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Abstract. The pandemic COVID-19 is already in its third year and there is no sign of ebbing. The world continues to be in a
never-ending cycle of disease outbreaks. Since the introduction of Omicron-the most mutated and transmissible of the five variants
of COVID-19 – fear and instability have grown. Many papers have been written on this topic, as early detection of COVID-19
infection is crucial. Most studies have used X-rays and CT images as these are highly sensitive to detect early lung changes.
However, for privacy reasons, large databases of these images are not publicly available, making it difficult to obtain very accurate
AI Deep Learning models. To address this shortcoming, transfer learning (pre-trained) models are used. The current study aims to
provide a thorough comparison of known AI Deep Transfer Learning models for classifying lung radiographs into COVID-19, non
COVID pneumonia and normal (healthy). The VGG-19, Inception-ResNet, EfficientNet-B0, ResNet-50, Xception and Inception
models were trained and tested on 3568 radiographs. The performance of the models was evaluated using accuracy, sensitivity,
precision and F1 score. High detection accuracy scores of 98% and 97% were found for the VGG-19 and Inception-ResNet
models, respectively.
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1. Introduction

The outbreak of COVID-19 is still ongoing. By the
last week of January 2022, the new coronavirus has
wreaked havoc in nearly 200 countries, killing an esti-
mated 5.3 million people [1]. The fear and chaos have
intensified since the emergence of Omicron, the most
mutated and transmissible version of the COVID-19 [2].
More than 100 countries have adopted lockdowns and
closures and announced restrictions on gatherings by
the last week of December 2021. The behaviour of
the new Omicron variant in terms of its widespread
distribution and the expression of symptoms has as-
tonished the research community. The most common
symptoms in COVID-19 patients are fever, cough and
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fatigue [3]. Identifying COVID-19 can be difficult, es-
pecially during flu season, as these symptoms can also
occur in patients with pneumonia. WHO has approved
reverse transcription-polymerase chain reaction (RT-
PCR) as a test method for COVID-19, which analyses
RNA sequences to determine the presence of coron-
avirus [1]. False-negative cases and a shortage of test
kits and screening workstations are causing bottlenecks,
especially in pandemic hotspots in developing coun-
tries. Since COVID-19-induced pneumonia has a higher
mortality rate in some ethnic groups, early identifica-
tion of COVID-19 is critical. The unpredictability of
the incubation period, which can range from 1 to 14
days between infection with the virus and the onset of
symptoms, makes early detection even more difficult.
These difficulties highlight the need to develop new
COVID-19 detection methods [4].

Early studies discovered abnormalities in chest X-
rays of COVID-19 infected people that could help diag-
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nose the disease. COVID-19 has been associated with
an increase in lung density and emphysema. Chronic
obstructive pulmonary disease can be life-threatening
as a result of this [5]. Horizontal white lines, bands
or reticular changes and a ground-glass opacity char-
acterise a COVID-19 radiograph of the lungs [6]. As
a result, disease classification based on chest radio-
graphs/(CT) has become a viable option to aid medi-
cal diagnosis, especially in the pandemic area. Chest
radiography has a cost advantage and higher sensitivity
than CT imaging [7]. Given the shortage of test kits and
screening stations, the availability of X-ray equipment
is an attractive option for COVID-19 detection. In con-
trast, manual detection of COVID-19 on chest radio-
graphs, which include both COVID-19 and pneumonia
cases, is time-consuming and requires the presence of
experienced medical personnel [8]. It is also prone to
human error. Therefore, artificial intelligence systems
based on deep learning algorithms that learn from X-ray
images and predict the presence of COVID-19 have the
potential to improve the current diagnostic process.

According to recent studies, Deep Learning algo-
rithms have been successfully deployed in a number of
clinical applications, including breast cancer detection,
brain disease classification, diabetic retinopathy, fun-
dus image segmentation, cardiac arrhythmia detection,
pneumonia, lung segmentation and skin cancer classi-
fication [9]. Deep learning is a type of machine learn-
ing that focuses on learning from enormous amounts
of information and enables the creation of a powerful
end-to-end model without the use of feature extraction.
Most traditional learning systems start from scratch for
each classification task, creating and training new base-
lines and classifiers. Convolutional networks often per-
form better on large datasets, while smaller datasets de-
grade their performance. Training a deep network from
scratch usually requires large datasets, but access to
these data is not always possible, such as with medical
images – this is where transfer learning comes in [10].
Faster training times, improved neural network perfor-
mance (in most cases) and the need for less data are just
some of the benefits of transfer learning [11]. A model
trained for one task (when a large dataset is available) is
fine-tuned in transfer learning for a second task (when
only a small dataset is available). In addition to support-
ing model reuse, learned features and complete models
for classification, regression and clustering tasks can
be reused in a related task with transfer learning [12].
In this study, we critically evaluate the performance of
six commonly employed transfer learning models for
COVID-19 recognition. 3568 X-ray images from the

dataset of Cohen et al. [13] and Wang et al. [14] were
used to train and test the VGG-19, Inception-ResNet,
EfficientNet-B0, ResNet-50, Xception and Inception
models. All models were adapted to the three-class
classification of lung radiographs into COVID-19, non-
COVID pneumonia and normal (healthy). The accu-
racy, sensitivity, precision and F1 score of all models
were investigated. The VGG-19 and Inception-ResNet
models achieved high recognition accuracy of 98% and
97%, respectively.

1.1. Organization of the paper

The rest of the paper is structured as follows. The
following section gives a brief overview of related work
in the literature. The rationale for the transfer learn-
ing models employed in this comparative study and the
implementation details are presented in Section 3. The
findings of the tests as well as the database and exper-
imental setup are explained in Section 4. Section 5 of
the paper concludes with a conclusion.

2. Related work

Using deep learning technology, a number of re-
search studies have been conducted to investigate auto-
mated radiographs of the lungs to distinguish patients
with pneumonia and COVID-19. Many authors investi-
gated the performance of transfer learning approaches
for COVID-19 screening [12,15–29]. Narin et al. [15],
for example, created three CNN-based models using
the current transfer learning architecture and found that
the ResNet model had the best classification accuracy.
Only 50 COVID-19 patients and 50 healthy individuals
participated in the study. By combining three differ-
ent models that were fine-tuned in three datasets, they
developed a multi-channel ensemble transfer learning
technique based on ResNet-18 that enabled the model to
extract more important features for each class and thus
better recognise COVID-19 features from radiographs.

Chouhan et al. [16] employed an ensemble model
to classify pneumonia and normal radiographs. They
claimed to have achieved the best performance by us-
ing an ensemble approach combining five different pre-
trained models. Previous studies have shown that Deep
Learning algorithms can improve computer vision tasks
such as image classification. Using state-of-the-art ar-
tificial intelligence approaches, most of the methods
described achieved classification accuracy of more than
90%. The experiments of the different methods were
on a COVID-19 X-ray image database of limited size
(25–864), so their efficiency and performance cannot
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Fig. 1. X-ray image types a) healthy b) non-COVID pneumonia c) COVID-19.

be generalised to a much larger dataset. Despite these
limitations, the current study used a larger dataset (3568
lung X-ray samples) to address the challenge of gener-
alisation with small datasets. In this work, we investi-
gate the performance of pre-trained models for accurate
identification of COVID-19. To find the best algorithms,
each algorithm is fine-tuned to increase detection accu-
racy.

3. Materials and methods

Deep learning algorithms are becoming more pop-
ular as the amount of data and processing capacity in-
creases. Artificial neural networks (ANNs) are the most
commonly used deep learning algorithms, with convo-
lutional neural networks (CNNs) being the most popu-
lar (ANNs). CNNs are widely used in computer vision,
image analysis and pattern recognition. The LeNet-5,
a seven-layer CNN, is the cornerstone of the current
CNN design. The fundamentals of the proposed model
are explored in [9]. These methods have proven suc-
cessful in clinical diagnosis of a wide range of diseases.
Deep Learning methods require numerous epochs of
training and validation to achieve optimal performance.
Deep Learning requires an enormous amount of data to
eliminate the fitting problems and increase efficiency.
It is difficult to obtain large datasets for medical im-
ages of severe diseases. Therefore, better classification
strategies are essential to generalise the performance of
the systems. Transfer learning significantly increases
the learning efficiency of the model in these cases [30].
Transfer learning is a form of deep learning in which
a model created for one task is used to create another
model [31]. So it allows better output for Deep Learn-
ing algorithms in the desired research domain. Suppose
we have a model trained with the ImageNet database.
With the help of transfer learning, we can reuse the
same model (the knowledge acquired while training the

model can be used) for another database, for example,
an X-ray image database. Transfer learning greatly im-
proves and facilitates the training of deep neural net-
works. The different steps in transfer learning are:

– Model selection: A pre-trained source model is
selected from the available models.

– Model reuse: The pre-trained model can then be
used as the basis for developing a model for the
second job of interest. Depending on the modelling
process, this may mean that the whole model or
only parts of it are used.

– Model tuning: Optionally, the model needs to be
modified or optimised depending on the available
input-output data for the task of interest.

In transfer learning, the fully connected layers of
a pre-trained CNN architecture learned with a large
dataset (such as ImageNet) are removed from the net-
work. For the new dataset, the remaining CNN is used
as a fixed feature extractor. The gradient descent ap-
proach, also known as a backpropagation algorithm,
is used to fine-tune the parameters (weights) of a pre-
trained model for the current dataset that has already
been trained for an application. Fine-tuning can be done
for all layers as it improves generalisation if enough ex-
amples are available. For overfitting reasons, the earlier
layers of the network can be fixed and fine-tuning is
only done for the higher layers, especially for the fully
connected layers. The reason for this is that the features
trained in the early layers of the network are domain-
independent and are more general features. In contrast,
the features that are learned in the later part of the deep
neural network are mostly domain-dependent. Thus,
during transfer learning, the parameters of the earlier
layers are fixed and the later layers are fine-tuned. Com-
pared to training from scratch with the target dataset,
transfer learning and fine-tuning generally yield better
results. Even features transferred from other tasks often
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Fig. 2. Schematic diagram of VGG-19 model.

perform better than those with arbitrary initial weights.
Consequently, transfer learning reduces training time,
increases performance in most scenarios, and eliminates
the need for a huge dataset [31].

The current work performs a systematic comparison
of world-class pre-trained models to develop a better
deep-learning solution for rapid detection of COVID-
19 and non-COVID pneumonia from lung radiographs.
This work demonstrates the effectiveness of six highly
accurate and efficient AI deep transfer learning models
(VGG-19, Inception-ResNet, EfficientNet-B0, ResNet-
50, Xception and Inception models) for predicting
COVID-19 and non-COVID pneumonia from lung X-
ray images. The models were trained and tested using
3600 radiographs from the Kaggle dataset. The accu-
racy, sensitivity, precision and F1 score of the model
were tested. The VGG-19 and Inception-ResNet models
showed a recognition accuracy of 98% and 97% respec-
tively, for classifying X-ray images into COVID-19,
non-COVID pneumonia and normal.

The following sections give a brief overview of the
widely used transfer learning models considered in this
work.

3.1. VGG net

In 2014, the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) was a public challenge that
asked participants to create the best neural network they
could use to classify a database of a large number of
images. The training set included 1.2 million images,
each of which was manually labelled with one of the
1000 objects that the network was to recognise. There
were several sub-competitions, each with its own win-
ner. VGG-16, a network, was the winner of one of the
classification tasks. The VGG network was developed
by the “Visual Geometry Group”, hence the model is
abbreviated as VGG. In a conventional CNN, the con-
volution layer, the nonlinearity layer and the pooling
layer are stacked one after the other. The number of
these triplets stacked in a network is determined by the
depth of the network. VGG designs are based on a sim-
ple idea. We need to stack the convolutional layers as

the filter sizes get larger. Layer 2 must have at least 16
filters if layer 1 has 16 filters. VGG-16 and VGG-19
are the widely used variants of the VGG network. The
number 16 or 19 alludes to the 16 or 19 computational
layers of the CNN network (there are also some aux-
iliary layers for pooling and padding). All layers have
adjustable parameters.

VGG-19: VGG-19 is an improvised version of its pre-
decessor VGG-16. The main difference between VGG-
16 and VGG-19 is the number of layers both have.
VGG-19 contains three additional convolutional layers
than VGG-16. VGG-19 has 16 convolutional layers,
three completely connected layers, five MaxPool layers
and one SoftMax layer, in addition to three fully con-
nected layers. The input was a fixed-size RGB image of
size 224 × 224. Another interesting feature is that all
filters in each VGG design are 3 × 3 in size and have a
stride size of 1 pixel. The idea behind this is that two 3
× 3 filtres cover almost the same area as one 5 × 5 fil-
ter, and that two 3 × 3 filters are less expensive than one
5 × 5 filter. Spatial padding was used to maintain the
spatial resolution of the image. Any max-pooling was
done using Stride 2 using a 2 × 2 pixel window. Rec-
tified Linear Unit (ReLU) was used to introduce non-
linearity and improve the classification of the model.
VGG-19 outperformed other state-of-the-art models in
2014 and continues to be recommended for a variety
of challenging situations. The VGG-19 architecture has
nearly 1.96 billion FLOPs (floating point operations
per second). The schematic representation and block
diagram of the VGG-19 model can be found in Figs 2
and 3. The first layer of the presented transfer learning
model changes the size of the input image to 128 ×
128, and the number of classification categories is set
to three at the output. The weights and parameters of
the VGG-19 model have already been pre-trained. The
description of the architecture of VGG-19 can be found
in Table 1.

3.2. Inception net

The Inception network (GoogleLeNet) is a major
milestone in CNN classifiers. The architecture has
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Table 1
VGG-19 model summary

Layer (type) Output shape Parameters
Input (InputLayer) (None, 128, 128, 3) 0
Block1 conv1 (Conv2D) (None, 128, 128, 64) 1792
Block1 conv2 (Conv2D) (None, 128, 128, 64) 36928
Block1 pool (MaxPooling2D) (None, 64, 64, 64) 0
Block2 conv1 (Conv2D) (None, 64, 64, 128) 73856
Block2 conv2 (Conv2D) (None, 64, 64, 128) 147584
Block2 pool (MaxPooling2D) (None, 32, 32, 128) 0
Block3 conv1 (Conv2D) (None, 32, 32, 256) 295168
Block3 conv2 (Conv2D) (None, 32, 32, 256) 590080
Block3 conv3 (Conv2D) (None, 32, 32, 256) 590080
Block3 conv4 (Conv2D) (None, 32, 32, 256) 590080
Block3 pool (MaxPooling2D) (None, 16, 16, 256) 0
Block4 conv1 (Conv2D) (None, 16, 16, 512) 1180160
Block4 conv2 (Conv2D) (None, 16, 16, 512) 2359808
Block4 conv3 (Conv2D) (None, 16, 16, 512) 2359808
Block4 conv4 (Conv2D) (None, 16, 16, 512) 2359808
Block4 pool (MaxPooling2D) (None, 8, 8, 512) 0
Block5 conv1 (Conv2D) (None, 8, 8, 512) 2359808
Block5 conv2 (Conv2D) (None, 8, 8, 512) 2359808
Block5 conv3 (Conv2D) (None, 8, 8, 512) 2359808
Block5 conv4 (Conv2D) (None, 8, 8, 512) 2359808
Block5 pool (MaxPooling2D) (None, 4, 4, 512) 0
Flatten (Flatten) (None, 8192) 0
Dense (Dense) (None, 3) 24579

Total params: 20,048,963
Trainable params: 24,579

Fig. 3. Block diagram of VGG-19 model.

Fig. 4. Block diagram of inception model.

reached the state of the art in classification with the
ImageNet dataset. The inception modules are repeated
in the deep neural inception network to achieve the re-
quired depth. The inception module shown in Fig. 4
consists of three convolutional layers and a max-pooling
layer. Each convolution layer has filtres of different
sizes. Finally, all filter maps are concatenated by the

filter concatenation module. The model learns from par-
allel filters of different sizes and scales. Usually, each
image in a training set has a large variation in the loca-
tion of the information. Therefore, it is very difficult to
choose the right filter size. If the location in an image is
small, small filtres are sufficient. When the location is
large, large philtres are required to effectively capture
the information content. Therefore, filtres of different
sizes are used in the Inception network to effectively
capture all types of information content. The schematic
diagram of the Inception module is shown in Fig. 5. The
goal of the Inception module is to act as a “multi-level
feature extractor” by computing 1 × 1, 3 × 3, and 5 ×
5 convolutions in a single network module. The output
of these filters is stacked along the channel dimension
before being passed to the next layer of the network.
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Fig. 5. Schematic diagram of Inception model.

Thus, the Inception network is not limited to a single
filter size, but allows us to combine many filter sizes in
a single image block. In addition, maximum pooling is
used and outputs are concatenated before being sent to
the next layer. By configuring the CNN to complete its
convolutions in the same layer, the network becomes
progressively wider (not deeper). To reduce the number
of parameters (to save computational resources), the
number of channels is reduced by adding a 1 × 1 convo-
lutional layer before the 3 × 3 and 5 × 5 convolutional
layers and after the max-pooling layer. There are dif-
ferent versions of the Inception network. Inception-v1
(GoogleNet) was released in 2014. It had 22 layers with
5 million parameters. Convolutions of different sizes
are used to capture the varying information content of
the image. In the architecture of Inception-v2, two 3 ×
3 convolutions take the place of the 5 × 5 convolutions.
This requires less time for computation and increases
computational speed.

Inception-v3: Inception-v3 is an enhanced version of
GoogleLeNet that has proven to be very powerful clas-
sifier in a number of biomedical applications. It uses a
transfer learning method and has 24 million parameters
distributed across its 48 layers. Instead of using many
convolutional filters of different sizes, a single 7 × 7
filter kernel was used. This reduces the computational
effort and the number of parameters to be trained. For
better model fitting, the Inception v3 model uses a num-
ber of approaches to optimise the network. It has a more
extensive network than the Inception-v1 and v2 models,
but its speed remains unchanged. It is more efficient
and less computationally expensive. Below are the main
changes made to the Inception-v3 model.

– The larger convolutions of the model were fac-
torised into smaller convolutions, resulting in a
relative gain of 28%.

– The n × n factorisation was also converted to 1
×n and n× 1 factorisation with this design (asym-
metric convolutions).

– The advantage of an auxiliary classifier is that it
acts as a regulariser, improving the convergence of
the deep neural network and combating the van-
ishing gradient problem.

– The activation dimension of the network filters (fil-
ter banks) is increased in the inception-v3 model
to efficiently reduce the grid size.

3.3. ResNet

ResNet stands for Residual Network. As the size of
the network increases, the problem of vanishing gradi-
ents arises. As the layers get deeper, the gradient may
become too small for effective training. In such a case,
the gradient of the loss function approaches zero, which
makes training the network very difficult. Backpropaga-
tion is used to find the gradients of the neural network.
Backpropagation finds the derivatives of the network
by moving from the last layer to the first layer. The
derivatives of the initial layers are determined using the
chain rule by multiplying the derivatives of each layer
in the entire network from the last layer to the first layer.
For example, if ‘n’ hidden layers use a sigmoid func-
tion as activation, ‘n’ small derivatives are multiplied
together. When backpropagating the gradients from the
last layer to the first layer, an exponential decrease in
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Fig. 6. Schematic diagram of ResNet-50 model.

Fig. 7. Block diagram of ResNet-50 model.

the gradient is observed. When the gradient is small,
the weights and biases of the first layers of the network
do not change significantly with each training. Since
the initial layers of the network are usually crucial for
recognising the essential aspects of the input data, they
can contribute to the overall inaccuracy of the network.
To solve the problem of vanishing gradients, the ResNet
architecture uses a method called Skip Connections.
Bypassing some training phases, the skip connection
connects directly to the output. The regularisation skips
any layer that affects the performance of the architec-
ture, which is an advantage of skip connection. This
allows the deep neural network to be trained without
having to worry about vanishing/exploding gradients.
Skipping a connection also helps the network to un-
derstand global features. This network uses a 34-layer
base architecture with additional shortcut connections.
These shortcut connections then transform the design
into a residual network.

ResNet-50: ResNet comes in a variety of variants,
each with a different number of layers but the same
basic principle. The most popular model is ResNet-
50, which has 48 convolutional layers and 2 pooling
layers (a max pool and an average pool) with 3.8 × 109

floating point operations.

The ResNet-50 model is shown schematically in
Fig. 7. Each of the five phases of the ResNet-50 model
has its own convolutional block and identity block.
There are three convolutional layers in each convolu-
tional block and three convolutional layers in each iden-
tity block. The ResNet-50 has approximately 23 million
trainable parameters.

3.4. Inception-ResNet

ResNet and Inception have made the most signifi-
cant breakthroughs in image recognition performance
in recent years, delivering outstanding results at low
computational cost. The Inception-ResNet architecture
combines Inception with ResNet connections. The net-
work takes a 299 × 299 image as input and returns an
ensemble of predicted class probabilities. The network
consists of 164 layers in total. Convolutional filtres of
different sizes are mixed with residual connections. The
inclusion of residual connections not only solves the
problem of deep structural degeneration, but also saves
time during training. The Inception ResNet solves the
vanishing gradient problem and speeds up the train-
ing process. The schematic diagram of the Inception
ResNet-v2 model used in this work is shown in Fig. 8.
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Fig. 8. Schematic diagram of Inception ResNet model.

Fig. 9. Block diagram of EfficientNet-B0 model.

3.5. EfficientNet

EfficientNets are lightweight models developed by
Google for image classification tasks. The EfficientNet
scaling approach uses a set of preset scaling coefficients
to proportionally scale the resolution (number of pix-
els), depth (layers) and width (feature maps) of the net-
work. The compound scaling method is justified by the
assumption that higher resolution of the input image
contributes to more complex features and finer patterns.
The network captures (learns) more information (fea-
tures) and naturally the network’s learning ability is
higher and the network will be more accurate. When
more information is available, deeper networks are re-
quired to process the information effectively. This facil-
itates the need for depth scaling of the network. Width
scaling increases the number of channels or feature
maps. To effectively capture more fine-grained informa-
tion from a high-resolution image, we obviously need
more feature maps. Width scaling widens the network.

EfficientNets is a network that ranges from B0 to
B7. The EfficientNet-B0 architecture is a basic model
for the compound scaling. The base model is devel-
oped with NAS ( Neural Architecture Search). The base

models are scaled to produce other models from B1 to
B6. The compound scaling results from the following
equation,

f = α.β.ϕγϕ (1)

f = d.ω.ϕrϕ (2)

where ‘f ’ denotes the scaling factor of the network,
‘α = d’, ‘β = w’ and ‘γ = r’ represent the scaling
factors for the depth, width and resolution of the deep
neural network. According to the compound scaling
approach, the network should be scaled with a con-
stant ratio across all dimensions. The compound scaling
method is used to balance all dimensions of the net-
work, including width, depth and resolutions. Initially,
the values of α, β and γ are set. Then the value of ϕ
is calculated. The optimal values of the constants α, β,
γ and ϕ are determined using a one-dimensional grid
search algorithm. For the base model EfficientNet-B0,
the values α = 1.2, β = 1.1, γ = 1.15 and ϕ = 1 are
obtained. These estimated values show that when the
resolution of the network is 15%, the optimal network
depth and width are 20% and 10% respectively. The
scaling of the network is performed by changing the
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Fig. 10. Schematic diagram of Xception model.

Fig. 11. Block diagram of the proposed study.

values of ϕ. That is, the base model is scaled to obtain
the variants from EfficientNet-B0 to EfficientNet-B7.
The EfficientNet model can achieve better performance
with fewer model parameters. It is easy to train and
integrate into mobile applications.

3.6. Xception

The Xception model is a refinement of the Inception
v3 architecture that uses modified depthwise separable
convolutions instead of the typical Inception modules
(depthwise convolution followed by a pointwise con-
volution). The channelwise n× n spatial convolution
is called depthwise convolution. The 1 × 1 dimension-
changing convolution is actually the pointwise convolu-
tion. In the extended depthwise separable convolution, a
pointwise convolution is followed by a depthwise con-
volution. After the convolution procedure, the inception
network uses non-linear activation, while the xception
network uses no such intermediate activation. The fig-
ure shows a schematic representation of the Xception
module. The Xception model is 71 layers deep and had
23 million parameters.

3.7. Pseudo code of the proposed model

The pseudo-code of the proposed transfer learning
approach is explained in more detail below. The block
diagram is shown in Fig. 11.

– begin

∗ Split the labelled chest X-ray dataset into a test
and a training dataset;

∗ Select a known transfer learning model;
∗ Modify the first and last layers of the AI model.
∗ Train and validate the transfer-learned AI model

and fine-tune the model;
∗ Predict the test data with the trained model,
∗ Evaluated and compared the performance of the

model.

– end

4. Results and discussion

4.1. Experimental set-up

The proposed study evaluates the performance of
widely used transfer learning models for classifying
lung radiographs into COVID-19, non COVID pneu-
monia and normal. Python 3.6.9 was used to develop
all models. This study uses an open-source software
library called Tensor-Flow, which is widely used in ma-
chine learning applications. Keras, a high-level neural
network library built on top of Tensor-Flow, was used
in this study. The development environment for this
project was Google Colab.
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For this experimental study, X-rays of the lungs were
used, which are regularly updated from a variety of free
sources. A total of 3568 X-ray images were considered
for the experiment. Radiographs from Cohen et al. [13]
and Wang et al. [14] were included in the experimental
dataset. The radiologist classified these radiographs as
COVID-19 (1168), non-COVID pneumonia (1200) and
normal (1200). All models were trained and tested on
the same dataset. Figure 1 shows an example of radio-
graphs used in this study. 80% (2854) of the total 3568
lung radiographs selected for the study were used for
training and 20% (714) for testing the transfer learning
model. Before training, the labelled radiographs were
preprocessed and all radiographs of different sizes were
scaled to a uniform size of 128 × 128.

Here, the model training is divided into a training
phase and a validation phase. Therefore, the total train-
ing samples were divided into two groups: 80% for
model training (2284) and 20% for internal validation
(570). During the model development phase, a valida-
tion test was performed in conjunction with the training
procedure to ensure that the training was correct. The
models were trained in batches with a batch size of 50.
In total, the networks were trained for 25 epochs. The
same experimental setup was used to develop and test
all transfer learning models. This enabled an efficient
comparison of the six models. By optimising the algo-
rithm during training, neural networks can be trained
faster and loss functions facilitate the optimisation of
the CNN parameters. For all transfer learning models,
we used the vms prop optimiser (gradient descent tech-
nique) and the categorical cross entropy loss function.

4.2. Performance evaluation metrics

The performance of all models for multiclass classi-
fication was evaluated using accuracy, sensitivity, pre-
cision and F1 score [31]. Since we considered the sym-
metric dataset, accuracy is an important metric that in-
dicates the performance of the proposed models. The
proposed model is judged by how well it correctly pre-
dicts disease based on the test radiographs. Accuracy
can be calculated using the confusion matrix. The con-
fusion matrix shows the actual and predicted classes
of the classification system. The matrix shows the ex-
tent to which the classifier was confused or mistaken
about some of the data. The elements of the confusion
matrix in each column represent instances of the pre-
dicted class, while the elements of the confusion ma-
trix in each row represent instances of the actual class.
The diagonal elements reflect the number of correct

predictions, while the non-diagonal elements represent
the number of incorrect predictions. The accuracy of
the classification is calculated as the number of cor-
rect predictions divided by the total number of predic-
tions [32,33]. Here, the accuracy is determined using
the confusion matrix as follows,

Accuracy =
TP + TN

TP + FP + FN + TN
(3)

Where,

– True positive (TP): The prediction is +ve and the
actual (ground truth) is also +ve, i.e. the person is
ill, emergency treatment is required.

– True negative (TN): The prediction is -ve and the
reality is -ve, i.e. the person is not ill, treatment is
not required.

– False positive (FP): The prediction is +ve and the
actual is -ve, false alarm, bad, i.e. the person is not
ill; but the test confirms that he is ill; this would
be a gross error.

– False negative (FN): The prediction is -ve and the
reality is +ve, which is the worst. i.e. the person
is ill, but the test shows that he is not ill, which is
even worse.

Both true-positive (TP) and true-negative (TN) pre-
dictions are accurate, while false-positive (FP) and
false-negative (FN) are incorrect. Accuracy is indicated
by a number between 0 and 1 and is often expressed as
a percentage.

Precision is the ratio between the number of correct
positives and the number of positives predicted by the
classifier. Precision is a good choice for evaluation when
we want to be very sure of our prediction. Precision can
be determined using the confusion matrix as follows,

Precision =
TP

TP + FP
(4)

Precision indicates what proportion of predicted pos-
itives are actually positive [34].

Sensitivity (recall), also known as as true positive
rate or hit rate, corresponds to the proportion of positive
data points that are correctly classified as positive out
of all positive data points. It is given by,

Sensitivity =
TP

TP + FN
(5)

Sensitivity is a good choice for evaluation when we
want to capture as many positive results as possible.
Sensitivity indicates the proportion with which actual
positive samples are correctly classified [34].

F1 score is basically the harmonic mean between
sensitivity and precision (combining both sensitivity
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Fig. 12. Training and validation accuracy of the transfer learned models.

and precision) [35]. It is used to measure the accuracy
of tests and is a direct indication of the performance
of the model [31]. It is evaluated on the basis of the
following equation.

F1 score =
2 (recall × precision)
(recall + precision)

(6)

The range of F1 scores is between 0 and 1, the aim
being to get as close to 1 as possible. F1 is best when
we have an uneven class distribution. We want a model
that has both good precision and good sensitivity. The
F1 score is a measure of the balance between precision

and recall achieved by the proposed models. In general,
the F1 score is low when either sensitivity or precision
is low, and when both variables are high, it approaches
one.

4.3. Model comparison

This study investigated the performance of the well-
known transfer learning for three-class categorisation of
lung radiographs into COVID, pneumonia and normal.
The trained dataset was first stored in an array with
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Fig. 13. Training and validation loss of the transfer learned models.

the respective labels. About 25 epochs were considered
for training the models. The training and validation
accuracy with all models is shown in Figs 12a and 12.
Figures 13a and 13 show the training and validation loss
of the presented models. The advantage of the transfer
learning approach is its speed, as a lot of time is saved in
the training process. Another notable advantage of the
presented method is that it uses the best of the models
in testing.

In the testing phase, test data was given to the best
trained model and the model was evaluated on various

metrics. Only 20% (714) of the total sample was con-
sidered for testing. The predicted results were compared
with the actual results and the confusion matrix was
constructed. Some radiographs predicted by the VGG-
19 model are shown in Fig. 15. In Fig. 15 you can see
the predicted patterns compared to the actual ground
truth images. For each predicted image, the ground truth
image is given in parentheses. The confusion matrix
obtained with the models is summarised in Figs 14a
and 14. The performance of the models in terms of
accuracy, precision, recall and F1 score are shown in
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Fig. 14. Confusion matrix with the transfer learning models.

Table 2. Figures 16 and 17 show the performance mea-
sures of the classifiers in terms of the number of param-
eters used in each model. The computational complex-
ity of the transfer learning models is shown in Figs 16
and 17.

From the results, among the prominent transfer learn-
ing models considered for the experiment, the VGG-
19 model achieved the highest performance in three-
class classification of radiographs into COVID, non-
COVID pneumonia and normal. The VGG-19 model
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Fig. 15. Predicted X-ray images using VGG-19 model.

Fig. 16. Recognition accuracy versus model parameters.
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Table 2
Performance of the transfer learning models

No TL model Health condition Accuracy Precision Recall F1 score
COVID-19 0.98 1.00 1.00 1.00

1 VGG-19 Non-COVID Pneumonia 0.98 0.97 0.98 0.97
Normal 0.98 0.97 0.97 0.97
COVID-19 0.97 1.00 1.00 1.00

2 Inception-ResNet Non-COVID Pneumonia 0.97 0.97 0.96 0.96
Normal 0.97 0.95 0.97 0.96
COVID-19 0.97 0.99 1.00 1.00

3 EfficientNet-B0 Non-COVID Pneumonia 0.97 0.97 0.97 0.97
Normal 0.97 0.96 0.95 0.96
COVID-19 0.96 1.00 1.00 1.00

4 ResNet50 Non-COVID Pneumonia 0.96 0.95 0.94 0.95
Normal 0.96 0.94 0.94 0.94
COVID-19 0.96 0.99 1.00 1.00

5 Xception Non-COVID Pneumonia 0.96 0.95 0.95 0.95
Normal 0.96 0.95 0.93 0.94
COVID-19 0.95 1.00 0.96 0.98

6 Inception Non-COVID Pneumonia 0.95 0.98 0.92 0.95
Normal 0.95 0.89 0.98 0.93

Fig. 17. Model performance versus model parameters.

used 20,048,963 parameters to achieve an overall recog-
nition accuracy of 98%. The time required to train the
VGG-19 model in the Google Colab Platform with GPU
was 25 minutes and 1.0 seconds for the test. The VGG-
16 model used 14,739,267 parameters to achieve an
overall recognition accuracy of 97%. The advantage of
the VGG network is that it has a simple architecture
and uses 33 convolutional filtres, the stride is Stride 1,
uses the same padding and employs 2 × 2 max pooling
to reduce the size. The better performance of the VGG
network was achieved by using smaller receptive fields

(3 × 3) on its convolutional layer and the ReLU activa-
tion function (instead of tanh). The main disadvantage
of VGG networks is that they are slow to train due to
their depth, require a very large number of parameters
and are therefore slow and often produce very large
models.

The Inception ResNet-v2 model has the second high-
est accuracy. The model achieves the second highest
recognition performance (Accuracy/Precision is 97%,
Recall is 0.977 and F1 score is 0.973) by using the
largest number of parameters (54,355,171) compared to
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all other models presented in this paper. The Inception
ResNet-v2 model is precise and accurate but at the cost
of maximum number of parameters and computational
power (164 layers). It requires more training time com-
pared to all other models. These experimental results
also show that combining the Inception architecture
with residual connections increases the performance of
the Inception module. The Inception model shows a
recognition accuracy/precision of 95%, a recall of 0.953
and an F1 score of 0.953, using 21,827,363 parame-
ters in its model. The Inception architecture has been
shown to give excellent results at low computational
cost. When residual connections are used, the training
of the Inception network is significantly accelerated.
ResNet is about computational accuracy, while Incep-
tion is about computational cost. By combining Incep-
tion with ResNet, the performance of ResNet could be
improved. ResNet is much deeper than VGG-19, but
the model size is much smaller due to the use of global
average pooling instead of fully connected layers – the
model size for ResNet-50 is only 102 MB. The recog-
nition accuracy/precision with the ResNet-50 model is
96%, while the Inception ResNet-v2 model improves
the performance of ResNet-50 by updating the residual
module to also use identity mappings.

Compared to the Inception ResNet-v2 and VGG-16
models, the EfficientNet-B0 model achieved similar
performance with a relatively fewer number of parame-
ters (4,058,534). The strategic scaling of depth, width
and resolution in EfficientNet contributes to this per-
formance advantage. The model had a recognition ac-
curacy/precision of 97% with a recall and F1 score of
0.973. Compared to all other models considered, the
training time for EfficientNet-B0 was the lowest. The
Xception model has a recognition accuracy of 96%, a
recall and F1 score of 0.960 and 0.963, respectively, and
uses 20,959,787 parameters in its model. In the X-ray
image dataset, Xception slightly outperforms Inception-
v3. It has fewer model parameters than Inception, which
makes it more computationally efficient. Inception V3
is the lowest performing model in the study, although
its weights are only 96MB, which is less than VGG and
ResNet.

The present study investigated the performance
of widely used transfer learning models for three-
class classification of radiographs into COVID-19, non
COVID pneumonia and normal. The experimental re-
sults are presented in Figs 12, 13, 14 and Table 2. With
the necessary effort, a database of reasonable size was
created, containing about 1200 radiographs for COVID-
19, non-COVID pneumonia and normal. In this study,

a balanced dataset was considered to avoid network
bias. The performance of the Deep Learning models
was critically analysed.

5. Conclusions

One of the significant challenges in the automatic de-
tection of COVID-19 from X-ray images is the selection
of a suitable AI deep learning architecture. Therefore,
this paper evaluates the performance of six highly effi-
cient and accurate transfer learning models (VGG-19,
Inception-ResNet, EfficientNet-B0, ResNet-50, Xcep-
tion and Inception) for the early detection of COVID-19
on lung X-ray images. The present study considered the
multiclass classification of radiographs into COVID-
19, non-COVID pneumonia and normal. With a sample
size of 3568 lung radiographs, only 80% were used for
the training process. The performance of the transfer
learning models was evaluated in terms of accuracy,
sensitivity, precision and F1 score. Of the six transfer
learning models, VGG-19 showed a high accuracy of
98%. The lowest accuracy was obtained with the Incep-
tion network (95%). The VGG-net, Inception ResNet
and EfficientNet models are better when it comes to
model accuracy. Compared to all six models, the Effi-
cient model is lightweight as it requires fewer parame-
ters and less training. In the future, the number of lay-
ers and nodes can be optimised and the number of pa-
rameters in each layer. The choice of the learning rate,
the number of epochs, the intensity of regularisation,
the network layers’ architecture, and the nodes’ opti-
misation require additional knowledge and skills. By
incorporating information from different sources, more
robust models can be created in the future.
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