable channel weight W l with the adjacency matrix Aq of the local space-time234

graph:235

El = W lAq (13)

Finally, the vector features of all nodes in the next layer are obtained by producting of Al and V l for236

each channel:237

H l+1 = Al × V l (14)

After the transfomer prediction model corresponding to the subgraph is created through the above238

process, the transfomer prediction model is trained using MSE as a loss function and Adam as a parametric239

updated optimization algorithm. The trained parameters are then saved. Each trained model will undergo240

subsequent transfer learning as an expert model.241

3.3. Transfer learning and fine-tuning242

Transfer learning puts entire historical traffic data as input features into each trained expert model, and243

then weights the output features of each expert model through a gated network. Training the gated network244

represents a fine-tuning process. Finally, all the weighted output features are summed to arrive at the245

ultimate forecasted outcome.246

Within the gated network, there are two layers of full connectivity. The top layer reduces the number of247

temporal channels in the input features to unity by linear mapping. The bottom layer, in turn, decreases248

the node count of the input features to equate with the domain expert model count through another linear249

mapping. The exact calculation process is detailed hereafter:250

HG = σ (W2XW1) (15)

Where HG is the output sequence of the gated network, W1 and W2 represent the weights of a dual-layer251

fully-connected network σ is the Softmax function.252

4. Empirical evaluation253

The complete simulation experiment was conducted utilizing a computer equipped with an RTX 2080Ti254

GPU and the model was crafted using the open-source PyTorch framework.255
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4.1. Data description256

For the simulation aspects of this paper, we have employed two datasets that are publicly accessible257

through PeMS:258

– The PeMSD4 dataset is derived from 307 traffic sensors along 29 Bay Area roads in San Francisco,259

recorded over a 59-day period from January 1, 2018, to February 28, 2018. The training data includes260

52 days, extending to February 21, 2018, and the test data comprises the last seven days of this period,261

ending on February 28, 2018.262

– The PeMSD8 dataset is derived from 170 traffic sensors along 8 San Bernardino Area roads, recorded263

over a 61-day period from July 1, 2016, to August 31 2016. The training data includes 54 days,264

extending to August 25, 2016, and the test data comprises the last seven days of this period, ending on265

August 31, 2016.266

– This paper mainly uses k-Nearest Neighbor [35] to interpolate missing data.267

4.2. Experimental parameter settings268

Multiple training and verification tests were executed to pinpoint the most efficient parameters for269

the MOE-STSGFormer model, which are as follows: (1) The duration of the historical time window for270

input features is one hour, while the prediction horizon varies from 5 to 45 minutes. The time window271

for feature reconstruction is set at 15 minutes, with each temporal data point spaced 5 minutes apart,272

τ2 = 12 τ1 ∈ {1, 2, . . . , 9} and τ3 = 3. (2) The channel number of edge information Ce is allocated the273

value of 2, (3) the batch size per sample is 32 during the iterative optimization cycle, with a learning rate274

of 1e-4.275

4.3. Subgraphs segmentation result276

Utilizing the dataset’s original adjacency matrix as a foundation, Louvain algorithm is used to segment277

the whole graph structure, and samples are collected within the range of 0∼1.5 with a sampling interval of278

0.01. The optimal modularity value under different resolutions is shown in Fig. 4.279

It can be seen that when the resolution is 0.39, the optimal modularity of PeMSD4 data set is obtained. In280

other words, at the 39th sampling, the optimal modularity value of the subgraph segmentation by Louvain281

algorithm is the largest, which is 0.8717. When the resolution is 0.61, the optimal modularity of PeMSD8282

data is obtained, that is, at the 61th sampling, the optimal modularity value of the subgraph segmentation283

by Louvain algorithm is the largest, which is 0.7473. Through this process, 23 subgraphs can be generated284

from PeMSD4 data and 12 subgraphs can be generated from PeMSD8 data.285

4.4. Baseline models286

To establish the superiority of our model, we will benchmark it against seven advanced baseline models:287

LSTM, GCN, STGCN, ASTGCN, STSGCN, STGMN, and Trafformer. The LSTM model is designed288

with a 5-layer setup, and the GCN model shares an equivalent structure with the STGCN model. Other289

baseline models are configured according to the descriptions provided in the references.290

4.5. Performance superiority analysis291

To begin with, an assessment of the precision of each predictive model is undertaken. Error met-292

rics including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the Coefficient of293
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Fig. 4. The optimal modularity at different resolutions.

Determination (R2) are applied:294

MAE =
1

NT

N∑
i=1

T∑
j=1

|ŷi,j − yi,j | (16)

295

RMSE =

√√√√1

T

N∑
i=1

T∑
j=1

(ŷi,j − yi,j)2 (17)

296

R2 = 1−

N∑
i=1

T∑
j=1

(ŷi,j − yi,j)2

N∑
i=1

T∑
j=1

(ȳi,j − yi,j)2
(18)

where T is the number of channels in the time dimension of the test set, ŷi,j , yi,j and ȳi,j are the predicted297

values of the model, the true values of the samples and the average of the true values of the samples during298

testing. MAE and RMSE gauge model error, with lower figures suggesting enhanced accuracy. On the other299

hand, R2 measures the model’s predictive similarity, where higher values imply greater precision.300



Galley Proof 10/10/2024; 9:53 File: idt–1-idt240690.tex; BOKCTP/llx p. 12

12 J. Chen and W. Xie / A spatiotemporal transfer learning framework with mixture of experts for traffic flow prediction

Table 1
Three evaluation metrics of different prediction models on two data sets

Model PeMSD4 PeMSD8
MAE RMSE R2 MAE RMSE R2

LSTM 20.2125 30.7477 0.9633 15.9882 23.4225 0.9748
GCN 21.7381 33.1505 0.9573 16.7401 24.7421 0.9718
STGCN 20.1238 30.2878 0.9644 16.4426 23.9907 0.9735
ASTGCN 19.3602 29.2162 0.9669 14.4933 21.3635 0.9790
STSGCN 16.8577 24.5555 0.9766 13.0255 19.1288 0.9832
STGMN 16.7102 24.9426 0.9742 13.4974 19.7372 0.9815
Trafformer 14.3063 21.4115 0.9813 11.2123 17.2561 0.9877
Ours 11.0181 17.8011 0.9884 8.8089 14.6822 0.9910

Table 2
Calculation times of different prediction models

Model PeMSD4 PeMSD8
T1 (s/epoch) T2 (s) T1 (s/epoch) T2 (s)

LSTM 9.7906 0.9844 7.5634 0.6241
GCN 7.0781 0.7539 5.0342 0.5347
STGCN 9.6648 0.8627 7.7081 0.5365
ASTGCN 29.1571 1.5873 14.0454 0.9862
STSGCN 49.6465 4.6824 29.5872 2.1067
STGMN 22.3285 1.1249 11.7024 0.8746
Trafformer 47.4365 4.3337 24.2158 1.8735
Ours 20.4296 1.0224 9.9852 0.7674

Table 1 illustrates the performance of various models as measured by MAE, RMSE, and R2 on the two301

datasets. The results are obtained when the prediction horizon time length is 5min. which can be found302

MAE and RMSE of LSTM and GCN are the highest and R2 is the lowest. While LSTM focuses solely on303

the temporal relationships within historical data, GCN concentrates on spatial relationships, leading to304

diminished predictive precision. Trafformer and STSGCN can synchronously mine the spatiotemporal305

correlation of historical data, with lower MAE and RMSE and higher R2 compared to other baseline306

models. This indicates that models that synchronously mine the spatiotemporal correlation of historical307

data have higher prediction accuracy than those that asynchronously mine the spatiotemporal correlation308

of historical data. The MOE-STSGFormer model designed by us has the lowest MAE and RMSE and the309

highest R2, compared with the baseline model with the best effect, MAE and RMSE are reduced by 22.98%310

and 16.86%, and R2 is increased by 0.71% in PeMS04 data set; compared with the best baseline model,311

MAE and RMSE were reduced by 21.44% and 14.92%, and R2 was improved by 0.33% in the PeMS08312

dataset. This approach yields superior predictive accuracy in comparison to alternative baseline models.313

The time required for model training and testing is also a significant metric in evaluating the model’s314

effectiveness. Table 2 shows the calculation time of our designed model and all baseline models, where T1315

is the time required for a single epoch to train the model, and T2 is the total time required to test the model.316

Referencing Table 4, it is evident that the time taken for our model to perform calculations is more317

than what is needed for LSTM, GCN, and STGCN models, because these three models are simple in318

structure and sacrifice the prediction accuracy. When pitted against the STSGCN and Trafformer models,319

our model boasts a lower time frame for processing predictions, which indicates that the model designed320

by us solves the problem of increasing the prediction time caused by constructing local spatiotemporal321

graph for synchronous spatiotemporal correlation mining.322

A plethora of spatial nodes exists for traffic data, with the potential for heterogeneity among them. To323

verify that the prediction model designed by us can have higher prediction accuracy on different types of324

spatial nodes, the predicted value of high traffic flow, medium traffic flow and low traffic flow are selected325
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Fig. 5. Visualization of true and predicted traffic flow values in different traffic patterns.

to compare with the real value. The diagram in Fig. 5 visually represents how the MOE-STSGFormer326

model can adapt to traffic flow datasets with diverse traffic modes, ranging from high to low.327

The prediction performance assessments mentioned previously were conducted under the condition328

that the prediction horizon equals 1. This paper verify that MOE-STSGFormer also has good prediction329

accuracy in other prediction horizons, the model was compared with other baseline MAE models in the330

two datasets when the prediction horizon is 1–9, which is 5–45 minutes. Figure 6 illustrates the outcomes331

of our MOE-STSGFormer model, which were observed with a prediction horizon extending from 1 to332

9 across two different datasets. When juxtaposed with baseline models, our MOE-STSGFormer model333

shows the lowest performance metrics, highlighting its ability to sustain optimal prediction accuracy under334

diverse prediction horizons.335

4.6. Verification of edge information performance336

The variable Ce, indicating the quantity of edge information channels, is essential for the model’s predic-337

tive accuracy. To select the optimal edge information channels of the model, By keeping other parameters338
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Table 3
Evaluation metrics of prediction models with different number of edge infor-
mation channels
Model PeMSD4 PeMSD8

MAE RMSE R2 MAE RMSE R2

Ce = 1 13.7162 20.9425 0.9837 10.9584 16.8416 0.9725
Ce = 2 11.0181 17.8011 0.9884 8.8089 14.6822 0.9910
Ce = 3 11.3342 18.0546 0.9856 9.5421 15.2158 0.9845

Fig. 6. The MAE of all prediction models in different prediction horizons.

stable and altering the edge information channels, we evaluated the model’s prediction capabilities. The339

corresponding error indicators and processing times are detailed in Table 3 and depicted in Fig. 7.340

As observed in Table 3, when Ce changes from 1 to 2, the errors in the two data sets will become smaller,341

that is, the prediction accuracy will increase, but when Ce changes to 3, the error will increase. It signifies342

that an overabundance of edge information channels could lead to overfitting, which consequently impairs343

the model’s accuracy in forecasting. Figure 7 illustrates that an escalation in the count of edge information344
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Table 4
Five evaluation metrics of different prediction models on two data sets

Model PeMSD4 PeMSD8
STSGFormer MOE-STSGFormer STSGFormer MOE-STSGFormer

MAE 10.9954 11.0181 8.7542 8.8089
RMSE 17.9216 17.8011 14.5465 14.6822
R2 0.9883 0.9884 0.9923 0.9910
T1 (s/epoch) 38.2519 20.4296 18.5796 9.9852
T2 (s) 3.5487 1.0224 1.8741 0.7674

Fig. 7. Visualization of training time and test time.

channels correlates with a progressive rise in the model’s pre-training, fine-tuning, and testing durations.345

Hence, to strike a balance between predictive accuracy and computational efficiency, this study opts for346

two edge information channels.347

4.7. Verification of mixture expert models348

To verify that obtaining the final predictive model through pretraining multiple expert models and fine-349

tuning the gating system can solve the problem of difficult training of predictive models, this paper compares350
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the predictive performance of the spatiotemporal synchronous graph transformer model (STSGFormer)351

trained on the entire spatial graph data with the original model (MOE-STSGFormer), the outcomes from352

both datasets are detailed in Table 4.353

The performance of MOE-STSGFormer and STSGFormer in terms of prediction accuracy is comparable354

for both datasets; however, MOE-STSGFormer is notably faster in computation. To encapsulate, the355

approach of initially pre-training multiple expert models followed by fine-tuning the gating mechanism356

ensures high predictive accuracy, while simultaneously simplifying the model to expedite its computation357

time.358

5. Conclusion359

In this paper, a traffic flow prediction model based on MOE-STSGFormer is proposed to solve the360

problem of high computing time and high hardware requirement when there are too many nodes in the361

traffic network. MOE-STSGFormer uses Louvain algorithm based on optimal modularity to divide the362

spatial graph structure of the whole traffic network into multiple sub-graphs, and then reconstructs the363

data of each subgraph by using time sliding window. Then, multiple expert models are obtained through364

pre-training, and finally, multiple expert models are fused through fine-tuning to obtain the final predicted365

value. The simulation results show that the proposed method has a high prediction accuracy, reducing366

the error by 15%–20% compared with the best baseline model, and the calculation time is much lower367

than other models for synchronous mining of spatio-temporal correlation, and it is easier to train and test.368

Moreover, it is proved by experiments that selecting the optimal number of edge information channels369

is conducive to improving the prediction performance of the model. In addition, it is also verified by370

experiments that adding Mixture Expert Models to the model can ensure the constant prediction accuracy371

while reducing a large amount of calculation time and calculation cost.372
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