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Abstract. In multiple criteria decision making (MCDM) with interval-valued belief distributions (IVBDs), individual IVBDs
on multiple criteria are combined explicitly or implicitly to generate the expected utilities of alternatives, which can be used to
make decisions with the aid of decision rules. To analyze an MCDM problem with a large number of criteria and grades used to
profile IVBDs, effective algorithms are required to find the solutions to the optimization models within a large feasible region. An
important issue is to identify an algorithm suitable for finding accurate solutions within a limited or acceptable time. To address
this issue, four representative evolutionary algorithms, including genetic algorithm, differential evolution algorithm, particle swarm
optimization algorithm, and gravitational search algorithm, are selected to combine individual IVBDs of alternatives and generate
the minimum and maximum expected utilities of alternatives. By performing experiments with different numbers of criteria
and grades, a comparative analysis of the four algorithms is provided with the aid of two indicators: accuracy and efficiency.
Experimental results indicate that particle swarm optimization algorithm is the best among the four algorithms for combining
individual IVBDs and generating the minimum and maximum expected utilities of alternatives.
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1. Introduction

In the Internet and Big Data era, human lifestyles
have undergone an unprecedented revolution. An in-
dividual’s life is filled with a lot of data, which makes
people more informed than ever before. At the same
time, people must choose between deriving useful in-
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formation and knowledge from data for use in practice
and abandoning their attempt to employ data in real
problems. Because of the availability of information,
people usually choose to find effective information and
knowledge from various types of data and use them in
practical cases. Such a choice improves their capability
to handle complex problems. The choice also results
in more uncertain environments associated with real
problems than before due to the randomness, unavail-
ability, noise, sparsity, and variety of data. In this en-
vironment, people may have difficulty directly finding
overall solutions to real problems. A feasible way to
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overcome the difficulty is to analyze real problems from
multiple different perspectives, and then combine the
relevant analyses to generate overall problem solutions.
This method is called multiple criteria decision making
(MCDM) in an uncertain environment.

To effectively model and analyze uncertain MCDM
problems, many attempts have been made with the
help of different uncertain expressions. Representative
expressions include intuitionistic fuzzy sets [1], hes-
itant fuzzy linguistic sets [2], hesitant fuzzy sets [3],
probabilistic linguistic sets [4], belief distributions [5],
interval-valued fuzzy sets [6], interval-valued hesitant
fuzzy linguistic sets [7], interval-valued intuitionistic
fuzzy sets [8], interval-valued hesitant fuzzy sets [9],
interval type-2 fuzzy sets [10], and interval-valued be-
lief distributions [11]. In theory, MCDM methods with
these expressions are sufficient for analyzing all real
problems. From real cases or numerical examples in
these studies, few methods are found which aim to
solve large-scale problems with many alternatives and
criteria. In addition to this, when interval-valued as-
sessments are adopted, such as interval-valued hesitant
fuzzy elements or interval-valued belief distributions,
the search space for finding solutions increases expo-
nentially with the increase in the number of interval-
valued hesitant fuzzy element values or the number of
interval-valued belief distribution grades.

Evolutionary computation provides a feasible and
effective way to find acceptable or satisfactory solu-
tions within a limited time. When MCDM problems
are regarded as multi-objective optimization (MOO)
problems constructed on a common set of variables,
many evolutionary MOO approaches have been de-
veloped to find the optimum trade-off among criteria
which is the most consistent with the preference of a
decision maker [12–17]. Three methods (priori, inter-
active, and posteriori) are usually applied to combine
the preferences of a decision maker with the MOO pro-
cess [15,16]. If the preferences of a decision maker are
not considered in the MOO process, the results of the
MOO may not be satisfactory.

In practice, individual assessments on different cri-
teria may not be always constructed on a common
set of variables. For example, a radiologist determines
whether a nodule of a patient is malignant from the
perspectives of contour, echogenicity, calcification, and
vascularity. It cannot be said that the judgments on the
nodule with the consideration of contour and those with
the consideration of any other perspective are made by
the radiologist through the same set of variables (or
features). As another example, when the same disci-

pline at different universities is compared, many cri-
teria are considered, such as research projects, pub-
lications, awards, patents, social services, and excel-
lent alumni. Individual assessments on different criteria
are generated from different data rather than common
data. When encountering these situations, a decision
maker takes into account the individual assessments on
all criteria synthetically rather than improving the val-
ues of most objectives and balancing them to generate
solutions. MCDM problems with large search spaces
in these situations can also be solved by using evolu-
tionary algorithms. For example, Javanbarg et al. [18]
used particle swarm optimization (PSO) algorithm [19]
to solve MCDM problems modeled by a fuzzy ana-
lytic hierarchy process, and Chen and Huang [20] used
PSO algorithm to solve MCDM problems modeled by
interval-valued intuitionistic fuzzy numbers.

Existing studies show that less attention has been
paid to the application of evolutionary algorithms to
MCDM with different sets of variables used on differ-
ent criteria. This makes it questionable whether MCDM
methods with different ways to characterize differ-
ent types of uncertain nature (e.g., [3,7–11]) can be
applied to solve MCDM problems with large search
spaces. There is a gap between the solution require-
ments of large-scale MCDM problems and relevant
studies on effective solution approaches. Although there
are few studies on the combination of evolutionary al-
gorithms and MCDM with different sets of variables
(e.g., [18,20]), some important issues deserve investi-
gation. The issues include: (1) why PSO algorithm has
been selected for application in MCDM; (2) whether
PSO algorithm can be applied to MCDM with differ-
ent types of uncertain expressions other than interval-
valued intuitionistic fuzzy numbers and fuzzy trian-
gular numbers; and (3) which evolutionary algorithm
has better performance when applied to MCDM with
a specific type of uncertain expression. In fact, differ-
ent evolutionary algorithms can be applied to solve the
same real problem. For example, when determining the
near-optimal scheme for recharging batteries at a bat-
tery swapping station, Wu et al. [21] used three rep-
resentative evolutionary algorithms including genetic
algorithm (GA) [22,23], differential evolution (DE)
algorithm [24], and PSO algorithm to find the min-
imum running cost. Their experimental results show
that GA and DE algorithms achieve higher accuracies
and lower efficiencies than PSO algorithm; specifically,
PSO algorithm fails to obtain the objective. Inspired
by this, much attention should be paid to a key issue,
which is comparing the accuracies [21,25] and efficien-
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cies [14,26] of different representative evolutionary al-
gorithms for solving large-scale MCDM problems with
specific types of uncertain expressions and different sets
of variables.

In this paper, to address this key issue, we aim to
compare the accuracies and efficiencies of four rep-
resentative evolutionary algorithms, which are GA,
DE algorithm, PSO algorithm, and gravitational search
algorithm (GSA) [27], for analyzing MCDM prob-
lems modeled by interval-valued belief distributions
(see Section 2). Because combining individual interval-
valued belief distributions is an important and neces-
sary MCDM sub-process of MCDM, the combination
processes using the four algorithms are presented. To
fairly compare the four algorithms, their original ver-
sions (instead of their extensions) are used in the pro-
cesses. With the aid of the processes, experiments with
different numbers of criteria and grades used to pro-
file interval-valued belief distributions are performed
to compare the accuracies and efficiencies of the four
algorithms for combining interval-valued belief distri-
butions and generating the expected utilities. The com-
parative analysis of experimental results helps select
the appropriate evolutionary algorithm to find satisfac-
tory solutions to MCDM problems with interval-valued
belief distributions within a limited or acceptable time.
A sensitivity analysis of the accuracies and efficien-
cies of the four algorithms is provided to highlight the
conclusion drawn from the comparative analysis.

The rest of this paper is organized as follows. Sec-
tion 2 recalls the modeling of MCDM problems by us-
ing belief distributions and interval-valued belief distri-
butions. Section 3 presents the processes of four evo-
lutionary algorithms for combining interval-valued be-
lief distributions. Section 4 compares the accuracies
and efficiencies of the four algorithms for combining
interval-valued belief distributions. The results of the
four algorithms for generating the expected utilities
are compared in Section 5. A sensitivity analysis of
the performance of the four algorithms is provided in
Section 6. Finally, this paper is concluded in Section 7.

2. Preliminaries

2.1. Modeling of MCDM problems using belief
distributions

In the evidential reasoning (ER) approach [28–30],
which is a type of multiple criteria utility function
method, belief distribution is used to characterize the

uncertain preferences of a decision maker. Because be-
lief distribution is a special case of interval-valued be-
lief distribution, the method for modeling MCDM prob-
lems using belief distribution is reviewed first.

Suppose that alternative al (l = 1, . . . ,M) is eval-
uated on criterion ei (i = 1, . . . , L) by using a
set of grades Ω = {H1, H2, . . . ,HN}, which is or-
dered increasingly from worst to best. The utilities
of grades u(Hn) (n = 1, . . . , N ) satisfy the con-
straint 0 = u(H1) < u(H2) < . . . < u(HN ) =
1 to reflect the difference among grades. Under the
conditions, a belief distribution B(ei(al)) = {(Hn,
βn,i(al)), n = 1, . . . , N ; (Ω, βΩ,i(al))} describes the
evaluation, where βn,i(al) with βn,i(al) > 0 and∑N
n=1 βn,i(al) 6 1 denotes the belief degree assigned

to grade Hn, and βΩ,i(al) = 1−
∑N
n=1 βn,i(al) repre-

sents the degree of global ignorance [31]. If βΩ,i(al) =
0, the assessment is complete; otherwise, it is incom-
plete. When B(ei(al))(i = 1, . . . , L, l = 1, . . . ,M) is
given, the belief decision matrix SL×M is obtained.

Assume that criteria weights are represented by
w = (w1, w2, . . . , wL) such that 0 6 wi 6 1 and∑L
i=1 wi = 1. By combining individual belief dis-

tributions B(ei(al))(i = 1, . . . , L, l = 1, . . . ,M)
by using criteria weights and the ER rule [32], the
overall belief distribution is obtained as B(al) =
{(Hn, βn(al)), n = 1, . . . , N ; (Ω, βΩ(al))}. Similar
to the individual belief distribution, βΩ(al) represents
the degree of aggregated global ignorance. It is not easy
to directly compare the aggregated belief distributions
of different alternatives in most cases. To facilitate com-
parison, B(al)(l = 1, . . . ,M) is transformed by using
the utilities of grades u(Hn)(n = 1, . . . , N) to the min-
imum and maximum expected utilities of alternative al,
which are u−(al) =

∑N
n=2 βn(al)u(Hn) + (β1(al) +

βΩ(al))u(H1) and u+(al) =
∑N−1
n=1 βn(al)u(Hn) +

(βN (al) + βΩ(al))u(HN ). From u−(al) and u+(al),
a decision rule, such as the Hurwicz rule [33], can be
used to aid in generating solutions.

2.2. Combination of belief distributions

The contents in the above section show that the ER
rule [32] is the key to find solutions to MCDM prob-
lems modeled by belief distributions, which is simply
presented as follows.

Definition 1. [32] Given individual assessments
B(ei(al))(i = 1, . . . , L) and their weightswi, the com-
bined result of the first i assessments is defined as

{(Hn, βn,b(i)(al)), n=1, . . . , N ; (Ω, βΩ,b(i)(al))}, (1)
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where

βn,b(i)(al) =
β̂n,b(i)(al)∑N

n=1 β̂n,b(i)(al) + β̂Ω,b(i)(al)
, (2)

βΩ,b(i)(al) =
β̂Ω,b(i)(al)∑N

n=1 β̂n,b(i)(al) + β̂Ω,b(i)(al)
, (3)

~βn,b(i)(al) =

β̂n,b(i)(al)∑N
n=1 β̂n,b(i)(al) + β̂Ω,b(i)(al) + β̂P (Ω),b(i)(al)

, (4)

~βΩ,b(i)(al) =

β̂Ω,b(i)(al)∑N
n=1 β̂n,b(i)(al) + β̂Ω,b(i)(al) + β̂P (Ω),b(i)(al)

, (5)

~βP (Ω),b(i)(al) =

β̂P (Ω),b(i)(al)∑N
n=1 β̂n,b(i)(al) + β̂Ω,b(i)(al) + β̂P (Ω),b(i)(al)

, (6)

β̂n,b(i)(al) = [(1− wi) · ~βn,b(i−1)(al)

+~βP (Ω),b(i−1)(al) · wi · βn,i(al)]

+~βn,b(i−1)(al) · wiβn,i(al)

+~βn,b(i−1)(al) · wiβΩ,i(al)

+~βΩ,b(i−1)(al) · wiβn,i(al), (7)

β̂Ω,b(i)(al) = [(1− wi) · ~βΩ,b(i−1)(al)

+~βP (Ω),b(i−1)(al) · wi · βΩ,i(al)]

+~βΩ,b(i−1)(al) · wiβΩ,i(al), (8)

and

β̂P (Ω),b(i)(al) = (1− wi) · ~βP (Ω),b(i−1)(al). (9)

In Definition 1, P (Ω) represents the power set of
Ω, and it is satisfied that 0 6 βn,b(i)(al), βΩ,b(i)(al),
~βn,b(i)(al), ~βΩ,b(i)(al) 6 1, 0 6 ~βP (Ω),b(i)(al) 6 1,
and

∑N
n−1

~βn,b(i)(al) + ~βΩ,b(i)(al) + ~βP (Ω),b(i)(al) =
1 for i = 2, . . . , L recursively. Specifically, in
Eqs (7)–(9), (β̂n,b(i)(al), n = 1, . . . , N , β̂Ω,b(i)(al),
β̂P (Ω),b(i)(al)) means the unnormalized combination of
the first i− 1 iterative assessments (~βn,b(i−1)(al), n =

1, . . . , N, ~βΩ,b(i−1)(al), ~βP (Ω),b(i−1)(al)) and the ith
assessment (βn,i(al), n = 1, . . . , N, βΩ,i(al)). Noted
that the assessment (~βn,b(2)(al), n = 1, . . . , N ,
~βΩ,b(2)(al), ~βP (Ω),b(2)(al)) is obtained by combining
(βn,1(al), n = 1, . . . , N, βΩ,1(al)) and (βn,2(al), n =

1, . . . , N, βΩ,2(al)). In Eqs (4)–(6), (~βn,b(i)(al), n =

1, . . . , N, ~βΩ,b(i)(al), ~βP (Ω),b(i)(al)) means the nor-
malization of (β̂n,b(i)(al), n = 1, . . . , N , β̂Ω,b(i)(al),
β̂P (Ω),b(i)(al)), which considers both the ignorance on
the set of Ω and that on the power set of Ω. In Eqs (2)–
(3), (βn,b(i)(al), n = 1, . . . , N, βΩ,b(i)(al)) means the
normalization of (β̂n,b(i)(al), n = 1, . . . , N, β̂Ω,b(i)

(al)), which considers the ignorance on the set of Ω.

2.3. Modeling of MCDM problems using interval-
valued belief distributions

Due to the lack of sufficient data and knowledge or
the nature of the decision problems under considera-
tion, in some situations, a decision maker can only pro-
vide interval-valued belief distributions (IVBDs) as the
evaluations of alternatives. For example, when a radiol-
ogist provides the diagnostic category in thyroid imag-
ing reporting and data system published by Horvath et
al. [34] for the thyroid nodule of a patient, he or she
only reports the interval-valued cancer risk rather than
the precise cancer risk of the patient.

In this situation, individual IVBDs are represented
by B(ei(al)) = {(Hn, [β

−
n,i(al), β

+
n,i(al)]), n = 1,

. . . , N ; (Ω, [β−Ω,i(al), β
+
Ω,i(al)])} [11]. If it is satisfied

that
∑N
n=1 β

−
n,i(al) + β−Ω,i(al) 6 1 and

∑N
n=1 β

+
n,i

(al) + β+
Ω,i(al) > 1, the IVBDs are called valid [35].

Otherwise, they are invalid and cannot be used to gen-
erate valid belief distributions. Valid IVBDs are said to
be normalized [35] only when it is satisfied that(

N∑
m=1

β+
m,i(al) + β+

Ω,i(al)

)
− (β+

n,i(al)− β
−
n,i(al))

> 1, n = 1, . . . , N, (10)(
N∑
m=1

β+
m,i(al) + β+

Ω,i(al)

)
− (β+

Ω,i(al)− β
−
Ω,i(al))

> 1, (11)(
N∑
m=1

β−m,i(al) + β−Ω,i(al)

)
+ (β+

n,i(al)− β
−
n,i(al))

6 1, n = 1, . . . , N, and (12)(
N∑
m=1

β−m,i(al) + β−Ω,i(al)

)
+ (β+

Ω,i(al)− β
−
Ω,i(al))

6 1. (13)

Normalized IVBDs are valid but valid IVBDs may
be unnormalized [35].

From normalized individual IVBDs, a pair of op-
timization problems is constructed by using the ER
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rule to generate the aggregated IVBD B(al) =
{(Hn, [β−n (al), β

+
n (al)]), n = 1, . . . , N ; (Ω, [β−Ω (al),

β+
Ω (al)])} [36,37].

MIN/MAX βn(al) (14)

s.t. β−n,i(al) 6 β∗n,i(al) 6 β+
n,i(al), (15)

β−Ω,i(al) 6 β∗Ω,i(al) 6 β+
Ω,i(al), (16)

N∑
n=1

β∗n,i(al) + β∗Ω,i(al) = 1. (17)

In the pair of optimization problems, β∗n,i(al) and
β∗Ω,i(al) represent decision variables, which form be-
lief distributions limited to IVBDs. When the objec-
tive of the pair of optimization problems is changed to
βΩ(al), β−Ω (al) and β+

Ω (al) can be obtained. From the
aggregated IVBD and the utilities of grades u(Hn)(n =
1, . . . , N), the following optimization model is con-
structed to determine the minimum and maximum ex-
pected utilities u−(al) and u+(al) [36,37].

MIN
N∑
n=2

β∗n(al)u(Hn) + (β∗1(al) + β∗Ω(al))u(H1)

(18)

s.t. β−n (al) 6 β∗n(al) 6 β+
n (al), (19)

β−Ω (al) 6 β∗Ω(al) 6 β+
Ω,i(al), (20)

N∑
n=1

β∗n(al) + β∗Ω(al) = 1. (21)

Solving this model, in which β∗n(al) and β∗Ω(al) rep-
resent decision variables, generates the optimal u−(al).
When the objective of this model is changed to “MAX∑N−1
n=1 β

∗
n(al)u(Hn)+(β∗N (al)+β∗Ω(al))u(HN )”, the

optimal u+(al) can be obtained. If the aggregated
IVBD is not required to analyze the decision problem
under consideration, the optimization model shown in
Eqs (18)–(21) can be modified as follows to determine
u−(al) and u+(al) [36,37].

MIN
N∑
n=2

βn(al)u(Hn) + (β1(al) + βΩ(al))u(H1)

(22)

s.t. β−n,i(al) 6 β∗n,i(al) 6 β+
n,i(al), (23)

β∗Ω,i(al) 6 β+
Ω,i(al), (24)

N∑
n=1

β∗n,i(al) + β∗Ω,i(al) = 1. (25)

The combination of individual belief distributions
by using the ER rule to generate the aggregated be-

lief distribution B(al) = {(Hn, βn(al)), n = 1, . . . ,
N ; (Ω, βΩ(al))} is implicitly involved in this optimiza-
tion model. Similarly, the optimal u−(al) can be ob-
tained from solving this model and the optimal u+(al)
from solving the model with the objective of “MAX∑N−1
n=1 βn(al)u(Hn) + (βN (al) + βΩ(al))u(HN )”.

3. Four evolutionary algorithms for MCDM with
IVBDs

When the number of criteria L and the number of
grades N are large, solving the optimization problems
shown in Eqs (14)–(17) and (22)–(25) becomes dif-
ficult. Evolutionary algorithms are helpful for find-
ing solutions to the optimization problems with large
L and N . A key issue is to find the evolutionary al-
gorithm with higher accuracy and efficiency among
feasible algorithms. To address this issue, four evo-
lutionary algorithms (GA, DE algorithm, PSO algo-
rithm, and GSA) are compared. These algorithms are
selected because many of their extensions have been
developed to handle real problems in different fields.
For GA, its chromosome coding [38,39] and struc-
ture [40] were improved and it was used to conduct
combinational dispatching decision [41], ischemic beat
classification [42], and the generation of trading strate-
gies for stock markets [43]. As to DE algorithm, its
neighborhood-based mutation operator [44], dynamic
parameter selection [45], self-adapting control parame-
ters [46], and hybrid cross-generation mutation opera-
tion [47] have been developed, and it was used to solve
permutation flow shop scheduling problems [48] and
periodic railway timetable scheduling problems [49].
With respect to PSO algorithm, its stability [50] and
impacts of coefficients on movement patterns [51]
were analyzed, and it was used to conduct cancer
classification [52] and population classification in fire
evacuation [53], and model the gene regulatory net-
works [54]. Concerning about GSA, its nearest neighbor
scheme [55] was developed, and it was used to conduct
feature selection for face recognition [56], unit com-
mitment in power system operation [57], and parameter
identification for a water turbine regulation system [58].

In the following, the original processes of the four
evolutionary algorithms for solving the pair of optimiza-
tion problems shown in Eqs (14)–(17) are presented to
facilitate comparing the accuracies and efficiencies of
the four algorithms. When the objective in Eq. (14) is
changed to that in Eq. (22), the similar processes of
the four algorithms can be used to determine the mini-
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mum and maximum expected utilities, which are omit-
ted to avoid repetition. To guarantee a fair comparison,
extensions of the four algorithms are not adopted.

3.1. GA process for combining individual IVBDs

The GA process for combining individual IVBDs is
presented as follows.

Step 1: Initialization
For the pair of optimization problems in Eqs (14)–

(17), the jth chromosome in the tth (t = 1) iteration is
represented by

Cj,t(al) = {(βj,t1,1(al), . . . , β
j,t
N,1(al), β

j,t
Ω,1(al)), . . . ,

(βj,t1,L(al), . . . , β
j,t
N,L(al), β

j,t
Ω,L(al))}. (26)

Randomly generating NG chromosomes completes
the initialization of the GA process. Assume that the
maximum number of iterations is Nt. The crossover
probability threshold CGA and the mutation probability
threshold MGA are set as 0.6 and 0.1, respectively.

Step 2: Performance evaluation
When the lower bound of βn(al) is optimized, the

fitness value of the chromosome Cj,t(al) is set as
F j,t(al) = βn(al). Conversely, it is set as F j,t(al) =
−βn(al) to optimize the upper bound of βn(al). As in-
dicated in Section 2.1, βn(al) is limited to [0, 1], which
means that F j,t(al) is limited to [−1, 1].

Step 3: Selection
The selection probability of the chromosomeCj,t(al)

is defined as

pj,t(al) =
1− (F j,t(al)− (−1))/2∑NG

k=1 (1− (F k,t(al)− (−1))/2)
, (27)

where 1−(F j,t(al)−(−1))/2 indicates that the smaller
the fitness value F j,t(al), the larger the possibility of
selecting the chromosome Cj,t(al). Given a random se-
lection threshold δt(al), the chromosome with a selec-
tion probability larger than δt(al) is retained to perform
crossover and mutation operations.

Step 4: Crossover
After selection, two chromosomes Cj,t(al) and

Ck,t(al) are randomly selected first. The belief distri-
butions (βj,t1,i1(al), . . . , β

j,t
N,i1(al), β

j,t
Ω,i1(al)) and (βk,t1,i1

(al), . . . , β
k,t
N,i1(al), β

k,t
Ω,i1(al)) in the two chromosomes

are randomly selected to perform the crossover oper-
ation. Given a random indicator of crossover CI , if

CI > CGA, the crossover operation continues; oth-
erwise, it ends. When CI > CGA, given a random
crossover coefficient γt(al), the crossed belief distribu-
tions are obtained as

β̂j,tn,i1(al) = γt(al) · βk,tn,i1(al)

+(1− γt(al)) · βj,tn,i1(al), (28)

β̂k,tn,i1(al) = γt(al) · βj,tn,i1(al)

+(1− γt(al)) · βk,tn,i1(al), (29)

β̂j,tΩ,i1(al) = γt(al) · βk,tΩ,i1(al)

+(1− γt(al)) · βj,tΩ,i1(al), and (30)

β̂k,tn,i1(al) = γt(al) · βj,tΩ,i1(al)

+(1− γt(al)) · βk,tΩ,i1(al). (31)

Step 5: Mutation
After the selection and crossover operations, a chro-

mosome Cj,t(al) and one belief distribution of the
chromosome (βj,t1,i1(al), . . . , β

j,t
N,i1(al), β

j,t
Ω,i1(al)) are

randomly selected to perform the mutation operation.
Given a random indicator of mutation MI , if MI >
MGA, the crossover operation continues; otherwise, it
ends. When MI > MGA, given a random mutation
probability ηt(al), when ηt(al) > 0.5, the belief de-
gree βj,tn,i1(al) and the ignorance βj,tΩ,i1(al) are mutated
to be increased to

~βj,tn,i1 = βj,tn,i1(al) + ∆βj,tn,i1(al) and (32)

~βj,tΩ,i1 = βj,tΩ,i1(al) + ∆βj,tΩ,i1(al), (33)

where

∆βj,tn,i1(al) = (β+
n,i1(al)− βj,tn,i1(al))

·(1− ηt(al)(1−t/Nt)
2

) and (34)

∆βj,tΩ,i1(al) = (β+
Ω,i1(al)− βj,tΩ,i1(al))

·(1− ηt(al)(1−t/Nt)
2

). (35)

As presented in Section 2.1,
∑N
n=1 β

j,t
n,i1(al) +

βj,tΩ,i1(al) = 1 must be satisfied for the normal-
ized belief distribution, so the increased quantity∑N
n=1 ∆βj,tn,i1(al)+∆βj,tΩ,i1(al) must be removed from

the belief distribution (~βj,t1,i1(al), . . . , ~β
j,t
N,i1(al), ~β

j,t
Ω,i1

(al)). By following the rule that the larger βj,tn,i1(al)−
β−n,i1(al) (or βj,tΩ,i1(al) − β−Ω,i1(al)), the more the de-
crease in ~βj,tn,i1(al) (or ~βj,tΩ,i1(al)) is, the normalized be-
lief distribution is obtained as
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β̃j,tn,i1(al) = ~βj,tn,i1(al) (36)

−

(
N∑
n=1

∆βj,tn,i1(al) + ∆βj,tΩ,i1(al)

)
·

~βj,t
n,i1(al)−β−

n,i1(al)∑N
m=1 (~βj,t

m,i1(al)−β−
m,i1(al))+(~βj,t

Ω,i1(al)−β−
Ω,i1(al))

and

β̃j,tΩ,i1(al) = ~βj,tΩ,i1(al) (37)

−

(
N∑
n=1

∆βj,tn,i1(al) + ∆βj,tΩ,i1(al)

)
·

~βj,t
Ω,i1(al)−β−

Ω,i1(al)∑N
m=1 (~βj,t

m,i1(al)−β−
m,i1(al))+(~βj,t

Ω,i1(al)−β−
Ω,i1(al))

When ηt(al) 6 0.5, the belief degree βj,tn,i1(al) and
the ignorance βj,tΩ,i1(al) are mutated to be decreased to

~βj,tn,i1(al) = βj,tn,i1(al)−∆βj,tn,i1(al) and (38)

~βj,tΩ,i1(al) = βj,tΩ,i1(al)−∆βj,tΩ,i1(al), (39)

where

∆βj,tn,i1(al) = (βj,tn,i1(al)− β−n,i1(al)) ·

(1− ηt(al)(1−t/Nt)
2

) (40)

and

∆βj,tΩ,i1(al) = (βj,tΩ,i1(al)− β−Ω,i1(al)) ·

(1− ηt(al)(1−t/Nt)
2

). (41)

By following a similar rule, the normalized belief
distribution is obtained as

β̃j,tn,i1(al) = ~βj,tn,i1(al) (42)

+

(
N∑
n=1

∆βj,tn,i1(al) + ∆βj,tΩ,i1(al)

)
·

β+
n,i1(al)−~βj,t

n,i1(al)∑N
m=1 (β+

m,i1(al)−~βj,t
m,i1(al))+(β+

Ω,i1(al)−~βj,t
Ω,i1(al))

and

β̃j,tΩ,i1(al) = ~βj,tΩ,i1(al) (43)

+

(
N∑
n=1

∆βj,tn,i1(al) + ∆βj,tΩ,i1(al)

)
·

β+
Ω,i1(al)−~βj,t

Ω,i1(al)∑N
m=1 (β+

m,i1(al)−~βj,t
m,i1(al))+(β+

Ω,i1(al)−~βj,t
Ω,i1(al))

Note that as 1 − ηt(al)
(1−t/Nt)

2

is certainly lim-
ited to [0, 1] when 0 6 ηt(al) 6 1, ~βj,tn,i1(al) in

Eqs (32) and (38) and ~βj,tΩ,i1(al) in Eqs (33) and
(39) are certainly limited to [β−n,i1(al), β

+
n,i1(al)] and

[β−Ω,i1(al), β
+
Ω,i1(al)], respectively.

Step 6: Update
After the selection, crossover, and mutation opera-

tions are performed, the fitness values of all chromo-
somes are recalculated to update the best objective with
the corresponding solution.

Step 7: Termination
If Nt iterations have been completed, the best objec-

tive with the corresponding solution is obtained as the
lower bound or upper bound of βn(al). Otherwise, go
to Step 3.

3.2. DE algorithm process for combining individual
IVBDs

The DE algorithm process for combining individual
IVBDs is presented as follows.

Step 1: Initialization
For the pair of optimization problems in Eqs (14)–

(17), the jth individual in the tth iteration (t = 1) is
represented by

Ij,t(al) = {(βj,t1,1(al), . . . , β
j,t
N,1(al), β

j,t
Ω,1(al)), . . . ,

(βj,t1,L(al), . . . , β
j,t
N,L(al), β

j,t
Ω,L(al))}. (44)

The ND individuals are randomly generated and the
maximum number of iterationsNt is set. The coefficient
of mutation operation md and the crossover probability
threshold CDE are set as 0.9 and 0.6, respectively.

Step 2: Performance evaluation
Through the same process as Section 3.1, the fitness

value of the individual Ij,t(al) is obtained.

Step 3: Mutation
For the individual Ij,t(al), three individuals are ran-

domly selected, which are Ik1,t(al), Ik2,t(al), and
Ik3,t(al). From the three individuals, the individual
Ij,t(al) is mutated to be

~βj,tn,i(al) = βk1,t
n,i (al) +md · (βk2,t

n,i (al)− βk3,t
n,i (al))

(45)

and

~βj,tΩ,i(al) = βk1,t
Ω,i (al) +md · (βk2,t

Ω,i (al)− βk3,t
Ω,i (al)),

i = 1, . . . , L (46)
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To guarantee that the mutated belief distribution
is feasible, ~βj,tn,i(al) and ~βj,tΩ,i(al) are strictly lim-
ited to [β−n,i(al), β

+
n,i(al)] and [β−Ω,i(al), β

+
Ω,i(al)]. This

strict requirement, however, does not guarantee that∑N
n=1

~βj,tn,i1(al)+~β
j,t
Ω,i1(al)=1. When

∑N
n=1

~βj,tn,i1(al)

+~βj,tΩ,i1(al) > 1 or
∑N
n=1

~βj,tn,i1(al) + ~βj,tΩ,i1(al) <
1, Eqs (36)–(37) or Eqs (42)–(43) can be simi-
larly used to generate the normalized belief dis-
tribution (β̃j,t1,i(al), . . . , β̃

j,t
N,i(al), β̃

j,t
Ω,i(al)) satisfying∑N

n=1
~βj,tn,i1(al) + ~βj,tΩ,i1(al) = 1.

Step 4: Crossover
Given a random indicator of crossover CI , the

crossed belief distribution derived from the mutated one
and the original one is obtained as

β̂j,tn,i(al) =

{
β̃j,tn,i(al) CI 6 CDE

βj,tn,i1(al) others
(47)

and

β̂j,tΩ,i(al) =

{
β̃j,tΩ,i(al) CI 6 CDE

βj,tΩ,i1(al) others
(48)

Then, the crossed individual Îj,t(al) is formed by
the crossed belief distributions (β̂j,t1,i(al), . . . , β̂

j,t
N,i(al),

β̂j,tΩ,i(al))(i = 1, . . . , L).

Step 5: Selection
If the fitness value of the crossed individual Îj,t(al)

is better than that of Ij,t(al), Ij,t(al) is set as Îj,t(al).
Otherwise, Ij,t(al) remains unchanged.

Step 6: Update
After the mutation, crossover, and selection opera-

tions are performed, the fitness values of all individuals
are recalculated to update the best objective with the
corresponding solution.

Step 7: Termination
If Nt iterations are completed, the best objective

with the corresponding solution is obtained as the lower
bound or upper bound of βn(al). Otherwise, go to
Step 3.

3.3. PSO algorithm process for combining individual
IVBDs

The PSO algorithm process for combining individual
IVBDs is presented as follows.

Step 1: Initialization
For the pair of optimization problems in Eqs (14)–

(17), the position and the velocity of the jth particle in
the tth (t = 1) iteration are represented respectively as

P j,t(al) = {(βj,t1,1(al), . . . , β
j,t
N,1(al), β

j,t
Ω,1(al)), . . . ,

(βj,t1,L(al), . . . , β
j,t
N,L(al), β

j,t
Ω,L(al))} (49)

and

V j,t(al) = {(vj,t1,1(al), . . . , v
j,t
N,1(al), v

j,t
Ω,1(al)), . . . ,

(vj,t1,L(al), . . . , v
j,t
N,L(al), v

j,t
Ω,L(al))}. (50)

The NP particles are randomly generated with po-
sitions and velocities, and the maximum number of it-
erations Nt is set. Meanwhile, the inertia coefficient
wp, the particle coefficient to track its historical best
position c1, and the particle coefficient to track the his-
torical best position of all particles c2 are set as 1, 2,
and 2, respectively.

Step 2: Performance evaluation
Through the same process as Section 3.1, the fitness

value of each particle is obtained. From the fitness val-
ues of all particles, the initial value of the best posi-
tion of each particle and that of the best position of
all particles are also obtained as P̄ j,t(al) and P̄ t(al),
respectively. Here, we have from Eq. (49) that

P̄ j,t(al) = {(β̄j,t1,1(al), . . . , β̄
j,t
N,1(al), β̄

j,t
Ω,1(al)),

. . . , (β̄j,t1,L(al), . . . , β̄
j,t
N,L(al), β̄

j,t
Ω,L(al))}

and

P̄ t(al) = {(β̄t1,1(al), . . . , β̄
t
N,1(al), β̄

t
Ω,1(al)),

. . . , (β̄t1,L(al), . . . , β̄
t
N,L(al), β̄

t
Ω,L(al))}.

Step 3: Position update
Two random real numbers r1 and r2 limited to [0, 1]

are generated to constrain c1 and c2, respectively. From
wp, c1, c2, r1, r2, P̄

j,t(al), and P̄ t(al), the velocity of
the particle P j,t(al), V j,t(al) is updated to be

vj,t+1
n,i (al) = wp · vj,tn,i(al) + c1 · r1 · (β̄j,tn,i(al)−

βj,tn,i(al)) + c2 · r2 · (β̄tn,i(al)− β
j,t
n,i(al)) (51)

and

vj,t+1
Ω,i (al) = wp · vj,tΩ,i(al) + c1 · r1 · (β̄j,tΩ,i(al)−

βj,tΩ,i(al)) + c2 · r2 · (β̄tΩ,i(al)− β
j,t
Ω,i(al)). (52)

To avoid extreme velocity, vj,t+1
n,i (al) is required

to be limited to [−0.25 · (β+
n,i(al) − β

−
n,i(al)), 0.25 ·

(β+
n,i(al)− β

−
n,i(al))].
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From the updated velocity of the particle P j,t(al),
the position of the jth particle is updated to be

βj,t+1
n,i (al) = βj,tn,i(al) + vj,t+1

n,i (al) and (53)

βj,t+1
Ω,i (al) = βj,tΩ,i(al) + vj,t+1

Ω,i (al). (54)

To guarantee the feasibility of the updated posi-
tion of the jth particle, βj,t+1

n,i (al) and βj,t+1
Ω,i (al)

are required to be limited to [β−n,i(al), β
+
n,i(al)] and

[β−Ω,i(al), β
+
Ω,i(al)], respectively.

The feasible updated position of the jth particle may
not guarantee that

∑N
n=1 β

j,t+1
n,i (al) + βj,t+1

Ω,i (al) = 1.
On the condition that

∑N
n=1 β

j,t+1
n,i (al) +βj,t+1

Ω,i (al) >

1 or
∑N
n=1 β

j,t+1
n,i (al) + βj,t+1

Ω,i (al) < 1, Eqs (36)–
(37) or Eqs (42)–(43) can be similarly used to generate
the normalized position {(βj,t+1

1,i (al), . . . , β
j,t+1
N,i (al),

βj,t+1
Ω,i (al)), i = 1, . . . , L}.

Step 4: Best position update
After the positions of all particles are updated, the

fitness values of all particles are recalculated to update
the historical best position of each particle and the his-
torical best position of all particles to be P̄ j,t+1(al) and
P̄ t+1(al), respectively.

Step 5: Termination
If Nt iterations have been completed, the best posi-

tion of each particle and the best position of all particles
are obtained, in which the best position of all particles
is used to generate the lower bound or upper bound of
βn(al). Otherwise, go to Step 3.

3.4. GSA process for combining individual IVBDs

The GSA process for combining individual IVBDs
is presented as follows.

Step 1: Initialization
For the pair of optimization problems in Eqs (14)–

(17), the position and velocity of the jth agent (mass) in
the tth (t = 1) iteration are represented by P j,t(al) and
V j,t(al), respectively, with the help of Eqs (49)–(50).

The NS agents are randomly generated and the max-
imum number of iterationsNt is set. The small constant
ε involved in the calculation of the force acting on one
mass from another is set as 0.001.

Step 2: Performance evaluation
Through the same process as Section 3.1, the fitness

value of each agent is obtained.

Step 3: Update of gravitational coefficient and inertial
mass

In the tth iteration, the gravitational coefficient is
calculated by Gt = 100 · e−20·t/Nt . From the fitness
values of all masses F j,t(al) (j = 1, . . . , NS), the best
and worst fitness values are obtained as

F t+(al) = min
j∈{1,...,NS}

F j,t(al) (55)

and

F t−(al) = max
j∈{1,...,NS}

F j,t(al), (56)

respectively. By using F t+(al) and F t−(al), the iner-
tial mass of the jth agent is calculated as

M j,t(al) =
mj,t(al)∑NS

k=1m
k,t(al)

, (57)

where

mj,t(al) =
F j,t(al)− F t−(al)

F t+(al)− F t−(al)
.

The passive and active gravitational masses
Mpj,t(al) and Maj,t(al) are equal to M j,t(al).

Step 4: Calculation of the total force acting on the jth
agent

In the tth iteration, the force acting on the jth agent
from the kth agent is calculated as

F jk,tn,i (al) = Gt · M
pj,t(al) ·Mak,t(al)

Rjk,t(al) + ε

·(βk,tn,i(al)− β
j,t
n,i(al)) (58)

and

F jk,tΩ,i (al) = Gt · M
pj,t(al) ·Mak,t(al)

Rjk,t(al) + ε

·(βk,tΩ,i(al)− β
j,t
Ω,i(al)), (59)

where Rjk,t(al) = ‖Aj,t(al), Ak,t(al)‖2 represents
the Euclidean distance between the jth and kth agents.

Assume that KB is the set of first K agents with
the biggest inertial mass. As K is linearly decreased
to 1 in the last iteration, it is set as the integer part of
(NS − 1) − (NS − 1) · (t − 1)/Nt. Then, the total
force acting on the jth agent from the agents in KB is
calculated as

F j,tn,i(al) =
∑

k∈KB ,k 6=j

rjk,tn,i (al) · F jk,tn,i (al) and (60)

F jk,tΩ,i (al) =
∑

k∈KB ,k 6=j

rjk,tΩ,i (al) · F jk,tΩ,i (al), (61)

where rjk,tn,i (al) and rjk,tΩ,i (al) are random real numbers
limited to [0, 1].
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Step 5: Calculation of acceleration and velocity
The acceleration of the jth agent in the tth iteration

is calculated as

aj,tn,i(al) =
F j,tn,i(al)

M j,t(al)
and (62)

aj,tΩ,i(al) =
F j,tΩ,i(al)

M j,t(al)
. (63)

Step 6: Update of the agent’s position
From the acceleration of the jth agent, the velocity

of the jth agent is updated to be

vj,t+1
n,i (al) = rj,tn,i(al) · v

j,t
n,i(al) + aj,tn,i(al) and (64)

vj,t+1
Ω,i (al) = rj,tΩ,i(al) · v

j,t
Ω,i(al) + aj,tΩ,i(al), (65)

where rj,tn,i(al) and rj,tΩ,i(al) are random real numbers
limited to [0, 1].

The resulting velocity is then used to calculate the
updated position of the jth agent as

βj,t+1
n,i (al) = βj,tn,i(al) + vj,t+1

n,i (al) and (66)

βj,t+1
Ω,i (al) = βj,tΩ,i(al) + vj,t+1

Ω,i (al). (67)

Through the same process as Step 3 of Section 3.3,
the normalized position of the jth agent is obtained,
which is ensured to be within the feasible region of the
optimization problems in Eqs (14)–(17).

Step 7: Termination
If Nt iterations have been completed, the best posi-

tion of each agent is obtained, which is used to calculate
the fitness value of each agent and then generate the
lower bound or upper bound of βn(al). Otherwise, go
to Step 3.

4. Comparison for generating aggregated IVBDs

For a MCDM problem modeled by IVBDs, the ag-
gregated IVBD of each alternative is usually used to
analyze the problem. Although the final solution cannot
be directly generated from the aggregated IVBDs of
alternatives in most cases, beneficial analyses can be
generally obtained. More importantly, the aggregated
IVBDs of alternatives can be combined with the utilities
of grades u(Hn) (n = 1, . . . , N), to generate the min-
imum and maximum expected utilities, which are used
to generate a solution to the problem with the help of a
decision rule. In view of the importance of generating
the aggregated IVBDs of alternatives, some problems
with different numbers of criteria and grades are used
to compare the four evolutionary algorithms presented
in Section 3.

4.1. Aggregation comparison of the four evolutionary
algorithms by using specified IVBDs

Suppose that all individual IVBDs are normalized in
a MCDM problem, which makes Eqs (10)–(13) hold.
There are two types of situations in which IVBDs are
normalized. One is that(

N∑
m=1

β+
m,i(al) + β+

Ω,i(al)

)
−(β+

n,i(al)− β
−
n,i(al)) = 1

and (
N∑
m=1

β+
m,i(al) + β+

Ω,i(al)

)
−(β+

Ω,i(al)− β
−
Ω,i(al)) = 1,

or (
N∑
m=1

β−m,i(al) + β−Ω,i(al)

)
+(β+

n,i(al)− β
−
n,i(al)) = 1

and (
N∑
m=1

β−m,i(al) + β−Ω,i(al)

)
+(β+

Ω,i(al)− β
−
Ω,i(al)) = 1,

while the other is that(
N∑
m=1

β+
m,i(al) + β+

Ω,i(al)

)
−(β+

n,i(al)− β
−
n,i(al)) > 1,(

N∑
m=1

β+
m,i(al) + β+

Ω,i(al)

)
−(β+

Ω,i(al)− β
−
Ω,i(al)) > 1,(

N∑
m=1

β−m,i(al) + β−Ω,i(al)

)
+(β+

n,i(al)− β
−
n,i(al)) < 1, and(

N∑
m=1

β−m,i(al) + β−Ω,i(al)

)
+(β+

Ω,i(al)− β
−
Ω,i(al)) < 1.

The IVBDs in the first type of situation are regarded
as specified and those in the second type of situation
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Table 1
The optimal β−

1 (al) and the solution time using the four algorithms to combine specified
IVBDs with 12 sets of (x, L,N)

Parameters GA DE PSO GSA
(0.3, 10, 5) (0.0782, 0.555) (0.0625, 2.891) (0.0376, 0.801) (0.0662, 20.822)
(0.3, 14, 7) (0.0512, 0.735) (0.0415, 5.765) (0.0328, 1.439) (0.0594, 38.282)
(0.3, 18, 9) (0.0590, 0.987) (0.0320, 9.674) (0.0270, 2.230) (0.0473, 60.450)
(0.3, 22, 11) (0.0291, 1.268) (0.0262, 15.459) (0.0224, 3.133) (0.0482, 87.444)
(0.3, 26, 13) (0.0374, 1.520) (0.0217, 31.423) (0.0193, 4.333) (0.0339, 121.479)
(0.3, 30, 15) (0.0400, 1.897) (0.0184, 52.084) (0.0175, 5.574) (0.0405, 159.405)
(0.8, 10, 5) (0.1431, 0.531) (0.1327, 2.938) (0.1287, 0.903) (0.1308, 21.081)
(0.8, 14, 7) (0.1067, 0.722) (0.1008, 5.812) (0.0979, 1.513) (0.1051, 37.769)
(0.8, 18, 9) (0.0822, 0.978) (0.0796, 9.740) (0.0786, 2.232) (0.0842, 60.748)
(0.8, 22, 11) (0.0733, 1.238) (0.0666, 15.399) (0.0657, 3.254) (0.0730, 87.954)
(0.8, 26, 13) (0.0631, 1.568) (0.0569, 24.340) (0.0565, 4.325) (0.0629, 121.029)
(0.8, 30, 15) (0.0546, 1.815) (0.0497, 55.450) (0.0495, 5.520) (0.0529, 160.301)

as general. In the following, specified IVBDs are first
used as foundations to compare the accuracies [21] and
efficiencies [14] of the four evolutionary algorithms
presented in Section 3 for combining individual IVBDs.

We focus on the aggregation of specified IVBDs
satisfying(

N∑
m=1

β−m,i(al) + β−Ω,i(al)

)
+(β+

n,i(al)− β
−
n,i(al)) = 1

and (
N∑
m=1

β−m,i(al) + β−Ω,i(al)

)
+(β+

Ω,i(al)− β
−
Ω,i(al)) = 1.

For simplicity, assume that

[β−n,i(al), β
+
n,i(al)] = [β−Ω,i(al), β

+
Ω,i(al)]

=

[
x

N + 1
, 1− N · x

N + 1

]
with 0 6 x 6 1, which indicates that(

N∑
m=1

β+
m,i(al) + β+

Ω,i(al)

)
−(β+

n,i(al)− β
−
n,i(al)) = N − (N − 1) · x > 1

and(
N∑
m=1

β+
m,i(al) + β+

Ω,i(al)

)
−(β+

Ω,i(al)− β
−
Ω,i(al)) = N − (N − 1) · x > 1.

With this assumption, without loss of generality, four
evolutionary algorithms are used to determine β−1 (al)
and β+

1 (al) by solving the pair of optimization prob-

lems shown in Eqs (14)–(17) with different values of x,
L, and N . The optimization results generated using the
four algorithms can be directly used to compare their
accuracies, and the solution time of the four algorithms
can be used to compare their efficiencies.

To fairly compare the four algorithms, it is specified
that NG = ND = NP = NS = 100 and Nt = 400.
Meanwhile, the values of x are set as 0.3 and 0.8, the
value of N is changed from 5 to 15 with a step of 2,
and the value of L is set as 2 ·N . The criteria weights
can be determined by various methods, such as di-
rect rating [59], point allocation [60], the eigenvector
method [61], and the best-worst method [62]. For con-
venience, the criteria weights are set as {wi = 1/L, i =
1, . . . , L} in the comparison of the four algorithms. Un-
der the conditions, the generation of the optimal β−1 (al)
and β+

1 (al) from the four algorithms is implemented
using C of VS. Net 2017 on a personal computer with
an Intel Core (TM) Duo i7-6700 CPU running at 3.4
GHz with 16 GB of RAM and a 64-bits Windows 7
operating system. The optimal β−1 (al) and the solution
time using the four algorithms with 12 sets of (x, L,N)
are presented in Table 1; the optimal β+

1 (al) and the
solution time using the four algorithms with 12 sets of
(x, L,N) are presented in Table 2. The cell (0.0782,
0.555) in Table 1 means that the optimal β−1 (al) is ob-
tained as 0.0782 by using GA with a solution time of
0.555 seconds on the condition that (x, L,N) is set
as (0.3, 10, 5). Other cells in Tables 1 and 2 can be
similarly understood.

Suppose that the optimal values of β−1 (al) and
β−1 (al) generated using the four evolutionary algo-
rithms to combine specified IVBDs are represented by
βG−1 (al), β

D−
1 (al), β

P−
1 (al), β

S−
1 (al), β

G+
1 (al), β

D+
1

(al), β
P+
1 (al), and βS+

1 (al). Table 1 shows that βP−1

(al) < max{βG−1 (al), β
G−
1 (al), β

S−
1 (al)} always
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Table 2
The optimal β+

1 (al) and the solution time using the four algorithms to combine specified
IVBDs with 12 sets of (x, L,N)

Parameters GA DE PSO GSA
(0.3, 10, 5) (0.3850, 0.504) (0.4790, 2.999) (0.8115, 0.877) (0.4714, 24.298)
(0.3, 14, 7) (0.2941, 0.774) (0.3896, 5.786) (0.8018, 1.480) (0.3740, 38.316)
(0.3, 18, 9) (0.2166, 0.979) (0.2923, 9.584) (0.7204, 2.239) (0.3326, 60.755)
(0.3, 22, 11) (0.2081, 1.223) (0.2789, 15.188) (0.7305, 3.210) (0.3090, 87.262)
(0.3, 26, 13) (0.2098, 1.566) (0.3248, 32.706) (0.6827, 4.340) (0.2828, 121.762)
(0.3, 30, 15) (0.1593, 1.890) (0.3135, 45.742) (0.5694, 5.483) (0.2701, 160.274)
(0.8, 10, 5) (0.2181, 0.525) (0.2451, 3.033) (0.3564, 0.872) (0.3062, 21.235)
(0.8, 14, 7) (0.1621, 0.746) (0.1805, 5.750) (0.3052, 1.450) (0.2447, 38.103)
(0.8, 18, 9) (0.1404, 0.994) (0.1591, 9.789) (0.2752, 2.258) (0.2009, 60.821)
(0.8, 22, 11) (0.1123, 1.236) (0.1416, 15.172) (0.2555, 3.216) (0.1790, 88.943)
(0.8, 26, 13) (0.0982, 1.553) (0.1308, 23.824) (0.2504, 4.281) (0.1661, 120.884)
(0.8, 30, 15) (0.0907, 1.884) (0.1305, 52.407) (0.2388, 5.463) (0.1570, 157.929)

holds and βD−1 (al) < βS−1 (al) < βG−1 (al) holds in
most cases. Given this fact, AP > AD > AS > AG,
where AP , AG, AD, and AS represent the accuracies
of PSO, GA, DE, and GSA for generating the opti-
mal β−1 (al). On the other hand, Table 1 also shows
that TG < TP � TD � TS , where TG, TP , TD, and
TS represent the solution time for generating the op-
timal β−1 (al) using the four algorithms (the notation
‘�’ denotes ‘is greatly less than’). This indicates that
EG > EP � ED � ES , where EG, EP , ED, and ES
represent the efficiencies of the four algorithms for gen-
erating the optimal β−1 (al) (the notation ‘�’ denotes
‘is greatly better than’). In considering the accuracy and
efficiency results, PSO algorithm is the best for gener-
ating the optimal β−1 (al) among the four algorithms.

As for the optimal β+
1 (al), Table 2 shows that when

x = 0.3, βP+
1 (al) is clearly larger than βG+

1 (al),
βD+

1 (al), and βD+
1 (al), and βD+

1 (al) > βS+
1 (al) >

βG+
1 (al) holds in most cases. This indicates that AP >
AD > AS > AG. The solution time for gener-
ating the optimal β+

1 (al) using the four algorithms
also satisfies that TG < TP � TD � TS , which
means that EG > EP � ED � ES . When x =

0.8, the relationship between the optimal values of
β+

1 (al) generated using the four algorithms changes to
βP+

1 (al) > βS+
1 (al) > βD+

1 (al) > βG+
1 (al), which

means that AP > AS > AD > AG. The relationship
between the efficiencies of the four algorithms is the
same as that in the situation where x = 0.3. To fo-
cus on a balance between accuracy and efficiency, PSO
algorithm is the best among the four algorithms for
generating the optimal β+

1 (al). As a whole, the above
experiments indicate that PSO algorithm is more suit-
able to combine specified IVBDs than the other three
algorithms.

4.2. Aggregation comparison of the four evolutionary
algorithms using general IVBDs

For a MCDM problem with general IVBDs, suppose
that

[β+
1 (al), β

+
n,i(al)] =

[
0.5 · x
N + 1

+
(n− 1) · x
N · (N + 1)

,

0.5 · (2− x)

N + 1
+

(n− 1) · (2− x)

N · (N + 1)

]
and

[β−Ω,i(al), β
+
Ω,i(al)] =

[
1.5 · x
N + 1

,
1.5 · (2− x)

N + 1

]
with 0 6 x 6 1. In this situation it can be obtained that(

N∑
m=1

β−m,i(al) + β−Ω,i(al)

)
+(β+

n,i(al)− β
−
n,i(al))

= x+
3N − 2

N(N + 1)
· (1− x) < 1,(

N∑
m=1

β−m,i(al) + β−Ω,i(al)

)
+(β+

Ω,i(al)− β
−
Ω,i(al))

= x+
3 · (1− x)

N + 1
< 1,(

N∑
m=1

β+
m,i(al) + β+

Ω,i(al)

)
−(β+

n,i(al)− β
−
n,i(al))

= (2− x)− 3N − 2

N(N + 1)
· (1− x) > 1,

and
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Table 3
The optimal β−

Ω (al) and the solution time using the four algorithms to combine general IVBDs
with 12 sets of (x, L,N)

Parameters GA DE PSO GSA
(0.3, 10, 5) (0.0701, 0.558) (0.0700, 2.928) (0.0678, 0.885) (0.0701, 21.005)
(0.3, 14, 7) (0.0536, 0.813) (0.0536, 6.107) (0.0531, 1.598) (0.0537, 38.347)
(0.3, 18, 9) (0.0434, 1.055) (0.0434, 9.704) (0.0434, 2.418) (0.0434, 60.438)
(0.3, 22, 11) (0.0364, 1.322) (0.0364, 15.297) (0.0364, 3.351) (0.0364, 86.852)
(0.3, 26, 13) (0.0313, 1.656) (0.0313, 24.618) (0.0313, 4.522) (0.0313, 119.780)
(0.3, 30, 15) (0.0275, 2.040) (0.0275, 55.714) (0.0275, 5.893) (0.0275, 161.294)
(0.8, 10, 5) (0.2016, 0.535) (0.2016, 2.879) (0.2007, 0.926) (0.2015, 20.944)
(0.8, 14, 7) (0.1510, 0.795) (0.1509, 5.607) (0.1505, 1.570) (0.1509, 37.760)
(0.8, 18, 9) (0.1206, 1.055) (0.1206, 9.783) (0.1206, 2.378) (0.1206, 59.566)
(0.8, 22, 11) (0.1004, 1.324) (0.1004, 15.172) (0.1004, 3.281) (0.1005, 86.264)
(0.8, 26, 13) (0.0860, 1.696) (0.0860, 32.307) (0.0860, 4.556) (0.0860, 119.355)
(0.8, 30, 15) (0.0753, 2.025) (0.0753, 59.966) (0.0753, 5.882) (0.0753, 157.933)

Table 4
The optimal β+

Ω (al) and the solution time using the four algorithms to combine general IVBDs
with 12 sets of (x, L,N)

Parameters GA DE PSO GSA
(0.3, 10, 5) (0.1040, 0.554) (0.3582, 2.907) (0.465, 0.886) (0.1003, 20.895)
(0.3, 14, 7) (0.0668, 0.791) (0.2703, 5.799) (0.3426, 1.570) (0.0701, 38.243)
(0.3, 18, 9) (0.0603, 1.027) (0.2177, 9.751) (0.2711, 2.368) (0.0532, 59.594)
(0.3, 22, 11) (0.0456, 1.333) (0.1895, 15.388) (0.2228, 3.334) (0.0437, 86.064)
(0.3, 26, 13) (0.0370, 1.682) (0.1618, 25.732) (0.1844, 4.489) (0.0372, 119.700)
(0.3, 30, 15) (0.0382, 2.015) (0.1505, 59.092) (0.1653, 5.793) (0.0322, 159.731)
(0.8, 10, 5) (0.2188, 0.524) (0.2821, 2.916) (0.3166, 0.899) (0.2336, 21.023)
(0.8, 14, 7) (0.1606, 0.815) (0.2123, 5.704) (0.2343, 1.57) (0.1673, 37.875)
(0.8, 18, 9) (0.1259, 1.025) (0.1747, 9.826) (0.1861, 2.371) (0.1315, 59.97)
(0.8, 22, 11) (0.1046, 1.304) (0.1457, 15.341) (0.1544, 3.344) (0.1077, 86.177)
(0.8, 26, 13) (0.0881, 1.666) (0.1243, 22.675) (0.1316, 4.469) (0.0912, 118.923)
(0.8, 30, 15) (0.0785, 2.028) (0.1115, 58.346) (0.1135, 5.811) (0.0797, 158.347)(

N∑
m=1

β+
m,i(al) + β+

Ω,i(al)

)
−(β+

Ω,i(al)− β
−
Ω,i(al))

= (2− x) +
3 · (1− x)

N + 1
> 1.

On this assumption, normalized IVBDs are com-
bined using the pair of optimization problems shown
in Eqs (14)–(17). With 12 sets of (x, L,N), the opti-
mal values of β−Ω (al) and β+

Ω (al) are obtained using
the four evolutionary algorithms. The results and the
corresponding solution time are presented in Tables 3
and 4, respectively.

Suppose that the optimal values of β−Ω (al) and
β+

Ω (al) generated using the four evolutionary algo-
rithms to combine general IVBDs are represented by
βG−Ω (al), β

D−
Ω (al), β

P−
Ω (al), β

S−
Ω (al), β

G+
Ω (al), β

D+
Ω

(al), β
P+
Ω (al), and βS+

Ω (al). Table 3 shows that βP−Ω

(al) 6 max{βG−Ω (al), β
D−
Ω (al), β

S−
Ω (al)} always

holds and βG−Ω (al), β
D−
Ω (al), and βS−Ω (al) are very

close to each other. This fact indicates thatAP > AD ≈
AS ≈ AG (the notation ‘≈’ denotes ‘is almost equal

to’). Table 3 shows that TG < TP � TD � TS , which
reveals that EG > EP � ED � ES . With a bal-
anced consideration of accuracy and efficiency, PSO
algorithm is most suitable among the four algorithms
to generate the optimal β−Ω (al).

From the observations shown in Table 4, βP+
Ω (al) >

βD+
Ω (al) > max{βS+

Ω (al), β
G+
Ω (al)} always holds

and βS+
Ω (al) > βG+

Ω (al) holds in most cases. This in-
dicates that AP > AD > AS > AG. Regarding solu-
tion time, Table 4 shows that TG < TP � TD � TS ,
and further, EG > EP � ED � ES . Similar to ob-
taining the optimal β−Ω (al), PSO algorithm remains the
best among the four algorithms for generating the opti-
mal β+

Ω (al) from the perspectives of accuracy and effi-
ciency. As a result, PSO algorithm is the most applica-
ble among the four algorithms for combining general
IVBDs.

5. Comparison for generating expected utilities

When the aggregated IVBDs of alternatives are not
needed, the optimal expected utilities of alternatives are
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Table 5
The optimal u−(al) and the solution time using the four algorithms to generate the expected
utilities from specified IVBDs with 12 sets of (x, L,N)

Parameters GA DE PSO GSA
(0.3, 10, 5) (0.3244, 0.528) (0.3077, 2.862) (0.0994, 0.880) (0.2452, 20.994)
(0.3, 14, 7) (0.3376, 0.777) (0.3118, 5.638) (0.0991, 1.499) (0.2567, 38.204)
(0.3, 18, 9) (0.3418, 1.007) (0.3305, 9.812) (0.1378, 2.236) (0.2401, 59.379)
(0.3, 22, 11) (0.3378, 1.289) (0.3321, 15.137) (0.1567, 3.176) (0.2324, 86.494)
(0.3, 26, 13) (0.3645, 1.558) (0.3292, 22.405) (0.1735, 4.232) (0.2242, 118.134)
(0.3, 30, 15) (0.3878, 1.911) (0.3073, 58.054) (0.1784, 5.468) (0.2089, 157.374)
(0.8, 10, 5) (0.3926, 0.539) (0.3755, 2.933) (0.3232, 0.864) (0.3502, 20.970)
(0.8, 14, 7) (0.4129, 0.768) (0.4027, 5.661) (0.3469, 1.502) (0.3725, 38.287)
(0.8, 18, 9) (0.4240, 0.981) (0.4151, 9.722) (0.3586, 2.196) (0.3818, 59.199)
(0.8, 22, 11) (0.4286, 1.287) (0.4221, 15.103) (0.3779, 3.172) (0.3883, 86.891)
(0.8, 26, 13) (0.4452, 1.526) (0.425, 22.214) (0.3829, 4.236) (0.3903, 119.757)
(0.8, 30, 15) (0.4463, 1.920) (0.4192, 56.365) (0.3877, 5.705) (0.3906, 156.803)

Table 6
The optimal u+(al) and the solution time using the four algorithms to generate the expected
utilities from specified IVBDs with 12 sets of (x, L,N)

Parameters GA DE PSO GSA
(0.3, 10, 5) (0.5966, 0.541) (0.6597, 2.870) (0.8239, 0.851) (0.6074, 21.007)
(0.3, 14, 7) (0.5655, 0.753) (0.6215, 5.764) (0.8369, 1.427) (0.5360, 37.884)
(0.3, 18, 9) (0.5565, 0.989) (0.6159, 9.657) (0.7688, 2.098) (0.5257, 59.638)
(0.3, 22, 11) (0.5635, 1.250) (0.6033, 15.249) (0.8156, 2.989) (0.5677, 86.497)
(0.3, 26, 13) (0.5499, 1.553) (0.6110, 22.341) (0.7716, 4.112) (0.4957, 118.346)
(0.3, 30, 15) (0.5408, 1.916) (0.6492, 60.179) (0.7735, 5.294) (0.5161, 156.776)
(0.8, 10, 5) (0.4591, 0.558) (0.4809, 2.949) (0.5371, 0.844) (0.4705, 21.176)
(0.8, 14, 7) (0.4617, 0.762) (0.4875, 5.611) (0.5413, 1.496) (0.4659, 38.006)
(0.8, 18, 9) (0.4780, 0.986) (0.4951, 9.591) (0.5462, 2.133) (0.4770, 59.343)
(0.8, 22, 11) (0.4788, 1.290) (0.5041, 15.336) (0.5423, 3.138) (0.4799, 86.089)
(0.8, 26, 13) (0.4769, 1.547) (0.5064, 22.220) (0.5505, 4.135) (0.4788, 118.085)
(0.8, 30, 15) (0.4824, 1.925) (0.5193, 59.399) (0.5554, 5.275) (0.4818, 160.296)

required to generate a solution to an MCDM problem
with the aid of a decision rule. In this situation, we com-
pare the accuracies and efficiencies of the four evolu-
tionary algorithms for generating the optimal expected
utilities using specified and general IVBDs.

5.1. Utility comparison of the four evolutionary
algorithms using specified IVBDs

In the same situation as specified in Section 4.1, GA,
DE, PSO, and GSA are used to solve the optimiza-
tion model shown in Eqs (22)–(25) to find the optimal
u−(al). When the objective of the model is changed
to “MAX

∑N−1
n=1 βn(al)u(Hn) + (βN (al) + βΩ(al)) ·

u(HN )”, the optimal u+(al) can be found by solving
the model. The relevant optimal results are shown in Ta-
bles 5 and 6. The cell (0.3244, 0.528) in Table 5 means
that the optimal u−(al) is obtained as 0.3244 by using
GA with the solution time of 0.528 seconds on the con-
dition that (x, L,N) is set as (0.3, 10, 5). Other cells in
Tables 5 and 6 can be similarly understood.

Suppose that the optimal u−(al) and u+(al) de-
rived from GA, DE, PSO, and GSA are represented by

u−G(al), u
−
D(al), u

−
P (al), u

−
S (al), u

+
G(al), u

+
D(al), u

+
P

(al), and u+
S (al). Table 5 shows that u−P (al) <

u−S (al) < u−D(al) < u−G(al), which indicates that
AP > AS > AD > AG. The efficiencies of the four
algorithms satisfy EG > EP � ED � ES in accor-
dance with the fact that TG < TP � TD � TS as
shown in Table 5. By comprehensively comparing the
accuracies and efficiencies of the four algorithms, PSO
algorithm is considered the best algorithm for generat-
ing the optimal u−(al).

Table 6 shows that u+
P (al)>u

+
D(al)>max{u+

G(al),
u+
S (al)} always holds and u+

G(al) > u+
S (al) holds in

most cases, which means that AP > AD > AG > AS .
Table 6 also shows that TG < TP � TD � TS , which
means that EG > EP � ED � ES . A preferable
balance between accuracy and efficiency indicates that
PSO algorithm is the most suitable to generate the opti-
mal u+(al), compared to the other three algorithms. As
a whole, PSO algorithm is the best choice among the
four algorithms to generate the expected utilities from
specified IVBDs.
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Table 7
The optimal u−(al) and the solution time using the four algorithms to generate the expected
utilities from general IVBDs with 12 sets of (x, L,N)

Parameters GA DE PSO GSA
(0.3, 10, 5) (0.5354, 0.531) (0.4176, 2.898) (0.2081, 0.901) (0.4590, 20.960)
(0.3, 14, 7) (0.5408, 0.817) (0.4288, 5.725) (0.2959, 1.554) (0.4911, 37.531)
(0.3, 18, 9) (0.5486, 1.042) (0.4377, 9.655) (0.3355, 2.346) (0.5101, 59.419)
(0.3, 22, 11) (0.5488, 1.350) (0.4643, 15.380) (0.3831, 3.328) (0.5226, 86.591)
(0.3, 26, 13) (0.5604, 1.668) (0.4800, 22.574) (0.3964, 4.428) (0.5315, 118.212)
(0.3, 30, 15) (0.5612, 2.014) (0.488, 57.761) (0.3970, 5.752) (0.5381, 157.928)
(0.8, 10, 5) (0.4827, 0.543) (0.4378, 3.010) (0.3870, 0.904) (0.4590, 21.191)
(0.8, 14, 7) (0.5069, 0.804) (0.4723, 5.714) (0.4237, 1.550) (0.4911, 37.530)
(0.8, 18, 9) (0.5229, 1.037) (0.4871, 9.793) (0.4514, 2.342) (0.5101, 59.716)
(0.8, 22, 11) (0.5328, 1.383) (0.5060, 15.460) (0.4750, 3.338) (0.5226, 86.399)
(0.8, 26, 13) (0.5400, 1.669) (0.5166, 22.634) (0.4910, 4.442) (0.5315, 118.550)
(0.8, 30, 15) (0.5448, 2.032) (0.5234, 51.735) (0.4967, 5.769) (0.5381, 157.839)

Table 8
The optimal u+(al) and the solution time using the four algorithms to generate the expected
utilities from general IVBDs with 12 sets of (x, L,N)

Parameters GA DE PSO GSA
(0.3, 10, 5) (0.6091, 0.576) (0.6222, 2.935) (0.7011, 0.893) (0.6754, 20.848)
(0.3, 14, 7) (0.6052, 0.782) (0.6103, 5.646) (0.7181, 1.534) (0.6453, 37.990)
(0.3, 18, 9) (0.5938, 1.040) (0.6146, 9.728) (0.7034, 2.347) (0.6306, 59.004)
(0.3, 22, 11) (0.5954, 1.333) (0.6074, 15.511) (0.6916, 3.332) (0.6207, 86.464)
(0.3, 26, 13) (0.5913, 1.660) (0.6032, 22.362) (0.6768, 4.532) (0.6139, 118)
(0.3, 30, 15) (0.5965, 2.081) (0.6033, 57.356) (0.6705, 5.811) (0.6079, 156.517)
(0.8, 10, 5) (0.5041, 0.544) (0.5083, 2.879) (0.5351, 0.953) (0.5338, 20.929)
(0.8, 14, 7) (0.5253, 0.779) (0.5266, 5.737) (0.5558, 1.561) (0.5476, 37.757)
(0.8, 18, 9) (0.5345, 1.047) (0.5410, 9.747) (0.5659, 2.325) (0.5552, 59.468)
(0.8, 22, 11) (0.5438, 1.340) (0.5456, 15.238) (0.5658, 3.369) (0.5598, 86.487)
(0.8, 26, 13) (0.5489, 1.701) (0.5523, 22.778) (0.5779, 4.450) (0.5629, 118.599)
(0.8, 30, 15) (0.5547, 2.009) (0.5580, 57.085) (0.5747, 5.734) (0.5651, 156.441)

5.2. Utility comparison of the four evolutionary
algorithms using general IVBDs

In the same situation as specified in Section 4.2, ex-
periments similar to those in Section 5.1 are performed
to generate the optimal u−(al) and u+(al), which are
shown in Tables 7 and 8.

Table 7 shows that u−P (al) < u−D(al) < u−S (al) <
u−G(al), which means that AP > AD > AS > AG.
Additionally, Table 7 shows that TG < TP � TD �
TS , which means that EG > EP � ED � ES . The
accuracies and efficiencies of the four algorithms show
that PSO algorithm is best suited for generating the
optimal u−(al).

The conclusion of AP > AS > AD > AG is drawn
from the observation of u+

P (al) > u+
S (al) > u+

D(al) >
u+
G(al) shown in Table 8. The relationship between the

efficiencies of the four algorithms is the same as that
for optimizing u−(al). To reach a rational balance be-
tween accuracy and efficiency, PSO algorithm should
be selected to generate the optimal u+(al). Considering
what has been analyzed from Tables 7 and 8, we con-
clude that PSO algorithm should be considered the best

among the four algorithms for generating the expected
utilities from general IVBDs.

6. Sensitivity analysis

In Sections 4 and 5, experiments to compare the ac-
curacies and efficiencies of the four evolutionary al-
gorithms are conducted on the condition that NG =
ND = NP = NS = 100 and Nt = 400. An inter-
esting area of investigation is finding the changes in
the accuracies and efficiencies of the four algorithms
with the variation in Nt and Nr on the assumption that
Nr = NG = ND = NP = NS .

To investigate this, when (x, L,N) = (0.3, 30, 15),
we reperform the experiments to generate the optimal
β+

1 (al) and u−(al) using the four algorithms to com-
bine specified IVBDs and generate the expected utilities
from general IVBDs, respectively. In the experiments,
Nt is changed from 250 to 800 with a step size of 50 and
Nr from 25 to 300 with a step size of 25. The relevant
results are shown in Tables 9 and 10. The cell (0.1408,
0.354) in Table 9 means that the optimal β+

1 (al) is ob-
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Table 9
The optimal β+

1 (al) and the solution time using the four algorithms to combine specified
IVBDs with (x, L,N) = (0.3, 30, 15)

Parameters GA DE PSO GSA
(250, 25) (0.1408, 0.354) (0.1734, 5.383) (0.581, 0.964) (0.2978, 6.808)
(300, 50) (0.1452, 0.816) (0.2101, 12.744) (0.4881, 2.137) (0.2628, 30.54)
(350, 75) (0.146, 1.371) (0.2321, 22.348) (0.6464, 3.662) (0.2278, 78.957)
(400, 100) (0.1593, 1.89) (0.3135, 45.742) (0.5694, 5.483) (0.2701, 160.274)
(450, 125) (0.1523, 2.852) (0.2831, 49.215) (0.6206, 7.84) (0.3777, 278.827)
(500, 150) (0.1792, 3.765) (0.32, 82.107) (0.7191, 10.375) (0.3437, 447.453)
(550, 175) (0.1775, 4.819) (0.3357, 113.646) (0.7422, 13.228) (0.3172, 666.885)
(600, 200) (0.1885, 6.02) (0.3746, 164.941) (0.7422, 16.543) (0.2981, 951.078)
(650, 225) (0.1786, 7.287) (0.3715, 199.959) (0.7869, 20.198) (0.2864, 1317.75)
(700, 250) (0.1704, 8.759) (0.4025, 278.158) (0.7191, 24.925) (0.2881, 1727.87)
(750, 275) (0.1725, 10.197) (0.4409, 396.131) (0.7191, 28.207) (0.2683, 2253.34)
(800, 300) (0.1807, 11.861) (0.4247, 551.442) (0.7422, 32.563) (0.275, 2832.62)

Table 10
The optimal u−(al) and the solution time using the four algorithms to generate the expected
utilities from general IVBDs with (x, L,N) = (0.3, 30, 15)

Parameters GA DE PSO GSA
(250, 25) (0.5664, 0.402) (0.5231, 5.473) (0.4322, 1.033) (0.5381, 6.852)
(300, 50) (0.5626, 0.889) (0.5075, 13.066) (0.4258, 2.293) (0.5381, 30.726)
(350, 75) (0.5627, 1.523) (0.4930, 22.723) (0.4167, 3.969) (0.5381, 78.735)
(400, 100) (0.5612, 2.014) (0.4880, 57.761) (0.3970, 5.752) (0.5381, 157.928)
(450, 125) (0.5627, 3.030) (0.4867, 48.366) (0.4133, 8.104) (0.5381, 278.903)
(500, 150) (0.5572, 3.965) (0.4818, 80.606) (0.4056, 10.898) (0.5381, 444.781)
(550, 175) (0.5594, 5.031) (0.4794, 120.798) (0.4109, 13.834) (0.5381, 665.554)
(600, 200) (0.5583, 6.287) (0.4773, 175.615) (0.4109, 17.338) (0.5381, 951.278)
(650, 225) (0.5615, 7.585) (0.4762, 225.757) (0.3876, 20.861) (0.5381, 1294.31)
(700, 250) (0.5601, 9.049) (0.4743, 315.150) (0.4044, 24.870) (0.5381, 1723.89)
(750, 275) (0.5583, 10.553) (0.4746, 346.506) (0.4088, 29.440) (0.5381, 2232.51)
(800, 300) (0.5552, 12.278) (0.4715, 399.129) (0.4153, 34.104) (0.5381, 2852.88)

tained as 0.1408 using GA with the solution time of
0.354 seconds on the condition that (x, L,N) is set
as (0.3, 30, 15). Other cells in Tables 9 and 10 can be
similarly understood.

To facilitate observing the movement of the optimal
β+

1 (al) and u−(al) with the variation in Nt and Nr,
the relevant data shown in Tables 9 and 10 are plotted
in Figs 1 and 2.

Figure 1 shows that with the increase in Nt and
Nr, βG+

1 (al) and βD+
1 (al) increase slightly with small

fluctuations, βP+
1 (al) increases significantly with fluc-

tuations, and βS+
1 (al) fluctuates irregularly. Figure 2

shows that with the increase in Nt and Nr, u−G(al),
u−D(al), and u−P (al) decrease with small fluctuations,
and u−S (al) remains unchanged. These observations re-
veal that the increase in Nt and Nr cannot significantly
improve the accuracies of GA, DE, and GSA for gen-
erating the optimal β+

1 (al) and u−(al). The same con-
clusion can be drawn when PSO algorithm is used to
generate u−(al). In the situation in which the optimal
β+

1 (al) is generated using PSO algorithm, the opposite
conclusion is drawn.

Fig. 1. Movement of the optimal β+
1 (al) with the variation in Nt

and Nr .

As for the efficiencies of the four algorithms, Tables 9
and 10 show that TG < TP � TD � TS , which means
that EG > EP � ED � ES . By comparing the ac-
curacies and efficiencies of the four algorithms with
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Fig. 2. Movement of the optimal u−(al) with the variation in Nt

and Nr .

the variation in Nt and Nr, PSO algorithm is consid-
ered the best among the four algorithms for combining
IVBDs and generating the expected utilities.

7. Conclusions

In the process of solving MCDM problems with
IVBDs, individual IVBDs are explicitly combined to
generate an aggregated IVBD or implicitly combined in
the optimization model of generating the minimum and
maximum expected utilities. For an MCDM problem
with a large number of criteria and grades, implement-
ing the accurate combination of IVBDs within an ac-
ceptable time is difficult. Evolutionary algorithms pro-
vide effective methods for overcoming this difficulty.
When these algorithms are selected to combine IVBDs
or generate the expected utilities by implicitly com-
bining IVBDs, a new issue occurs: which algorithm
is suitable for accurately combining IVBDs within an
acceptable time? To address this issue, four represen-
tative evolutionary algorithms with many extensions
and applications, including GA, DE algorithm, PSO
algorithm, and GSA, are selected to explicitly and im-
plicitly combine IVBDs. By performing experiments
on combining IVBDs and generating the expected util-
ities, a comparative analysis of the four algorithms is
provided with the help of two indicators: accuracy and
efficiency. The analysis indicates that PSO algorithm is
more suitable than the other three algorithms to com-
bine IVBDs and generate the expected utilities. This
conclusion is highlighted by a sensitivity analysis of the
four algorithms’ accuracies and efficiencies.

In this paper, we only compare the original ver-
sions of the four evolutionary algorithms for analyzing
MCDM problems with IVBDs. Whether the extensions
of the four algorithms can improve their accuracies and
efficiencies for combining IVBDs deserves considera-
tion, and will be investigated in the future. In addition,
for MCDM problems with other types of uncertain pref-
erences, such as linguistic term set, intuitionistic fuzzy
set, hesitant fuzzy set, and interval type-2 fuzzy set,
it would also be interesting to compare the accuracies
and efficiencies of the four algorithms for analyzing the
problems.

Acknowledgments

This research is supported by the National Natural
Science Foundation of China (Grant Nos. 71622003,
71571060).

References

[1] He YD, He Z. Extensions of Atanassov’s intuitionistic fuzzy
interaction Bonferroni means and their application to multiple-
attribute decision making. IEEE Transactions on Fuzzy Sys-
tems. 2016; 24: 558-573.

[2] Yu WY, Zhang Z, Zhong QY, Sun LL. Extended TODIM
for multi-criteria group decision making based on unbalanced
hesitant fuzzy linguistic term sets. Computers & Industrial
Engineering. 2017; 114: 316-328.

[3] He YD, He Z, Wang GD, Chen HY. Hesitant fuzzy power
bonferroni means and their application to multiple attribute
decision making. IEEE Transactions on Fuzzy Systems. 2015;
23: 1655-1668.

[4] Wu XL, Liao HC. An approach to quality function deploy-
ment based on probabilistic linguistic term sets and ORESTE
method for multi-expert multi-criteria decision making. Infor-
mation Fusion. 2018; 43: 13-26.

[5] Fu C, Chin KS. Robust evidential reasoning approach with
unknown attribute weights. Knowledge-Based Systems. 2014;
59: 9-20.

[6] Chen TY. Interval-valued fuzzy multiple criteria decision-
making methods based on dual optimistic/pessimistic estima-
tions in averaging operations. Applied Soft Computing. 2014;
24: 923-947.

[7] Zhang WK, Ju YB, Liu XY. Multiple criteria decision analysis
based on Shapley fuzzy measures and interval-valued hesitant
fuzzy linguistic numbers. Computers & Industrial Engineering.
2017; 105: 28-38.

[8] Tang XA, Fu C, Xu DL, Yang SL. Analysis of fuzzy Hamacher
aggregation functions for uncertain multiple attribute decision
making. Information Sciences. 2017; 387: 19-33.

[9] He YD, He Z, Shi LX, Meng SS. Multiple attribute group deci-
sion making based on IVHFPBMs and a new ranking method
for interval-valued hesitant fuzzy information. Computers &
Industrial Engineering. 2016; 99: 63-77.



390 G.Y. Lu and W.J. Chang / Comparative analysis of evolutionary algorithms for MCDM with IVBDs

[10] Wang JC, Chen TY. A simulated annealing-based permuta-
tion method and experimental analysis for multiple criteria
decision analysis with interval type-2 fuzzy sets. Applied Soft
Computing. 2015; 36: 57-69.

[11] Fu C, Yang SL. An evidential reasoning based consensus
model for multiple attribute group decision analysis problems
with interval-valued group consensus requirements. European
Journal of Operational Research. 2012; 223: 167-176.

[12] Cheshmehgaz HR, Haron H, Kazemipour F, Desa MI. Ac-
cumulated risk of body postures in assembly line balancing
problem and modeling through a multi-criteria fuzzy-genetic
algorithm. Computers & Industrial Engineering. 2012; 63:
503-512.

[13] Kaliszewski I, Miroforidis J, Podkopaev D. Interactive multi-
ple criteria decision making based on preference driven evo-
lutionary multiobjective optimization with controllable accu-
racy. European Journal of Operational Research. 2012; 216:
188-199.

[14] Kapsoulis D, Tsiakas K, Trompoukis X, Asouti V, Gian-
nakoglou K. Evolutionary multi-objective optimization as-
sisted by metamodels, kernel PCA and multi-criteria decision
making techniques with applications in aerodynamics. Applied
Soft Computing. 2018; 64: 1-13.

[15] Said LB, Bechikh S, Ghédira K. The r-dominance: A new
dominance relation for interactive evolutionary multicriteria
decision making. IEEE Transactions on Evolutionary Compu-
tation. 2010; 14: 801-818.

[16] Wang R, Purshouse RC, Giagkiozis I, Fleming PJ. The
iPICEA-g: A new hybrid evolutionary multi-criteria decision
making approach using the brushing technique. European Jour-
nal of Operational Research. 2015; 243: 442-453.

[17] Xue F, Sanderson AC, Graves RJ. Multiobjective evolutionary
decision support for design-supplier-manufacturing planning.
IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans. 2009; 39: 309-320.

[18] Javanbarg MB, Scawthorn C, Kiyono J, Shahbodaghkhan B.
Fuzzy AHP-based multicriteria decision making systems using
particle swarm optimization. Expert Systems with Applica-
tions. 2012; 39: 960-966.

[19] Kennedy J, Eberhart R. Particle swarm optimization. In Pro-
ceeding of IEEE International Conference on Neural Network,
Perth, WA, Australia, Australia, 1995; 1942-1948.

[20] Chen SM, Huang ZC. Multiattribute decision making based on
interval-valued intuitionistic fuzzy values and particle swarm
optimization techniques. Information Sciences. 2017; 397-398:
206-218.

[21] Wu H, Pang GK, Choy KL, Lam HY. A charging-scheme
decision model for electric vehicle battery swapping station
using varied population evolutionary algorithms. Applied Soft
Computing. 2017; 61: 905-920.

[22] Holland JH. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

[23] Goldberg DE. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, USA, 1989.

[24] Storn R, Price K. Differential evolution-A simple and effi-
cient adaptive scheme for global optimization over continuous
spaces. Journal of Global Optimization. 1997; 11: 341-359.

[25] Pei J, Cheng BY, Liu XB, Pardalos PM, Kong M. Single-
machine and parallel-machine serial-batching scheduling prob-
lems with position-based learning effect and linear setup time.
Annals of Operations Research. 2017; DOI 10.1007/s10479-
017-2481-8.

[26] Pei J, Liu XB, Fan WJ, Pardalos PM, Lu SJ. A hybrid BA-
VNS algorithm for coordinated serial-batching scheduling with

deteriorating jobs, financial budget, and resource constraint in
multiple manufacturers. Omega. 2019; 82: 55-69.

[27] Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA: A Gravi-
tational Search Algorithm. Information Sciences. 2009; 179:
2232-2248.

[28] Fu C, Xu DL. Determining attribute weights to improve solu-
tion reliability and its application to selecting leading indus-
tries. Annals of Operations Research. 2016; 245: 401-426.

[29] Fu C, Xu DL, Yang SL. Distributed preference relations for
multiple attribute decision analysis. Journal of the Operational
Research Society. 2016; 67: 457-473.

[30] Yang JB, Wang YM, Xu DL, Chin KS. The evidential reason-
ing approach for MADA under both probabilistic and fuzzy un-
certainties. European Journal of Operational Research. 2006;
171: 309-343.

[31] Xu DL. An introduction and survey of the evidential reasoning
approach for multiple criteria decision analysis. Annals of
Operations Research. 2012; 195: 163-187.

[32] Yang JB, Xu DL. Evidential reasoning rule for evidence com-
bination. Artificial Intelligence. 2013; 205: 1-29.

[33] Jiang ZZ, Zhang RY, Fan ZP, Chen XH. A fuzzy matching
model with Hurwicz criteria for one-shot multi-attribute ex-
changes in E-brokerage. Fuzzy Optimization and Decision
Making. 2015; 14: 77-96.

[34] Horvath E, Silva CF, Majlis S, Rodriguez I, Skoknic V, Castro
A. Prospective validation of the ultrasound based TIRADS
(Thyroid Imaging Reporting And Data System) classification:
Results in surgically resected thyroid nodules. European Radi-
ology. 2017; 27: 2619-2628.

[35] Fu C, Yang SL. The conjunctive combination of interval-valued
belief structures from dependent sources. International Journal
of Approximate Reasoning. 2012; 53: 769-785.

[36] Wang YM, Yang JB, Xu DL, Chin KS. On the combination and
normalization of interval-valued belief structures. Information
Sciences. 2007; 177: 1230-1247.

[37] Wang YM, Yang JB, Xu DL, Chin KS. The evidential rea-
soning approach for multiple attribute decision analysis us-
ing interval belief degrees. European Journal of Operational
Research. 2006; 175: 35-66.

[38] Sharma SK, Irwin GW. Fuzzy coding of genetic algorithms.
IEEE Transactions on Evolutionary Computation. 2003; 7:
344-355.

[39] Charalampakis AE. Registrar: A complete-memory operator to
enhance performance of genetic algorithms. Journal of Global
Optimization. 2012; 54: 449-483.

[40] Dao SD, Abhary K, Marian R. An innovative framework for
designing genetic algorithm structures. Expert Systems with
Applications. 2017; 90: 196-208.

[41] Yang T, Kuo Y, Cho C. A genetic algorithms simulation ap-
proach for the multi-attribute combinational dispatching de-
cision problem. European Journal of Operational Research.
2007; 176: 1859-1873.

[42] Goletsis Y, Papaloukas C, Fotiadis DI, Likas A, Michalis LK.
Automated ischemic beat classification using genetic algo-
rithms and multicriteria decision analysis. IEEE Transactions
on Biomedical Engineering. 2004; 51: 1717-1725.

[43] Chang YH, Lee MS. Incorporating Markov decision process
on genetic algorithms to formulate trading strategies for stock
markets. Applied Soft Computing. 2017; 52: 1143-1153.

[44] Das S, Abraham A, Chakraborty UK, Konar A. Differential
evolution using a neighborhood-based mutation operator. IEEE
Transactions on Evolutionary Computation. 2009; 13: 526-
553.

[45] Sarker RA, Elsayed SM, Ray T. Differential evolution with



G.Y. Lu and W.J. Chang / Comparative analysis of evolutionary algorithms for MCDM with IVBDs 391

dynamic parameters selection for optimization problems. IEEE
Transactions on Evolutionary Computation. 2014; 18: 689-
707.

[46] Brest J, Greiner S, Bošković B, Mernik M, ˇZumer V. Self-
adapting control parameters in differential evolution: A com-
parative study on numerical benchmark problems. IEEE Trans-
actions on Evolutionary Computation. 2006; 10: 646-657.

[47] Qiu X, Xu JX, Tan KC, Abbass HA. Adaptive cross-generation
differential evolution operators for multiobjective optimiza-
tion. IEEE Transactions on Evolutionary Computation. 2016;
20: 232-244.

[48] Santucci V, Baioletti M, Milani A. Algebraic differential evo-
lution algorithm for the permutation flowshop scheduling prob-
lem with total flowtime criterion. IEEE Transactions on Evo-
lutionary Computation. 2016; 20: 682-694.

[49] Zhong JH, Shen M, Zhang J, Chung HS, Shi YH, Li Y. A dif-
ferential evolution algorithm with dual populations for solving
periodic railway timetable scheduling problem. IEEE Transac-
tions on Evolutionary Computation. 2013; 17: 512-527.

[50] Bonyadi MR, Michalewicz Z. Stability analysis of the parti-
cle swarm optimization without stagnation assumption. IEEE
Transactions on Evolutionary Computation. 2016; 20: 814-
819.

[51] Bonyadi MR, Michalewicz Z. Impacts of coefficients on move-
ment patterns in the particle swarm optimization algorithm.
IEEE Transactions on Evolutionary Computation. 2017; 21:
378-390.

[52] Chen KH, Wang KJ, Wang KM, Angelia MA. Applying parti-
cle swarm optimization-based decision tree classifier for can-
cer classification on gene expression data. Applied Soft Com-
puting. 2014; 24: 773-780.

[53] Zheng YJ, Ling HF, Xue JY, Chen SY. Population classi-
fication in fire evacuation: A multiobjective particle swarm

optimization approach. IEEE Transactions on Evolutionary
Computation. 2014; 18: 70-81.

[54] Palafox L, Noman N, Iba H. Reverse engineering of gene regu-
latory networks using dissipative particle swarm optimization.
IEEE Transactions on Evolutionary Computation. 2013; 17:
577-587.

[55] Haghbayan P, Nezamabadi-pour H, Kamyab S. A niche GSA
method with nearest neighbor scheme for multimodal opti-
mization. Swarm and Evolutionary Computation. 2017; 35:
78-92.

[56] Chakraborti T, Chatterjee A. A novel binary adaptive weight
GSA based feature selection for face recognition using local
gradient patterns, modified census transform, and local binary
patterns. Engineering Applications of Artificial Intelligence.
2014; 33: 80-90.

[57] Barani F, Mirhosseini M, Nezamabadi-pour H, Farsangi MM.
Unit commitment by an improved binary quantum GSA. Ap-
plied Soft Computing. 2017; 60: 180-189.

[58] Chen Z, Yuan X, Tian H, Ji B. Improved gravitational search
algorithm for parameter identification of water turbine regula-
tion system. Energy Conversion and Management. 2014; 78:
306-315.

[59] Bottomley PA, Doyle JR. A comparison of three weight elici-
tation methods: Good, better, and best. Omega. 2001; 29(6):
553-560.

[60] Roberts R, Goodwin P. Weight approximations in multi-
attribute decision models. Journal of Multi-Criteria Decision
Analysis. 2002; 11(6): 291-303.

[61] Takeda E, Cogger KO, Yu PL. Estimating criterion weights
using eigenvectors: A comparative study. European Journal of
Operational Research. 1987; 29(3): 360-369.

[62] Rezaei J. Best-worst multi-criteria decision-making method.
Omega. 2015; 53: 49-57.


