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Abstract. In the realm of modern urban mobility, automatic incident detection is a critical element of intelligent transportation9

systems (ITS), since the ability to promptly identify unexpected events allows for quick implementation of preventive measures10

and efficient response to the situations as they arise. With the growing availability of traffic data, Machine Learning (ML) has11

become a vital tool for enhancing traditional incident detection methods. Automated machine-learning (AutoML) techniques12

present a promising solution by streamlining the machine-learning process; however the application of AutoML for incident13

detection has not been widely explored in scientific research In this paper, we propose and apply an AutoML-based methodology14

for traffic incident detection and compare it with state-ofthe-art ML approaches. Our approach integrates data preprocessing with15

AutoML, and uses Tree-based Pipeline Optimization Tool (TPOT) to refine the process from raw data to prediction. We have16

tested the efficiency of our approach in two major European cities, Athens and Antwerp. Finally, we present the limitations of our17

work and outline recommendations for application of AutoML in the incident detection task and potentially in other domains.18

Keywords: Incident detection, automated machine learning (AutoML), artificial intelligence (AI), intelligent transport systems19

(ITS), big data20

1. Introduction21

Efficient traffic incident detection in an automatic and prompt manner is paramount in urban traffic22

management, directly impacting congestion control and road safety. A traffic incident typically refers to23

any unexpected event that decreases road capacity and leads to congestion. Such incidents disrupt the24

flow of traffic, impede operations, and are responsible for not only delays but also increased pollution.25

Consequently, Intelligent Transport Systems (ITS) are increasingly focusing on reducing the impact of such26

traffic events. Thanks to the surge in available traffic data, Machine Learning has emerged as a powerful27

tool to improve upon the traditional algorithmic approaches, such as the California #7 Series [1] for28

detecting these incidents. However, the variable nature of traffic flow makes immediate and precise incident29

detection challenging. The widespread deployment of traffic sensors on highways has yielded extensive30

traffic flow data. Common data sources for identifying traffic incidents include stationary detectors like31

inductive loop detectors, GPS devices, and automatic identification systems such as Radio-Frequency32

Identification (RFID). Recent advances in machine learning have led to its accelerated adoption in the field33
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of transportation engineering, with popular techniques encompassing artificial neural networks (ANNs),34

support vector machines (SVMs), isolation forests (IFs), and their various adaptations. While the traditional35

machine learning techniques have demonstrated utility in interpreting traffic flow data, they often require36

extensive domain knowledge for feature selection and model tuning, which can be a significant limitation37

given the variable nature of traffic patterns.38

Automated Machine Learning (AutoML) is an emerging area in ML that seeks to automate the ML39

workflow from data preprocessing to model validation [2] thus enhancing performance and reducing40

the necessity for constant redesign. AutoML not only automates the meticulous process of discovering41

and fine-tuning the best-suited machine learning framework for the task at hand but also adapts as the42

characteristics of data evolve over time. Although setting up AutoML systems may initially demand more43

computational resources, the trade-off includes a substantial decrease in manual labor and the level of44

expertise traditionally required to develop high-performing models. Therefore, such automation provides45

robust AutoML methods that enable people, with either little or no specialized ML knowledge, to integrate46

ML solutions into data-driven processes. The latter is known as the democratization of ML [2], and it is47

aligned with the actual purpose of Artificial Intelligence: to learn and act automatically without human48

intervention [3].49

Despite the growing interest in AutoML in many fields, including transportation, a notable research gap50

exists in its application to traffic incident detection. To our knowledge, there are no comprehensive studies51

that have specifically tackled the use of AutoML for this purpose. While previous research has demonstrated52

the potential of AutoML in various domains such as healthcare, finance, and manufacturing [4,5,6], its53

application in the field of traffic management, particularly for incident detection, remains underexplored.54

This lack of research in applying AutoML to traffic incident detection presents a unique opportunity.55

The challenge lies in not only adapting AutoML to effectively analyze traffic data but also in validating56

its applicability across different urban settings. Our paper aims to fill this gap by proposing a novel57

AutoML-based methodology in detecting traffic incidents. Moreover, we have validated the effectiveness of58

our proposed approach in two major European cities, in Athens, Greece, and Antwerp, Belgium; however,59

our methodology is generic and could potentially be replicated or adapted for other urban environments. In60

doing so, this research contributes to the broader understanding of how AutoML can be utilized in urban61

traffic systems, potentially leading to more responsive and efficient traffic management solutions.62

As far as we are aware, this research represents a novel study aiming to address the automatic incident63

detection task by employing AutoML methodologies. Specifically, the main contributions of our paper can64

be summarized in the following:65

– Integration of Data Pre-processing Techniques: Recognizing the importance of data quality, we66

propose a data pre-processing algorithm before employing the AutoML process using TPOT (Tree-67

based Pipeline Optimization Tool). This integration aims to streamline the model development process,68

from raw data handling to final prediction.69

– Contrast of our AutoML-based approach with General Approach Algorithms: The paper also sets to70

compare and contrast the performance and efficiency of AutoML frameworks against general machine71

learning algorithms. This analysis will help to elucidate the benefits and limitations of AutoML in the72

specific context of traffic incident detection.73

– Assessment and comparison of our AutoML methodology across different urban contexts: Last but74

not least, the paper aims to explore the differences of the proposed automatic approach across two big75

European cities, Athens and Antwerp.76

The rest of the paper is organised as follows: Section 2 provides a short background on AutoML and77

introduces the problem of automatic incident detection, while presenting related works in the transportation78

domain. Section 3 describes the proposed methodology. Section 4 presents an overview of the used datasets.79

Section 5 discusses the experimental results, and finally, Section 6 lists the conclusions and proposes80



co
rre

cte
d p

roo
f v

ers
ion

Galley Proof 28/03/2024; 16:28 File: idt–1-idt240231.tex; BOKCTP/yn p. 3

G. Gkioka et al. / An AutoML-based approach for automatic traffic incident detection in smart cities 3

concrete suggestions to data analysts and machine learning engineers for the application of AutoML in81

relevant domains and/or tasks.82

2. Background83

2.1. Theoretical background on AutoML84

AutoML has emerged as a transformative approach in the field of machine learning, aiming to automate85

the process of model selection and hyperparameter tuning. This section will delve into the general principles86

and methodologies of AutoML, highlighting its impact on accelerating and simplifying the deployment of87

machine learning models. AutoML is designed to make the machine learning (ML) process more accessible88

and automated, enabling experts in specific domains to leverage ML technologies without requiring89

extensive knowledge or a data analyst’s assistance [4]. At the heart of AutoML lies the challenge of Hyper90

Parameter Optimization (HPO), which involves the automatic tuning of hyperparameters to enhance the91

performance of ML systems across tasks like classification, regression, and time series forecasting [4].92

Recent advancements in AutoML have expanded its scope to include additional functionalities such as93

Data Preparation, Feature Engineering, Model Generation and Model Evaluation [4,5].94

In an effort to streamline the machine learning (ML) development process, various systems have95

been designed to reduce the manual effort needed for specific tasks. For instance, platforms like Deep-96

Dive/Snorkel [7] offer comprehensive workflow support that aids in the annotation and management of97

training data, along with assisting in choosing the right model. Despite these advancements, manual labor98

remains a significant part of crafting ML solutions. Achieving full automation requires overcoming the cur-99

rent procedural obstacles. To provide a clearer picture of these challenges, we have depicted the complete100

ML workflow in Fig. 1. This flowchart details each step, highlighting the involvement of domain experts,101

the extent of manual intervention by data scientists, and the necessary interactions between them [6].102

The steps of Data Preparation and Feature Engineering are crucial to setting up the data for use in103

machine learning (ML) algorithms. Data Preparation encompasses the collection, cleaning, and expansion104

of the dataset, while Feature Engineering involves the extraction, selection, and formulation of features105

from the data. During Model Generation, various models are explored to identify the one that predicts106

outcomes most effectively, using techniques such as k-nearest neighbors (KNN) [8], Support Vector107

Machines (SVM) [9], Neural Networks (NN), among others. Concurrently, the Model Evaluation step108

assesses these models against certain criteria, which not only helps in refining the current models but also109

in developing new ones. The AutoML search process concludes once it meets specified conditions like110

model performance benchmarks or time constraints.111

As described above, AutoML approaches the Model Selection Problem (MSP) as an optimization112

challenge, aiming to identify the best machine learning (ML) algorithm and its ideal hyper-parameter113

settings from a predefined selection to optimize an accuracy metric for a specific ML task. The goal of114

AutoML is to simplify the ML application development process by automating the application of ML115

algorithms to datasets, thereby relieving users of laborious tasks like hyper-parameter tuning. Despite116

notable achievements in this area, AutoML is still evolving and is not yet fully developed.117

Regarding AutoML tools, the pioneering approach in simultaneously selecting algorithms and hyper-118

parameters was Auto-WEKA [10], which applies Bayesian optimization to find the optimal combination119

of algorithm and settings from 39 algorithms available in WEKA, a comprehensive open-source ML120

suite. Following this, Komer et al. [11] and Feurer et al. [12] introduced Hyperopt-sklearn and Auto-121

sklearn, respectively, which automate the selection of ML algorithms and hyper-parameters within the122

scikit-learn library. Hyperopt-sklearn employs the Hyperopt Python library, using a similar Bayesian123

optimization method to Auto-WEKA. In contrast, Auto-sklearn records the most effective algorithm and124
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Fig. 1. Flowchart depicting the Machine Learning process, while highlighting points of interaction between domain experts and
data scientists, along with bottlenecks [6].

hyper-parameter combinations for past ML tasks and uses meta-learning to inform the starting point of the125

sequential optimization process.126

Recently, Sparks et al. [13] introduced an AutoML method that leverages distributed computing,127

expanding the computational resources for the automation process. Additionally, Sabharwal et al. [14]128

created a technique that allocates training data in a cost-effective manner. This method begins by evaluating129

an algorithm and its hyper-parameters on a small, randomly chosen subset of the dataset and incrementally130

increases the dataset size for reassessment if the results appear promising. Following that, Olson and131

Moore [15] developed a system for constructing and fine-tuning ML pipelines for both classification and132

regression tasks, utilizing genetic programming to create versatile pipelines and to determine the best133

algorithm for each stage of the pipeline. However, the tool employed, TPOT, does not conduct a thorough134

examination of all possible hyper-parameter combinations, which means it might overlook some potentially135

effective configurations.136

Lately, Swearingen et al. [16] have introduced ATM, a collaborative tool designed for crafting opti-137

mized machine learning (ML) pipelines, with a strong focus on parallelization. This approach allows for138

distributing and processing individual combinations of algorithms and hyper-parameter settings across139

a cluster more efficiently. ATM currently utilizes the algorithm base from scikit-learn and concludes its140

optimization process after a set number of iterations or upon the completion of a time budget specified141

by the user. In the following year, Mohr et al. [17] developed ML-Plan, a framework that constructs ML142

pipelines using hierarchical task networks. ML-Plan starts with a predefined selection of preprocessing and143
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Fig. 2. A temporal-spatial chart illustrating the usual decrease in roadway capacity due to a temporary event such as a traffic
accident [23].

classification algorithms and their possible hyper-parameters. However, ML-Plan limits itself to supervised144

classification tasks, not addressing the supervised regression tasks which have been previously noted as145

prevalent in the field. From a technical perspective, AutoML attracted a lot of research interest resulting in146

several AutoML frameworks, including Autokeras [18], FEDOT [19] and TPOT [15]. Additionally, it has147

been concluded by research focusing on benchmarking several AutoML frameworks [20,21] that they do148

not yet outperform humans, however they give encouraging results [22].149

In the subsequent sections, we delve into the intricate task of incident detection using machine learning,150

highlighting the specific challenges and requirements of this domain. Within this context, we employ an151

AutoML-based methodology developed based on TPOT, that approaches incident detection from both152

a classification and regression perspective to offer a more holistic understanding of traffic data. TPOT153

was selected for its robust genetic programming algorithm which excels in discovering high-performing154

pipelines by simulating evolutionary processes. This feature is particularly beneficial for incident detection155

where the optimal set of preprocessing and modeling steps can significantly vary across different traffic156

scenarios. Additionally, TPOT’s parallel computation capabilities allow for efficient processing of vast157

traffic datasets, a critical factor in timely incident response. The methodology is outlined in detail in158

Section 3.159

2.2. Incident detection task using machine learning160

Having established the background of AutoML in addition to some applications and technical frame-161

works, the focus is now shifted to traditional machine learning techniques and their application in traffic162

incident detection, which has been an area of considerable interest for many years. This section presents163

various ML techniques that have been successfully applied to detect and predict traffic incidents, such as164

support vector machines, neural networks, and decision trees. Studies have often focused on the ability165

of these algorithms to process and analyze large volumes of traffic data to identify patterns that precede166

incidents.167

When a traffic incident happens, it triggers a shift from fluid traffic to congestion, causing alterations168

in vehicle speeds and traffic flow. This shift initiates what’s termed as a ‘shockwave’, which propagates169
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Table 1
Indicative works in the Automatic Incident Detection domain using Machine Learning algorthims with Loop Detector data

Algorithm Data attributes Indicative works
BAYESIAN CNN Occupancy, volume for incident and incident-free conditions,

archived data on the type, location, and severity of incidents
[32,33]

SVM Speed, flow, occupancy and derived features [34,35]
NEURAL NETWORKS Volume, speed, occupancy and derived features [36,33,37,38]
ISOLATION FOREST Volume, speed, occupancy and derived features [37]
LSTM Volume, speed, occupancy and derived features [39,40]
GRAPH NEURAL NETWORKS Volume, speed, occupancy, graph traffic network and derived features [41,42,43]

through the traffic, resulting in a queue that forms behind the bottleneck, typically where the incident170

occurred. This dynamic can often be visualized in a space-time diagram, which illustrates the repeating171

patterns of speed changes – cycles of speeding up and slowing down – as shown in Fig. 2. For the effective172

detection or prediction of traffic incidents, it’s important to identify irregularities that signal the emergence173

of queues both before and after the point of the incident. Integrating time series data from loop sensors174

with the geographical layout of the road network is essential to monitor these traffic anomalies accurately.175

In recent years, research efforts have been proposed to deploy Automatic Incident Detection (AID)176

Systems onto urban roads, recognizing that detecting incidents automatically and leveraging data within177

Intelligent Transportation Systems (ITS) can enhance the flow of traffic and diminish congestion and178

delays. Algorithms for Automatic Incident Detection (AIDA) have undergone extensive research and179

have been classified in numerous systematic reviews (e.g. [24,25,26]). One such review categorizes these180

algorithms based on their data processing and methods used into four categories: comparative, statistical,181

artificial intelligence-based and video – image processing algorithms [27].182

Comparative algorithm techniques analyze the variances in traffic flow parameters between two consec-183

utive fixed sensors, computing and contrasting these differences. Meanwhile, statistical methods typically184

utilize the time-related properties of traffic data to develop models grounded in established statistical185

theory. Although these conventional methods (comparative and statistical) have historically been popular186

due to their simplicity and effectiveness in identifying incidents that significantly disrupt traffic flow,187

there is a trend toward adopting AI-based methods. AI approaches are favored for their adaptability and188

enhanced performance. Being rooted in data, AI methods can process vast amounts of traffic data to189

discern underlying patterns [28] and are adept at integrating both the time and space aspects of traffic190

flow (Pan, Sumalee, Zhong, & Indra-payoong), which is crucial for increasing the precision of incident191

detection. The majority of research relies on data from Inductive Loop Detectors (ILD) for input into192

machine learning algorithms, with representative studies summarized in Table 1. Additionally, there’s a rise193

in research leveraging video data from CCTV cameras; recent systematic reviews reference several studies194

that showcase the capabilities of video analysis and underscore the efficacy of deep learning methods in195

the context of incident detection (e.g. [30,31]).196

Domain reviews indicate that while advancements have been made, AI-based and data-driven algorithms197

for incident detection still face significant challenges, leading to research opportunities. These challenges198

include: the need for a more extensive collection of historical traffic incident data for model training and199

evaluation; the creation of balanced datasets with an equal representation of incident and non-incident200

cases; enhancement of the models’ ability to perform in real-time; and the improvement of methods to201

capture spatial and temporal dependencies to boost the algorithms’ effectiveness [44].202

2.3. AutoML in transportation and traffic prediction studies203

In the transportation sector, AutoML’s application is still on the rise. This section reviews the current204

state of research on the use of AutoML for traffic prediction and its role within the transportation domain.205
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It will highlight studies where AutoML has been employed to optimize traffic flow, predict congestion, and206

improve overall transportation efficiency.207

In the transportation area, to the best authors’ knowledge, only four papers have used AutoML methods208

for TF [45,46,47,48]. The first study carried out by Vlahogianni et al. [47] introduced a meta-modelling209

approach that employs surrogate modelling alongside a genetic algorithm that follows an island model210

strategy to optimize both the selection of the algorithm and its hyper-parameter tuning. This AutoML211

task uses a base of three machine learning methods – Neural Network, Support Vector Machine, and212

Radial Base Function – to predict average traffic speed over a 5-minute time horizon through regression213

analysis. Subsequently, Angarita et al. in [45] and [46] utilized Auto-WEKA, an AutoML method that214

applies sequential model-based bayesian optimisation [49] to identify the most effective ML pipelines.215

Both these studies benchmarked Auto-WEKA’s performance against the conventional method of manually216

selecting the best algorithm from a set to predict traffic. Specifically, in the case of [46], the authors focused217

on forecasting traffic Level of Service (LoS) at a specific freeway location across various time horizons,218

while in [45], they concentrated on predicting traffic speed for a group of traffic flow (TF) regression219

problems at both the point and road segment levels in freeway and urban settings. Lastly, in [47], the220

authors focus on assessing Auto-sklearn’s capability to recommend effective machine learning pipelines221

for traffic forecasting. This task is framed as a time series (TF) multi-class imbalanced classification222

problem, examined over various time horizons, spatial scales (both point and road segment), and in223

different environments (freeway and urban). The study tests three scenarios and findings indicate that224

Auto-sklearn’s meta-learning component underperforms in handling TF problems, and optimization does225

not significantly enhance prediction accuracy.226

All in all, it is certain that ML algorithms have played a crucial role in developing accurate models227

for automatic incident detection yet they still face obstacles including steep computational demands and228

superfluous model data, all while trying to reduce the need for human input. To address these challenges,229

the use of AutoML algorithms, which feature a pipeline model capable of self-adjusting hyperparameters,230

offers an encouraging approach. Under this light, our paper aims to contribute to the fast growing field of231

AutoML by:232

1. Developing AutoML-based prediction algorithms for the incident detection task, both from a regres-233

sion and a classification standpoint;234

2. Conducting of a comparison between the proposed methodology for each use case with other baseline235

methods; and finally,236

3. Analysing and assessing the models proposed as part of this research between different urban contexts237

Last but not least, to the best of our knowledge, this study is the first one aiming to tackle the challenging238

problem of automatic incident detection using AutoML techniques.239

3. Proposed methodology240

This paper involves developing a methodology for automatic incident detection with the goal of iden-241

tifying unplanned non-recurring events promptly and thus enabling a safer and more reliable Intelligent242

Transport Management system. The methodology flowchart, depicted in Fig. 3, illustrates the general243

workflow of the present study. Initially, the process commences with data ingestion, followed by a thorough244

data-preprocessing stage to make the dataset suitable for model deployment. Subsequently, an AutoML245

framework TPOT, is used as the foundation of our approach for model development and selection.246

During the prediction phase, the data is divided into two sets: one for testing and the other for validation247

with unseen data. TPOT is deployed for crafting an effective machine learning model leveraging the248

training data, focusing on the problem from a regression and a classification perspective. After training249
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Fig. 3. The methodology flowchart as proposed.

and evaluating both the TPOT Classifier and TPOT Regressor, we compare their performance metrics250

to determine the most effective model for deployment. However, the benefits of utilizing TPOT extend251

beyond this initial selection phase.252

AutoML systems like TPOT offer dynamic model updating, which can be crucial as traffic data evolves253

over time. This allows for continuous retraining and model refinement without the need to start the process254

anew, ensuring that the incident detection system can adapt to new patterns or changes in traffic flow.255

Furthermore, the ongoing use of AutoML provides an operational advantage in terms of parameter fine-256

tuning. TPOT, with its genetic programming-based optimization, can iteratively explore the parameter space257

to fine-tune the model as more data becomes available or as traffic conditions change, a process that is more258

resource-efficient and potentially more effective than manual tuning efforts. Lastly, the implementation of259

AutoML for ongoing model management allows for the incorporation of online learning techniques, where260

the model can be updated in real time with new data. This is particularly relevant for incident detection,261

where the timeliness of model updates can significantly impact the system’s performance and reliability.262

Therefore, while the model selected via TPOT may be fixed during a specific period, our methodology is263

designed to facilitate model evolution, allowing for ongoing improvements and the incorporation of new264

data, which is a significant benefit over a static algorithmic approach.265

It is important to highlight that in this work, the data-preprocessing step – which includes feature266

extraction, data sampling, and balancing – is carried out before training the models. This pre-processing is267

integral to both models’ capability; however, a decision has been taken for pre-processing to be executed268

independently to guarantee compatibility, ensure uniformity across models, and ultimately, amplify their269

efficiency. A detailed diagram, as shown in Fig. 4, provides an in-depth view of the modeling phase,270

illustrating the intricate steps involved in the training of both the classification and regression models, thus271

highlighting the dual approach of tackling automatic incident detection task.272

3.1. Data preprocessing273

The proposed methodology includes data preprocessing to prepare the loop detector dataset, which274

contains traffic variables such as speed, occupancy and flow as a time series, for modeling. This process aims275

to ensure the reliability and accuracy of our models in predicting unplanned incidents. The preprocessing276

primarily involves feature extraction, normalization, and balancing, whenever needed. Normalization277

adjusts numerical features to a uniform scale, which is vital for machine learning models that depend on278

measuring distances. Data balancing is carried out to prevent a skew towards the more prevalent class, as279

this can lead to suboptimal detection of the less common class. There is considerable evidence from many280
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Fig. 4. Overview of the modelling phase in detail.

studies showing that both normalization and data balancing can greatly enhance outcomes across a range281

of applications, e.g. [50,51]. Algorithms 1 and 2 describe the steps of preparing the dataset at hand for282

modeling by performing data preprocessing for classification and regression task accordingly This leads to283

a pre-processed dataset that is suitable for use in either classification or regression models.284

Algorithm 1: Data Pre-processing for classification task
Input: dataset (D), output target incidents (T)
Output: Pre-processed dataset (PD)

1. CleanData: Data cleaning (D)
2. CD←− CleanData(D)
3. ExtractFeatures: Extract feature columns (more details are described in section 6.1)
4. f←− ExtractFeatures(CD)
5. Normalize: Feature normalization (CD)
6. X←− f
7. Y←− t
8. Xn←− normalize(X)
9. Balance: Data Balancing (Xbal,Ybal)

10. Xbal,Ybal←− balance(Xn, Y)
11. Split: Dataset splitting into training, validation, and test sets (SD)
12. X_train_val, X_test, y_train_val, y_test←− (Xbal, Ybal, test_size = 0.05)
13. X_train, X_val, y_train, y_val←− (X_train_val, y_train_val, test_size = 0.2)
14. Return PD←− (X_train, y_train, X_val, y_val, X_test, y_test)

3.2. TPOT models285

Our approach uses TPOT to apply various machine learning strategies and optimization algorithms to286

grasp and adjust to the data patterns, thereby improving the precision and effectiveness of the incident287

detection. The models are designed to evolve and refine their predictions based on data, aiming to288
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Algorithm 2: Data Pre-processing for regression task
Input: dataset (D) Output: Preprocessed dataset (PD)

1. CleanData: Data cleaning (D)
2. CD←− CleanData(D)
3. ExtractFeatures: Extract feature columns (more details are described in Section 6.1)
4. f ← ExtractFeatures(CD)
5. Determine output target: Extract the traffic variable(s) to be predicted (e.g., flow) directly from the input dataset.
6. t← ExtractTarget(CD)
7. Normalize: Feature normalization (CD)
8. X ← f
9. Y ← t (where Y is the next timeseries value(s) from the dataset)

10. Xn← normalize(X)
11. Split: Dataset splitting into training, validation, and test sets (SD)
12. X_train_val, X_test, y_train_val, y_test←− (Xn, Y, test_size = 0.05)
13. X_train, X_val, y_train, y_val←− (X_train_val, y_train_val, test_size = 0.2)
14. Return PD←− (X_train, y_train, X_val, y_val, X_test, y_test)

Fig. 5. Example pipeline automated by TPOT [52].

reduce the time and resources needed for forecasting incidents. Central to our approach is the Tree-based289

Pipeline Optimization Tool (TPOT), an intuitive machine learning library that simplifies the development290

process, using genetic programming. TPOT’s automation extends through various stages of the machine291

learning workflow, including data pre-processing, model selection, hyperparameter tuning, and ultimately,292

deployment, all with minimal coding requirements. TPOT is an open-source project on GitHub1 and an293

example pipeline is illustrated in Fig. 5.294

In this research, the power of the TPOT library for constructing and evaluating ML models to predict295

incidents is demonstrated. For both the classification and regression models, a wide range of advanced ML296

algorithms have been evaluated automatically. To assess the model’s generalization ability, the dataset was297

divided into three subsets. A portion of 5% was reserved for validation to simulate the model’s performance298

1https://github.com/rhiever/tpot.
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on unseen data. The remaining 95% was then divided into the 80% training set and 15% testing set to299

ensure the model was trained on a diverse and sufficient dataset. An automated process was employed300

for selecting the best algorithm and it is provided in the form of pseudocode below as Algorithm 3,301

which outlines the essential steps for selecting the best model overall, which is based on a comparison of302

precision, recall and F1score.303

Algorithm 3: Best Overall Model Selection in our Methodology
Input: Pre-processed dataset (PD), TPOT Classifier and TPOT Regressor models
Output: Best Auto Predictive Detection Model (bAutoD)

1. Train and evaluate TPOT Classifier:
2. TPOTClassifier = train_TPOTClassifier(X_train, y_ train)
3. TPOTClassifier_metrics = evaluate_model(TPOTClassifier, X_val, y_val)
4. Train and evaluate TPOT Regressor:
5. TPOTRegressor = train_TPOTRegressor(X_train, y_time_train)
6. Predictions = TPOTRegressor.predict(X_val)
7. Apply threshold to Predictions to categorize as 0 or 1:
8. Threshold = learn_threshold(y_time_train)
9. Predictions_binary = apply_threshold(Predictions, Threshold)

10. TPOTRegressor_metrics = evaluate_model(Predictions_binary, y_class_val)
11. Select model based on performance evaluation metrics (EM):
12. BEGIN
13. EM = (precision, recall, f1-score)
14. Best_evaluation_metrics (BEST_EM) = [0, 0, 0, 0, None]
15. bAutoD = None
16. for i in range(len(EM)):
17. if TPOTClassifier_metrics[i] > TPOTRegressor_metrics[i] and TPOTClassifier_metrics[i] > BEST_EM [i]:
18. bAutoD = TPOTClassifier
19. BEST_EM[i] = TPOTClassifier_metrics[i]
20. elif TPOTRegressor_metrics[i] > BEST_EM[i]:
21. bAutoD = TPOTRegressor
22. BEST_EM[i] = TPOTRegressor_metrics[i]
23. end for
24. Return bAutoD
25. END

4. Case studies304

In the following section, we present case studies from two distinct urban contexts, Athens, the capital305

of Greece, and Antwerp, a major city in Belgium, which validate the efficacy of our methodology within306

distinct urban environments. Athens provides a complex case with its dense urban network and the307

inherent challenges of a historic metropolis, while Antwerp offers a contrasting scenario with its strategic308

significance as a port city and its different network intricacies. In Athens, we explore the application in a309

critical urban corridor, whereas in Antwerp, the focus shifts to a pivotal route encompassing the city’s port310

and major motorways. As part of this section, we detail the study area and the datasets utilized.311

4.1. Athens312

A corridor extending along 70 km and constituting the ring road of a metropolitan area extending from313

the airport to a populated suburb has been used as study area in our experiments. The road network model314

developed in the Aimsun Simulation Software [53] is approximately 30 km long and involves 569 sections315

and 181 nodes and is depicted in Fig. 6.316
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Fig. 6. The network of Athens study area.

Data was collected from 591 loop detectors from October 2020 to September 2021. Among these, only317

196 detectors were deemed reliable for use in our experiments. Out of the 26,331,086 total readings taken318

at one-minute intervals during the selected timeframe, various filters were applied. These filters excluded319

data from detectors missing in the station aggregation file, removed outliers in flow reliability, corrected320

flow-occupancy-speed discrepancies, discarded detectors with over 50% missing values (NaNs), filtered321

out constant readings over time, eliminated isolated values, and corrected for uncharacteristic profiles.322

To address missing or unreliable data, which affected around 35% of the readings, several imputation323

methods were employed, including polynomial, time-based k-nearest neighbor (KNN), free-flow speed,324

spatial KNN, PPCA-based, and weekday-based imputation. Given the low reliability of the loop detectors’325

occupancy and speed data, flow was the variable chosen for use in the experiments.326

Beyond the Inductive Loop Detectors dataset, which records network attributes such as speed, occupancy,327

and flow, we also utilize a critical dataset of labeled incidents supplied by the highway authority in our area328

of study. This dataset is essential to our research as it contains 34,652 recorded incidents across 34 features.329

It is invaluable for gauging our models’ performance since it provides a benchmark of actual events, or330

“ground truth,” for comparison. Utilizing this dataset allows us to verify the precision and reliability of our331

incident detection methods, thereby guiding us to make well-founded choices and ensuring the predictions332

that are obtained are of high quality. The feature columns of this dataset include information regarding333

‘timestamp’, ‘source’, ‘start_time’, ‘end_time’, ‘direction’, ‘intersection’, ‘toll_station’, ‘branch’, ‘posi-334

tion_(pk)’, ‘type’, ‘subcategory’, ‘outcome’, ‘deaths’, ‘injured’, ‘queue_start_time’, ‘queue_end_time’,335

‘queue_length_cars’, ‘queue_length_time’, ‘weather’ among others. During an exploratory data analysis,336

certain discrepancies in the dataset were discovered, particularly regarding incidents that were recorded337

but did not noticeably affect traffic flow. To maintain the integrity of our experiments, we’ve instituted a338

filtering process to exclude these anomalies, thus preserving the uniformity of the loop detector data for339

analysis. Noteworthy findings include:340
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Fig. 7. Locations of loop detectors in Antwerp study area.

– Two particular sections of the highway were found to have the most incidents, with counts of 13,829341

and 13,757 respectively. Given that these incidents predominantly occurred on the main segments of342

the highway, our analysis will specifically concentrate on these areas.343

– The incident data was refined to consider only instances of Traffic Congestion and Traffic Accidents,344

aligning with the primary interests of our research.345

– Additionally, we refined the incident data based on the length of the resulting traffic queue. After346

consulting with stakeholders, we lowered the queue length criterion from 200 meters to 50 meters,347

acknowledging their expertise and the rarity of 200-meter queues on this particular highway under348

normal circumstances, even when incidents occur.349

Post-filtering, the refined dataset largely derives from the closed-circuit television (CCTV) system,350

containing a total of 1,786 recorded incidents for the two main highway sections, with 763 incidents351

coinciding with the traffic measurement period. After cleansing and refining the dataset, we reformatted it352

for use with our algorithms. The data was arranged in 5-minute intervals, with rows indicating time stamps,353

columns representing loop sensor IDs, and matrix values set to 1 for timestamps and locations with an354

incident, and 0 where no incident occurred.355

4.2. Antwerp356

For the city of Antwerp, there is a multitude of inductive loop detectors available which provide one-357

minute readings regarding the network conditions, however, the area which has been deemed suitable to be358

used as a test bed of our incident detection task represents the corridor between the port of Antwerp and359

Eindhout including E313 motorway in both directions. This area includes 103 nodes in Direction 1 and360

164 nodes in Direction 2 and in Fig. 7 the locations of the sensors are depicted on a map.361

The traffic data for E313 highway collected by loop detectors include the number of vehicles and the362

average speed, occupancy and flow, in addition to other traffic measurements, such as statusDescription,363

faultDescription and regularity, for 5 different vehicle classes/categories, aggregated per minute and the364

location of the measurement points. Loop detector data from 267 units was gathered from end of October365

2022 to end of August 2023 The analysis of raw data yielded acceptable results in terms of quality of366

detectors’ measurements, where one can observe some data gaps around May-June 2023 and a couple of367

missing days in Oct-Nov 2022. There are seven detectors that do not provide consistent readings over the368
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whole period and those have been excluded from the analysis. In the pre-processing phase of our analysis,369

we employed a meticulous filtering and cleaning process to ensure the integrity and quality of the data.370

Initially, we identified and rectified any anomalies in the data, such as outliers or incomplete records.371

Subsequently, to streamline the dataset for more coherent analysis, we aggregated the different vehicle372

categories into a single, consolidated attribute. This means that we only kept the sum of vehicleFlowRate373

and the average of the speed, in addition to the supplementary attributes mentioned above. This aggregation374

enables a more generalized assessment of traffic patterns while maintaining the robustness of the data.375

Moreover, several other cleaning processes have been employed, as described in the Athens’ case study376

above in Section 5.1. After cleaning, aggregation and filtering the resulting data show acceptable reliability377

scores (overall above 0.4 in a scale from 0 to 1, where 1 is the highest reliability), and then it was necessary378

to transform the loop detector data and split in three distinct datasets, for speed, flow and occupancy379

respectively. Moreover, resampling of the dataset every 5 minutes has been performed.380

Together with the loop detector dataset which contain information of the traffic characteristics, we381

have managed to acquire an Excel file with details for the incidents which had been registered in E313382

Antwerp highway. The labelled incidents dataset includes 5774 incident occurrences in total, spanning383

from 2011-04-26 11:29:19.647 until 2023-08-29 13:29:52.907 and more specifically for our case and the384

dates selected (2022-10-27 to 2023-08-29), it contains 526 incidents for 2023 and 136 incidents for 2022.385

This dataset contains the following fields: segment_id, incident_id, registration_time, duration, direction386

and location of the incident (kmpt1 and kmpt2). Based on the start timestamp and duration of the incidents387

specified in the relative columns of the dataset, we have mapped these timestamps to the corresponding388

start and end time. However, it is impossible to perform further filtering of this dataset based on its impact389

in traffic or severity from the information available. Thus, all the incidents reported in the dataset are kept390

in the evaluation dataset. Finally, the filtered incidents dataset has been transformed in 5-minute intervals391

where rows refer to timestamps and columns were the ids of the segments and the values of the matrix392

were 1 if this location and time corresponds to an incident occurrence, or 0 otherwise.393

5. Results and analysis394

This section presents the data preparation process and the results obtained with the experimental set-up395

described in the previous section for both case studies. In both metropolitan contexts, Athens and Antwerp,396

our approach was benchmarked against established baseline methodologies. Moreover the limitations of397

our methodology are presented as part of this section.398

5.1. Data preparation process399

The loop detector datasets need to be prepared in order to be fed to the pipeline described in Section 4.400

First of all, data cleaning is performed and the respective features are extracted. Moreover, the loop detector401

datasets for both case studies suffer from imbalance issues, as the majority of samples belong to the402

Normal class. The challenge of working with imbalanced datasets is that most machine learning techniques403

will ignore, and in turn have poor performance on, the minority class, although it is the performance on404

the minority class that is mostly important. To address this issue, the Synthetic Minority Oversampling405

Technique (SMOTE) [54] and Tomek link [55] is frequently employed. In our experiments, we have406

chosen to combine SMOTE with Tomek links technique, as it has been shown that this method is much407

superior compared with that of using only one of the two. To mitigate this issue, the Synthetic Minority408

Oversampling Technique (SMOTE) [54] and Tomek link [55] are often used. In our experiments, we opted409

to integrate SMOTE with the Tomek links method, as this combination has proven to be substantially more410

effective than utilizing either approach independently [56,57]. Afterward, the data were normalized by the411
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Table 2
Preprocessing operations applied in the loop detector datasets

Preprocessing operation Details
Data cleaning A series of filters was applied to the data to:

– Exclude detectors absent from the station aggregation file,
– Eliminate outliers that affect flow reliability,
– Rectify mismatches between flow, occupancy, and speed,
– Remove detectors where over half the data entries were non-numeric (NaNs),
– Filter out detectors showing unchanging (stuck) values over time,
– Discard isolated values and atypical profiles.
To address segments of the data with missing or unreliable values, a range of imputation techniques
was employed, including: time k-nearest neighbor (KNN), polynomial, free-flow speed imputation,
weekday-based imputation, spatial KNN and Probabilistic Principal Component Analysis (PPCA)-
based imputation

Resampling Resampling to 5-minute intervals.
Features extraction The following features have been extracted for the classification task: Traffic_Variables∗1, Up-

stream and downstream Traffic_Variables for adjacent detectors, Mean upstream and down-
stream Traffic_Variables of detector [5, 10, 15] minutes before, Mean upstream and downstream
Traffic_Variables of detector [5, 10, 15] minutes after, Mean upstream and downstream Traf-
fic_Variables of adjacent detectors [5, 10, 15] minutes before, Mean upstream and downstream
Traffic_Variables of adjacent detectors [5, 10, 15] minutes after, time_of_day, day_of_week,
is_weekend, is_holiday.
For the regression task, the same set of features have been extracted, with the exception of:
Mean upstream and downstream Traffic_Variables of detector [5, 10, 15] minutes after and Mean
upstream and downstream Traffic_Variables of adjacent detectors [5, 10, 15] minutes after.
∗1{Flow} for Athens case study; {Flow, Occupancy, Speed} for Antwerp case study.

Data balancing∗2 SMOTE with Tomek Link.
∗2Only used for the classification task

Normalization Robust Scaler.

Robust Scaler, which scales the features using statistics that are robust to outliers. Table 2 summarizes the412

steps involved in the data-preprocessing process used in this research.413

Regarding the processing of the target dataset, the labelled incidents’ dataset, as it has thoroughly been414

described per case study in Section 5, we would like to acknowledge that there are certain limitations in415

our methodology, particularly in terms of data filtering and the intrinsic constraints of the data collected.416

First, it’s possible that not all incidents were captured and logged in the dataset. Despite indications that417

incidents were manually recorded, primarily through CCTV surveillance, there’s still a risk of missing418

some occurrences. Second, the exact timing of the recorded incidents might not be accurate. An incident419

that happens at a given moment might be recorded with a delay, affecting the assessment of our algorithms’420

performance. Lastly, our filtering process is not exempt from potential errors. Despite basing our criteria421

on stakeholder expertise and the nature of the data, it’s conceivable that some significant incidents could422

have been inadvertently excluded from our analysis.423

5.2. AutoML classification and regression validation models424

The scoring function was used to evaluate multiple machine-learning algorithms using predefined metrics,425

including recall, precision, and F1 score. These metrics can be defined and calculated as follows [58]:426

The precision of an automatic incident detection algorithm is the ratio of correctly predicted positive427

observations (incidents) to the total predicted positive observations (incidents)428

Precision =
Number of correctly detected incidents

Total number of samples predicted as incidents
(1)

The recall is the ratio of correctly predicted positive observations to all observations in the actual class.429

Recall is also commonly referred to as the detection rate. The Recall metric measures the model’s ability430
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Table 3
Comparison of our approach with baseline methods – Athens

Algorithm Precision Recall F1-score
AutoML (per timestamp) 0.83 0.62 0.71
Isolation Forest (per timestamp) 0.012 0.44 0.023
AIMSUN (per timestamp) 0.08 0.50 0.14

to accurately identify all positive cases. A model will be judged as correctly detecting an incident if an431

alert was raised at any point during an incident.432

Recall =
Number of correctly detected incidents

Total number of actual incidents in the dataset
(2)

The F1 Score is a metric that combines precision and recall into a single value by taking their weighted433

average. It considers both false positives and false negatives in its calculation. While it may not be as434

straightforward to perceive, the F1 Score is often a better measure than accuracy, particularly when dealing435

with datasets that have an unequal distribution of classes.436

F1 Score =
2× (precision × recall)
(precision + recall)

(3)

These standard performance metrics have been widely utilized in the Machine Learning domain due437

to their effectiveness in assessing algorithm performance [59]. It should be acknowledged that there438

exists a interconnecting relationship among these metrics, whereby an enhancement in one may lead to a439

degradation in another [60].440

5.3. Results for the case studies441

In this subsection, the comparison between our Automated Machine Learning approach and baseline442

ML methods are presented for each case study, Athens and Antwerp.443

5.3.1. Athens444

For the use case of Athens, the results are depicted in Table 3. We have made the decision to compare the445

outcome of our methodology with an Unsupervised method (Isolation Forest) and a data driven AIMSUN446

algorithm [61].447

The algorithm which has been selected as the optimal from our methodology is the following:448

LinearSVR(GradientBoostingRegressor(input_matrix, alpha=0.95, learning_rate=1.0, loss=huber,449

max_depth=1, max_features=0.6000000000000001, min_samples_leaf=15, min_samples_split=11,450

n_estimators=100, subsample=1.0), C=20.0, dual=False, epsilon=0.001, loss=squared_epsilon_451

insensitive, tol=0.0001)452

Regarding the two baseline approaches, Isolation Forests are generally used in an unsupervised manner453

and only require a few conditions to separate anomalies from normal observations when compared to other454

methods which use basic distance and density measures. There are several works in the field of AID which455

use Isolation Forests, including [37]. Their low linear time complexity and small memory requirements aid456

in eliminating major computational cost of distance calculation in all distance and density-based methods457

and can perform well in a multi-dimensional feature space.458

Aimsun’s baseline has been built upon the assumption that incident detection can be regarded as459

a transformation of individual timeseries to a space where the distance between structural outliers is460

magnified independently on each input variables, aiming to create a with a methodology that is able to461

cope with current limitations in the area by being trained in an unsupervised way (i.e., independently of462
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Table 4
Comparison of our approach with baseline ML methods – Antwerp

Algorithm Precision Recall F1-score
AutoML (per timestamp) 0.77 0.52 0.54
SVM (per timestamp) 0.62 0.96 0.753
Autoencoder (per timestamp) 0.03 0.48 0.056

having labelled datasets), working independently on different timeseries (e.g., traffic flow, or speed, or463

occupancy) and working without the need of close sensor-pairs. According to [62], two types of anomalies464

or outliers can be distinguished: distributional outliers and structural outliers. Road traffic incidents belong465

to the latter category, whose detection is not equally easy for all traffic variables. For example, road466

traffic occupancy usually offers easier incident detection than traffic flow. Similarly, occupancy difference467

between sensor-pairs offers an easier detection than single-sensor occupancy. Preliminary results of this468

work have been presented in the MFTS symposium2 beginning of December, 2022.469

5.3.2. Antwerp470

For the use case of Antwerp, the results are depicted in Table 4. A decision to compare the outcome of471

our methodology with a Supervised method (Support Vector Machine) and a Generative Neural Network472

(AutoEncoder).473

The pipeline which has been selected as the optimal from our methodology is the following:474

Pipeline(steps=[(‘stackingestimator’,475

StackingEstimator(estimator=GaussianNB())),476

(‘decisiontreeclassifier’,477

DecisionTreeClassifier(criterion=‘entropy’, max_depth=9,478

min_samples_leaf=3, min_samples_split=7,479

random_state=42))])480

Regarding the two baseline approaches, support vector machine (SVM) is a supervised approach which481

is constructed from a unique learning algorithm that extracts training vectors that lie closest to the class482

boundary and makes use of them to construct a decision boundary that optimally separates the different483

classes of data) [9]. Results from various studies have shown that SVM offers a lower misclassification rate,484

higher correct detection rate, lower false alarm rate and slightly faster detection time than other models485

in traffic incident detection [63]. An Autoencoder is a generative unsupervised deep learning algorithm486

used for reconstructing high-dimensional input data using a neural network with a narrow bottleneck layer487

in the middle which contains the latent representation of the input data. It consists of an Encoder and a488

Decoder. The Autoencoder accepts high-dimensional input data, compress it down to the latent-space489

representation in the bottleneck hidden layer; the Decoder takes the latent representation of the data as490

an input to reconstruct the original input data. Therefore, Autoencoders have been used for Anomaly491

Detection tasks (for instance [64,65]), by comparing the output from the Decoder and the input to the492

Network and using a threshold, either manually set or learnt from the data itself. If the loss value exceeds493

the threshold, then the instance is categorised or classified as an anomaly.494

5.4. Discussion of results and comparison between different urban environments495

The results of our experiments show variability among the different techniques applied, underscoring496

the necessity for more in-depth research. It is pertinent to note that the labeled incidents were limited to497

2https://tu-dresden.de/bu/verkehr/veranstaltungen/mfts-2022.
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the network’s visible areas, which has a significant impact on the false positive rate. It remains uncertain498

whether false positives are attributable to incidents that were undetected by the data provider (hence, an499

incident did occur but was not labeled) or if they are genuinely incorrect predictions by the algorithm.500

Additionally, it is important to bear in mind that the dataset used for evaluation was structured into five-501

minute intervals for algorithmic processing. Consequently, in calculating precision, a true positive is only502

recognized when an event is detected at the precise timestamp it was recorded.503

In this light, among the algorithms tested, for the Athens dataset, we observe significant performance504

superiority of our approach compared to the baseline methods. On the other hand, while the Isolation505

Forest algorithm demonstrated a satisfactory recall, its precision was notably poor, leading to a substantial506

quantity of false positives that adversely affected the resulting F1-score. Aimsun’s model, despite displaying507

relatively low performance on a per-timestamp basis, showed improved outcomes when evaluated on an508

event-based approach, considering a 15-minute window around the labeled incident. Within this framework,509

our analysis for the month of May 2021 identified 11 out of 15 events, achieving a recall rate of 73%. This510

level of recall is deemed satisfactory for the detection of non-recurrent events.511

For the Antwerp dataset, among the algorithms tested, the Support Vector Machine (SVM) emerged as512

the most effective technique, showing both high precision and recall. These results are consistent with the513

findings reported in the literature, which indicate that SVM tends to excel in scenarios where a labeled514

incidents dataset is used, due to its supervised learning characteristics [66,27]. Nonetheless, it’s important515

to consider that this method may be prone to overfitting and could potentially lack the ability to generalize516

to new, unseen data. On the other hand, the Autoencoder achieved high levels of recall but did not perform517

as well with regards to the precision metric518

All in all, one of the limitation of our analysis in both cases is the fact that these techniques are bound519

to produce a high number of false positives as shown by the precision results, thus the concept of false520

positives is hard to really assess in the incident detection task due to possible blind spots in the network521

which remain undetected. It is evident that each city presented unique challenges and outcomes in incident522

detection. In Athens, our approach outperformed baseline methods in terms of all the established metrics.523

Conversely, in Antwerp, the SVM algorithm was superior in terms of F1-score and recall, but at the same524

time, our approach outperformed it regarding precision metric. The Autoencoder, while achieving high525

recall, fell short on precision and, like in Athens, the discernment of false positives was complicated by526

potential blind spots in data coverage. These variations underscore the necessity for tailored algorithmic527

strategies and the consideration of local data specificities in incident detection across different urban528

environments.529

Lastly, It is important to recognize that while AutoML aims to streamline and optimize the model530

selection and training process, it does not negate the value of understanding specific ML techniques’531

performance in targeted applications. Our comparison seeks to highlight how our AutoML-powered532

approach stand against manually tuned and selected models in the specific domain of incident detection533

using loop detector data, emphasizing the efficacy, adaptability, and performance in real-world scenarios.534

However, we acknowledge that our evaluation primarily focuses on conventional metrics such as535

precision, recall, and F1-score. While these metrics provide valuable insights into the models’ performance536

in detecting incidents accurately, they do not fully encapsulate the operational context within which537

these detection models are deployed. Factors such as the mean time to detect an incident, the speed of538

propagation of detected incidents, and the practical implications of false positives and false negatives on539

traffic management and response strategies are not directly addressed in this paper.540

5.5. Limitations541

Our research acknowledges certain constraints, particularly in data collection and processing. Limitations542

arise from the manual registration of incidents by operators, potentially leading to omissions or timing543
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inaccuracies in the dataset. Consequently, such discrepancies can significantly skew the performance544

evaluation of our algorithms. The filtering process specifically for the Athens labelled incidents’ dataset is545

susceptible to errors, and despite being informed by stakeholder operator expertise, the risk of overlooking546

significant incidents cannot be ignored. Additionally, the decision to format the evaluation dataset in547

5-minute intervals may seriously have affected the precision metric, as it requires the detection of events at548

their exact recorded timestamps.549

Moreover, our analysis is contingent upon the quality of the input datasets and their respective reliability,550

and more specifically on the measurements of the detectors, and the accuracy and completeness of incident551

reporting, the basis of our evaluation. False positives within our model outcomes may not solely represent552

algorithmic inaccuracies but could also reflect events unlabelled due to visibility issues within the network’s553

coverage. The reliance on a single data source, CCTV footage, limits our ability to comprehensively capture554

all incidents, suggesting that incorporating diverse data types could enhance detection and reduce false555

positives. The challenge of accurately determining false positives due to potential network blind spots556

is recognized and underscores the need for a multifaceted approach in future research to mitigate such557

issues. One way to decrease the false alerts generated is to incorporate various types of data, such as CCTV558

cameras which is also the vision of our work for the future, to train the algorithms. Despite the abundance559

of available data and the advanced capabilities of machine learning algorithms, only a limited number of560

studies have effectively utilized the combination of multiple data sources, as stated by the review conducted561

by Kashinath et al. [67].562

Lastly, we recognizethat our paper’s scope is limited by its focus on immediate detection metrics563

(precision, recall and f1-score), which, while crucial, do not encompass the broader operational implications564

of deploying such technologies in real-world traffic management systems. As such, we propose that future565

work should extend beyond traditional performance metrics to evaluate AutoML and other ML techniques566

within the context of their downstream applications. Specifically, research should explore the operational567

impact of these detection technologies, including their effect on mean time to detect incidents, the568

propagation speed of detected incidents through traffic networks, and their integration into comprehensive569

traffic management strategies. Such an approach will provide a more holistic understanding of the value and570

limitations of AutoML and other ML techniques in traffic incident detection, guiding both technological571

development and strategic implementation in this critical domain.572

6. Conclusions573

This study presented a novel automated approach designed to enhance predictive quality in automatic574

traffic incident detection using Automated Machine Learning (AutoML). Our proposed system minimizes575

human intervention by utilizing AutoML algorithms to dynamically optimize prediction models regarding576

the early detection of incidents. The reduced need for manual model construction allows data analysts to577

focus on case-specific requirements and interpretive tasks. This paper delved into the benefits of AutoML578

in traffic incident detection, while a comparative analysis was conducted to determine how AutoML results579

differ from traditional baseline ML approaches in both Athens and Antwerp use cases, and the experimental580

results have affirmed the efficacy and superior performance of our methodology.581

Incorporating AutoML into the automatic incident detection process presents an opportunity to signifi-582

cantly enhance predictive accuracy and operational efficiency. Based on our conducted work, in addition to583

the lessons learnt and gaps identified, we hereby shortly present our recommendations for data scientists584

and/or machine learning engineers interested in applying AutoML in the domain of transportation and585

specificallty incident detection. The selection of an appropriate AutoML platform should be meticulously586

aligned with the specific demands of the task, while preprocessing and ensuring the quality of data form587

the foundation for reliable model training, while special attention must be given to the challenge posed588
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by imbalanced datasets encountered in this task. Furthermore, the AutoML system must be capable of589

conducting extensive model experimentation and hyperparameter optimization to ascertain the most suit-590

able predictive model. Feature engineering and selection, facilitated by AutoML, can uncover influential591

predictors that may otherwise be overlooked. An open issue in the field of AutoML is the fact that most592

algorithms focus on solving a specific task at hand. Thus, a future direction could be that a high-quality593

AutoML system should have the capability of lifelong learning, i.e., it should be able to: (1) efficiently594

learn new data and (2) remember old knowledge [68], thus adapting to new patterns and anomalies as595

they emerge, ensuring the model remains current and accurate over time. Additionally, scalability and596

performance considerations ensure that the system can grow and respond swiftly as data volume escalates.597

Last but not least, seamless integration with existing systems is vital to facilitate smooth operations and598

sustain the flow of insights derived from the AutoML-powered incident detection system.599

As AutoML continues to refine its automated processes, its capacity for customization and integration of600

domain-specific constraints is expected to expand, offering vast potential in predictive analytics. Future601

work is set to explore integrating advanced feature-engineering techniques and domain knowledge to602

further enhance the model’s performance within the context of incident detection and extend the set of603

performance metrics beyond the traditional ones, with the goal of enhancing the set of guidelines already604

provided for its future application in this critical domain. This paper contributes to the field of intelligent605

traffic systems by demonstrating the efficacy of AutoML in improving urban traffic management, while the606

findings underscore the versatility and effectiveness of AutoML in incident detection, setting the stage for607

its application as a transformative tool in urban centers worldwide.608
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