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Abstract.
INTRODUCTION: Ultrasound in conjunction with mammography imaging, plays a vital role in the early detection and diag-
nosis of breast cancer. However, speckle noise affects medical ultrasound images and degrades visual radiological interpretation.
Speckle carries information about the interactions of the ultrasound pulse with the tissue microstructure, which generally causes
several difficulties in identifying malignant and benign regions. The application of deep learning in image denoising has gained
more attention in recent years.
OBJECTIVES: The main objective of this work is to reduce speckle noise while preserving features and details in breast
ultrasound images using GAN models.
METHODS: We proposed two GANs models (Conditional GAN and Wasserstein GAN) for speckle-denoising public breast
ultrasound databases: BUSI, DATASET A, AND UDIAT (DATASET B). The Conditional GAN model was trained using the
Unet architecture, and the WGAN model was trained using the Resnet architecture. The image quality results in both algorithms
were measured by Peak Signal to Noise Ratio (PSNR, 35–40 dB) and Structural Similarity Index (SSIM, 0.90–0.95) standard
values.
RESULTS: The experimental analysis clearly shows that the Conditional GAN model achieves better breast ultrasound de-
speckling performance over the datasets in terms of PSNR = 38.18 dB and SSIM = 0.96 with respect to the WGAN model
(PSNR = 33.0068 dB and SSIM = 0.91) on the small ultrasound training datasets.
CONCLUSIONS: The observed performance differences between CGAN and WGAN will help to better implement new tasks
in a computer-aided detection/diagnosis (CAD) system. In future work, these data can be used as CAD input training for image
classification, reducing overfitting and improving the performance and accuracy of deep convolutional algorithms.
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1. Introduction

Medical image analysis plays an important role in breast cancer screening, feature extraction, segmen-
tation, and classification breast lesions locally. There are several breast cancer detection methods, such as
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Positron Emission Tomography (PET) [1], Computer Tomography (CT) [2] and Magnetic Resonance
Imaging (MRI) [3], which are usually used when women are at high risk of breast cancer. Other comple-
mentary techniques such as X-ray mammography [4] and ultrasound (US) [5] are more commonly used
in screening programs, according to the American Cancer Society.

Among these modalities, US is used as a complementary imaging modality for further evaluation of
lesions detected early by mammography due to its non-invasive nature, low cost, safety, portability, and
low radiation dose. However, one of its main shortcomings is the poor quality of US image, which is
corrupted by random noise added during its acquisition [6,7], i.e. low contrast and different brightness
levels, resulting in increased noise and artifacts that can affect the radiologist’s opinion and diagnosis. US
images have a granular appearance called speckle noise, which degrades visual assessment [8], making it
difficult for humans to distinguish normal from pathological tissue in diagnostic examinations.

Image denoising techniques, typically low-dose, address this problem [9]. The primary purpose of
denoising is to restore the maximum detail of the image by removing excess noise [10], while preserving
as much as possible the feature details to benefit the diagnosis and classification of benign, premalignant,
and malignant abnormalities (microcalcifications, masses, nodules, tumors, cysts, fibroadenoma, adenosis,
and lesions) that may be difficult to identify at first sight or early in the patient.

Thus, denoising medical images is essential before training a classifier based on deep-learning models.
Recently, several US denoising techniques based on deep learning have been widely used, such as
Convolutional Neural Networks (CNN) [11,12,13,14], Generative Adversarial Networks (GANs) [15,
16,17], and Autoencoders (AEs) [18,19], which can recover the original dataset and make it noise-
free with better robustness and precision [20]. Deep learning methods have obtained better results in
medical imaging in comparison with previous methods such as Wavelet, Wiener, Gaussian [21], Multi-
Layer perceptron [22], Dictionary Learning [23], Least Square, Bilateral Filter, Non-Local Mean [24].
Variational approaches [6,25], because these filters have presented some limitations such as smoothing
problems, more computational cost, and inability to preserve information such as edges and textures of
images as well as possible [25].

2. Related work

Many traditional denoising filtering techniques have been proposed in the literature to reduce speckle
noise [26,27,28,29], which can be categorized into three main types: 1) Spatial domain (Median filter,
Mean filter, Adaptive Mean Filter, Frost, Total variation filter, Anisotropic Diffusion, Nonlocal means
filter, Linear Minimum Mean Squared Error (LMMSE)). 2) Transform domain (Wiener filter, Low pass
filter, Discrete wavelet transform), and 3) Deep learning-based techniques such as Convolutional Neural
Networks (CNN), Generative Adversarial Networks (GAN), and Variational Autoencoders (VAEs).

The Spatial and Transform domain methods are computationally simple and fast but sometimes blur
the image, and there can be a loss of resolution and low accuracy. Spatial domain filters also have size
limitations and window shape problems [28].

However, Deep learning-based models can provide better results compared to these traditional methods,
because deep models gives better visual quality by extracting various features of an image as example
Li et al. proposed TP-Net [30] as 3D shape classification and segmentation tasks, on a wide range of
common datasets, which main contribution is the design of dilated convolution strategy tailored for the
irregular and non-uniform structure of 3D mesh data.

Several Generative models (GANs, VAEs) have been successfully used for medical image denoising
and data augmentation to improve robustness and prevent overfitting in deep CNN image classification
algorithms. Some relevant works are discussed in this section.
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Wu et al. [31] implemented a perceptual metrics-guided GAN (PIGGAN) framework to intrinsically
optimize generation processing, and experiments show that PIGGAN can produce photo-realistic results
and quantitatively outperforms state-of-the-art (SOTA) methods. Pang et al. [32] implemented the
TripleGAN model to augment the breast US images. These synthetic images were used to classify breast
masses classification using the CNN model, achieving a classification accuracy of 90.41%, sensitivity of
87.94% and specificity of 85.86%. Al-Dhabyani et al. [33] first used breast US data augmentation with
GAN and then two deep learning classification approaches: (i) CNN (AlexNet) and (ii) TL (VGG16,
ResNet, Inception, and NASNet), achieving in the BUSI dataset an accuracy of 73%, 84%, 82%, 89%,
91% and in Dataset B (UDIAT) an accuracy of 75%, 80%, 77%, 86%, 90% respectively.

Jain et al [34] found that CNN provided comparable and, in some cases, superior performance to
Wavelet and Markov Random Field methods. Thus, the Resnet approach proposed by MRDG et al. [11]
was used to improve mammography image quality with a peak signal-to-noise ratio (PSNR) of 36.18 and
a similar structural index metrix (SSIM) of 0.841. Feng et al [13] implemented a hybrid neural network
for US denoising based on the Gaussian noise distribution and VGGNet model to extract the structural
boundary information, the results show a (PSNR = 30.57, SSIM = 0.90, Mean Square Error (MSE) =
66.61) US denoising effectiveness.

Denoising autoencoders based on convolutional layers also perform well for their ability to extract
spatial solid correlation [35]. Kaji et al. [9] present an overview describing encoder-decoder networks
(pix-2-pix) and cycle GAN as image noise reduction.

Chen et al. [12] proposed the autoencoder and the residual encoder–decoder CNN for low-dose
computer tomography (CT) imaging, achieving a good performance index (PSNR of 39.19/SSIM of 0.93
and Root Mean Square Deviation (RMSD) of 0.0097), compared to with other methods in terms of noise
suppression, structure preservation, and lesion detection.

However, the use of GANs is considered more stable than autoencoders. GANs are typically used when
dealing with images or visual data and work better for signal image processing, such as anomaly detection;
on the contrary, VAEs are used for predictive maintenance or security analysis applications [35]. For the
previous reason, several GANs have recently been used for data augmentation [36,37,38,39,40], image
super-resolution [21], image translation [9], and noise reduction in the medical field [41,42].

Zhou et al. [37] proposed a GAN + U-Net network (generator model) to achieve mapping between
low-quality US images and corresponding high-quality images. In contrast to the traditional GAN method,
U-Net is used to reconstruct the image’s tissue structure, details, and speckles. The evaluation indices
indicated that PSNR, SSIM, and MI (Mutual dependence index) values are increased by 48.3%, 205.0%,
and 44.0% and that the proposed method can successfully reconstruct a high-quality image.

The most recent deep GAN models used for image denoising are Conditional GAN [43] and Wasserstein
GAN [44], which have shown better performance than conventional denoising algorithms [45,46]. Kim et
al. [43] implemented a CGAN network as a medical image denoising algorithm, where the SSIM metric
was improved by 1.5 and 2.5 times over conventional methods (Nonlocal Means and Total Variation)
respectively, demonstrating a superiority in quantitative evaluation. Vimala et al. [47] proposed an image
noise removal in US breast images based on Hybrid Deep Learning Technique, where local speckle noise
was destroyed, reaching a signal-to-noise ratios (SNRs) greater than 65 dB, PSNR ratios greater than
70 dB, edge preservation index values more significant than the experimental threshold of 0.48. Zou et
al. [37] proposed a network model based on the Wasserstein GAN for image denoising, which improved
the noise removal effect.

Based on the previous mentioned our propose integrates concepts from breast cancer research and
ultrasound image denoising in a comparative study to evaluate the effect of image pre-processing in
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Table 1
Breast ultrasound public databases

Dataset Benign Malignant Total
BUSI 437 210 647
Dataset A 100 150 250
Dataset B 110 53 163
Total 647 413 1060

improving breast image quality. Improving image quality clarifies patterns, allowing the deep learning
model to identify and classify features within the image more accurately. In this study, we explore a novel
approach by combining fine-tuning techniques GANs + CNNs, providing new insights into breast cancer
classification.

Denoising of medical images has been used to improve the performance of CNN segmentation and
classification algorithms [48,50]. Ans several CNN methods for general image denoising have been
studied ADNet, NERNet, SAnet, CDNet, DRCNN [51], but in this research, as a technical novelty, we
combine Conditional GAN + Unet and WGAN + Resnet particularly focusing on the medical image
quality improvement of breast ultrasound. The results will help to better implement new tasks in a
computer-aided detection/diagnosis (CAD) system.

Consenquently, this study aims to: (i) to implement two types of GANs+CNNs architecture models
as speckle denoising in ultrasound breast images, and (ii) to select the best architecture to generate new
quality images based on the quantitative evaluation metrics (PSNR and SSIM).

3. Materials and methods

3.1. Databases collection

Three publicly available breast US databases were used in this study: (i) The Breast Ultrasound
Images Dataset (BUSI, https://scholar.cu.edu.eg/?q=afahmy/pages/dataset) [52]. This contains data from
600 female patients. The dataset consists of 780 images (133 normal, 437 benign and 210 malignant)
with an average image size of 500 × 500 pixels. (ii) The Dataset A is obtained from Rodrigues et
al. [53] (https://data.mendeley.com/datasets/wmy84gzngw/1) and contains 250 breast cancer images, 100
benign and 150 malignant. The Dataset B (Breast Ultrasound Lesions Dataset, http://www2.docm.mmu.
ac.uk/STAFF/m.yap/dataset.php) collected in UDIAT-Centre Diagnóstic, Corporació Parc Taulí, Sabadell
(Spain). The dataset consists of 163 images of different women with an average image size of 760 × 570
pixels, each of the images shows one or more lesions. Of the 163 images of lesions, 53 are images of
cancerous masses and 110 with benign lesions [54].

A total of 1060 US images were used to train the GAN models; see Table 1.
Figure 1 shows the workflow used in denoising breast ultrasound images, which is divided into the

following steps: i) Acquisition of public ultrasound databases, ii) Dimensionality and cropping of regions
of interest (RoIs), iii) Image denoising using two GANs + CNN models, and iv) Image quality evaluation.

3.2. Data dimensionality and rois cropping

The torchvision (pytorch) library was used to perform transformations (preserving all features and
structure of the images) and to standardize the images to a single dimension (256 × 256 pixels), which
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Fig. 1. Workflow of GANs+CNN models implementation in breast ultrasound denoising.

were acquired in different sizes (BUSI: 431 × 476, 765 × 590, 786 × 556; Dataset A: 153 × 87, 95 ×
75, 93 × 57; Dataset B: 760 × 570).

According to Wu et al. [36], synthesizing a lesion into RoIs (regions of interest) gives advantages to the
generative model, as it generates more realistic lesions, improving subsequent classification performance
over traditional augmentation techniques. Thus, automatic RoI extraction was performed on all US
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images.
Then, using a cross-validation technique, the dataset was randomly divided (with the Sklearn library)

into a training set (80%, 851 images) and a testing set (20%, 209 images) for training the GAN models
(with the Tensorflow, Keras libraries).

3.3. Generative adversarial network

The GAN architecture is represented by a generative (G) network and a discriminator (D) network,
which are trained simultaneously. While the G network is trained to produce realistic images G(z) from
a random vector z, the D network is trained to discriminate between real and generated images [55]. In
the original GAN the optimization function was formulated by the Eq. (1).

minGmaxD V (D,G) = Ex∼Pr(x)
[logD (x)] + Ez∼Pz(z) [log (1−D (G (z)))] (1)

Given random noise vector z and real image x, the generator attempts to minimize log (1−D(G(z))
and the discriminator attempts to maximize logD (x). Whre, Pr and Pz sare the real data distribution and
the noise data distribution, x is the input variable, D(x) is the prediction label and D(z) is the generated
sample.

In this work, we used two ultrasound denoising GANs; (i) conditional GAN and (ii) WGAN, both has
been widely used in medical image reconstruction, denoising and data augmentation [56]. Especially
CGAN model have been propose as new framework that can largely mitigate the biases and discrimi-
nations in machine learning systems while at the same time enhancing the prediction accuracy of these
systems [57].

3.3.1. Conditional GAN (CGAN)
CGAN was introduced by Douzas et al. [58], as an extension of GAN with conditional information in

D and G. GANs are generative models that learn a mapping from random noise vector z to output image
y, (G: z→ y) [59]. In contrast, conditional GANs learn a mapping from observed image x and random
noise vector z to y, (G : {x, z}→ y). The CGAN objective function is framed by Eq. (2), where G tries
to minimize this objective function and D tries to maximize it.

LcGAN (G,D) = Ex,y [logD (x, y)] + Ex,z [log(1−D (x,G (x, z))] (2)

In this work, the generator and discriminator architectures were adapted from [60,61]. A manual
exploration of different configurations in the general hyperparameters was performed to optimize the
denoising of breast US images, before selecting and implementing our CGAN model. The selected
hyperparameters are: Number of epochs = 40, Buffer size = 954, Batch size = 80; Optimiser = Adam,
Activation function = Binary Cross-Entropy Loss, Generator layers = 48 and Discriminator layers = 12.
The denoiser generator network is based on the U-Net [61] architecture, which consists of a contraction
path and an expansion path. This is composed of 48 convolutional layers including the input layer, 8
contraction layers, 7 expansion layers, 6 concatenation layers spread over the expansion layers, and
finally a transposed convolutional layer. Each encoder and decoder block is replaced by residual dense
connectivity and batch normalization to remove speckle noise followed by the ReLU function (Fig. 2,
Appendix S.1 and S.2).

The denoiser discriminator network is based on a Markovian random field (PatchGAN). This consists
of an input convolutional layer and 24 convolutional layers followed by batch normalization and a ReLU
function (Fig. 2). The output consists of successive convolutional layers 256, 128, 64 and 1. This means
that as the input image passes through each of the convolution blocks, the spatial dimension is reduced by
a factor of two.
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Fig. 2. CGAN model.

3.3.2. Wasserstein GAN (WGAN)
WGAN was introduced by Arjovsky et al. [62], which uses a Wasserstein distance instead of a JS

(Jensen-Shanon) or KL (Kullback-Leibler) divergence to evaluate the discrepancy between the distribution
distance of noisy and denoised images. It provides a better approximation of the distribution of the
observed data in the training data.

The Wassertein (W) model is defined as Eq. (3):
W (Pr, Pg) = infγ ∼ Π (Pr, Pg) E (x, y) ∼ γ||x− y|| (3)

Where Π (Pr, Pg) denotes the set of all the joint distributions γ (x, y) based on the marginal values of
Pr and Pg; γ (x, y) indicates how many “RoIs” must be transported from x to y in order to transform the
distributions Pr into the distribution Pg; x and y denote the predicted and real actual values, respectively,
and P denotes the probability distribution. The general hyperparameters implemented in this model are
number of epochs = 130, buffer size = 954, batch size = 60; optimizer = Adam, cctivation function =
Wasserstein, generator layers = 26 and discriminator layers = 12.

The denoising generator, was trained by the Resnet model [63]. The generator contains 54 layers,
including the input layer, 8 sequential layers of 3 layers each (convolutional layer, normalisation layer
and LeakyReLU layer), 7 residual sequences of 4 layers each (transposed convolutional layer, normali-
sation layer, dropout layer and LeakyReLU layer) and finally a transposed convolutional layer (Fig. 3,
Appendix S.3 and S.4).

The denoising discriminator uses the PatchGAN model combined with the Res-Net architecture
(convolutional layer, normalization layer and LeakyReLU layer), where the layers were connected
directly in a single sequence instead of linking several sequences.

The training phase was carried out with the Google Colab GPU PRO environment, using the Tensorflow
and Sklearn libraries for image pre-processing, and PyTorch (CUDA 10.2 graphics cores) to obtain more
computational resources and minimise the algorithm execution time. The Tensorflow and Keras libraries
were used to train the GAN models.

3.4. Evaluation metrics

In addition, most filter techniques use various evaluation metrics such as Mean Square Error (MSE),
Root-Mean-Square Error (RMSE), Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM) to assess image quality.
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Table 2
PSNR and SSIM range values

Quality PSNR SSIM
Low < 30 < 0.90
Aceptable 35–40 0.90–0.95
High 40–50 0.95–1

Fig. 3. WGAN model. Adapted from Hao, Zhuangzhuang et al. (2022).

For quantitative comparison, the PSNR and SSIM [64,65] were introduced to measure image restoration
quality, which is widely used in biomedical applications, especially in mammography and US diagnosis
and cancer detection fields.

The PSNR is the metric used to measure the quality of the denoising image when it is corrupted due to
noise and blur. A higher value of PSNR indicates a higher quality rate. The standard value of PSNR is 35
to 40 dB (Table 2). The PSNR is calculated by Eq. (4), where is the variance of noise evaluated over the
RoI image and is the variance of the filtered image.

PSNR = 10 log

(
σ2s
σŝ

)
(4)

SSIM is a perception-based model that considers the image degradation as perceived change in contrast
and structural information. Thus, we can apply this value to assess the quality of any images [66], which
lies from 0 to 1 (Table 2).

SSIM index is computed using the correlation coefficient, see Eq. (5).

SSIM (x, y) =
(2µx + µy) (2σxy)

(µx2 + µy2) (σx2 + σy2)
(5)

Where,

ux =
1

N

N∑
i

= 1xi

uy =
1

N

N∑
i

= 1yi
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Table 3
Summary of the CGAN and WGAN average comparison results (PSNR and SSIM)

ID CGAN ID WGAN
PSNR (dB) SSIM PSNR (dB) SSIM

BUSI
img_busi _7 39.8433 0.974624 img_busi_7 35.0476 0.930708
img_busi _56 39.8223 0.906241 img_busi_56 35.1609 0.818753
img_busi _58 39.8341 0.976325 img_busi_58 35.5627 0.952616
img_busi_60 40.1839 0.978979 img_busi_60 35.2361 0.931421
img_busi _70 39.7809 0.971730 img_busi_70 35.7736 0.943916
img_busi _175 39.4099 0.972768 img_busi_175 35.5431 0.942358
img_busi _199 39.7116 0.929269 img_busi_199 35.3159 0.939286

DATASET A
img_datasetA_6 41.8245 0.977663 img_datasetA_6 38.2882 0.965505
img_datasetA_11 42.1565 0.977758 img_datasetA_11 37.7888 0.965114
img_datasetA_23 41.8171 0.978695 img_datasetA_23 38.2925 0.967823
img_datasetA_76 41.9047 0.977636 img_datasetA_76 38.4245 0.971207
img_datasetA_188 41.9888 0.977348 img_datasetA_188 37.2507 0.968667
img_datasetA_217 41.9424 0.978819 img_datasetA _217 37.7399 0.971379
img_datasetA_222 42.6280 0.980217 img_datasetA_222 37.2250 0.967832

UDIAT
img_udiat_55 38.0735 0.876853 img_udiat_55 34.1079 0.936932
img_udiat_77 40.4911 0.967255 img_udiat_77 36.4130 0.939990
img_udiat_102 36.9104 0.967851 img_udiat_102 34.5283 0.932152
img_udiat_114 36.8855 0.967821 img_udiat_114 34.1357 0.930100
img_udiat_135 36.9244 0.972911 img_udiat_135 33.3826 0.939381
img_udiat_165 38.8622 0.967638 img_udiat_165 34.3925 0.922628
img_udiat_200 37.9759 0.961544 img_udiat_200 33.7251 0.918583
Total average 38.1873 0.961547 Total average 33.0068 0.919955

σx =

√√√√ 1

N − 1

N∑
i=1

(xi − µx)2

σy =

√√√√ 1

N − 1

N∑
i=1

(yi − µy)2

σxy =
1

N − 1

N∑
i=1

(xi − µx) (yi − µy)

N is the total number of pixels in the image. xi,j is the filtered image at i and j coordinates and yi,j
is the noisy image at i and j coordinates. µx µI is the mean of reference images, µy µi is the mean of
filtered images, σx is the variance of reference images, σy is the variance of filtered image, covIicovIiσxy
is the covariance of filtered image.

4. Results

This section presents the most relevant numerical experiments obtained from speckle removal GAN
algorithms. First, to improve the algorithm performance, the RoI images were used as GAN training
models; in total, we denoising 1060 malignant and benign RoIs. The image quality of the generated
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Fig. 4. Dispersion report for PSNR/SSIM metrics. a). CGAN network with PSNR metric. b). CGAN network with SSIM metric.
c). WGAN network with PSNR metric. d). WGAN network with SSIM metric.

data was evaluated with PSNR and SSIM metrics, which are expressed in terms of average value. The
most relevant scores are displayed in Table 3; these indicate that the Conditional GAN model showed a
significant improvement compared to the other model.

Although they are visually very similar according to Table 4, the quality values obtained define that
the CGAN network achieves a higher mean value in PSNR = 41.03 dB and SSIM = 0.97 concerning
the WGAN network values (PSNR = 35.47 dB/SSIM = 0.43). This indicates that the CGAN model is
the network that best eliminates the speckle noise in ultrasound images while preserving the structural
details and quality better than the WGAN model. Furthermore, we can see from Table 5 that the best
visual results correspond mainly to dataset A, whose original images had the lowest resolution compared
to the other datasets.

To confirm the previous information, the test dataset (239 US images) was used to evaluate the data
dispersion of the CGAN and WGAN algorithms using the PSNR and SSIM metrics.

Figure 4a–4d show the statistical results obtained using R software, where a and b show the dispersion
data obtained by CGAN. The blue points represent the PSNR metric, which ranges from 30 to 40 dB, and
the red points represent the SSIM metric, which ranges from 0 to 1.

Figure 4a and 4b show more signal of better image quality using CGAN network, it means better
luminance (PSNR 36–42dB/SSIM 0.85 to 0.98), contrast and structural information in the restructured
images by CGAN with respect to WGAN network (PSNR 36–48dB/SSIM 0.85 to 0.95) Fig. 4c and 4d.

5. Discussion

Ultrasound is a complementary technique to mammography and is used for breast cancer detection due
to its sensitivity. However, the appearance of speckle noise in US is an interference mode that causes low
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Table 4
Visual comparison between original ultrasound RoI images and denoising images generated by Conditional GAN
and WGAN

ID Original CGAN
PSNR/SSIM

WGAN
PSNR/SSIM

img_busi_34

40.18 dB / 0.9789 34.35 dB / 0.9535
img_busi _70

39.78 dB / 0.9717 35.77 dB / 0.9439
img_busi _175

39.40 dB / 0.9727 35.54 dB / 0.9423
img_datasetA_6

41.82 dB / 0.9776 38.28 dB / 0.9655
img_datasetA_11

42.15 dB / 0.9777 38.29 dB / 0.9678
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Table 4, continued

ID Original CGAN
PSNR/SSIM

WGAN
PSNR/SSIM

img_datasetA_76

41.90 dB / 0.9776 38.42 dB / 0.9712
img_udiat_77

38.86 dB / 0.9676 36.41 dB / 0.9399
img_udiat_165

40.49 dB / 0.9672 33.38 dB / 0.9393
img_udiat_200

37.97 dB / 0.9615 33.72 dB / 0.9185

contrast resolution [33], which makes it difficult to specialize in identifying abnormalities in the breast.
In this paper, we trained a pair of GANs combined with CNN architectures as US image denoising, and
then evaluated the quality of the denoised images using PSNR and SSIM metrics.

The quality of the denoising image in the Conditional GAN achieved a higher average PSNR (41.03 dB)
and SSIM (0.97) in contrast to the average PSNR (35.47 dB) and SSIM (0.93) in the WGAN. Thus,
according to the values given in Table 4, the CGAN is consistent with a higher quality image [63] and
achieves success in ultrasound denoising images compared to the WGAN. This can be attributed to the
fact that CGAN uses the Unet architecture as the generator model and Binary Cross Entropy (BCE) as the
loss function (in addition to the L1 loss) [67,68] to generate real images and provide greater robustness to
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Table 5
Comparison of the accuracy of our denoising method with others GAN and CNN denoising methods

Author Method Main idea PSNR/SNR
(dB)

SSIM Acc/Sen/Spec
(%)

Eckert et
al. [11]

MRDGet DL method based on CNNs for mammogram
denoising to improve the image quality.

36.18 0.841 −

Feng et
al. [13]

VGGNet The network extracts the structure boundaries
before and after US image de-speckling

30.57 0.90 −

Pang et
al. [32]

TripleGAN Method to perform data augmentation in breast US
images.
Then its images are used to classify breast masses
using a CNN.

− − 90.41/
87.94/85.86

Al-Dhabyani
et al. [33]

AlexNet +
GAN

US breast masses classification with data
augmentation.

99/-/-

Vimala et
al. [47]

Recurrent
Neural
Network

Hybrid deep learning technique to remove local
speckle noise from breast US images.

70/65 − −

Li et al. [72] CGAN WGAN loss are combined as the objective loss
function to ensure the consistency of denoised
image (lung and chest) and real image.

3326 0.92

Huang, et
al. [76]

DUGAN +
UNET

Deep learning-based model for Low-dose CT
denoising

34.6 0.91 −

Elhoseny and
Shankar [77]

CNN Edge preservation and effective
noise removal in MRI and CT images. Then, CNN
classifier is used to classify the denoised image as
normal or abnormal

47.52 0.95 −

Ours WGAN
CGAN

Reduce speckle noise while preserving features
and details in breast US images.

33.00
38.18

0.92
0.96

the model. The Unet has an encoder-decoder network to reconstruct the despeckled image by extracting
features from the noisy image to effectively enhance the image features and suppress some speckle noise
during the encoding phase [69].

In contrast, WGAN uses Wasserstein distance and Resnet architecture as the generator model with
gradient clipping as the loss function to achieve a 1-Lipschitz function. Although this network sometimes
avoids the mode collapse problem, resulting in more stable training and less sensitivity to hyperparameter
settings (because it is trained based on image distribution loss, rather than image pixel loss) [69], in this
work the results generated by WGAN are not statistically significantly better than those generated by
CGAN. For the previous reason Gulrajani et al. [70] proposed a WGAN with gradient penalty (GP) to
replace the gradient clipping and to enforce Lipschitz continuity, which performs better and more stable
training than WGAN with almost no hyperparameter setting

These performance differences in performance observed between the CGAN and the WGAN will also
help to better implement new tasks in a computer system for detection/diagnosis of benign or malignant
breast lesions. The pre-processing steps such as denoising, super resolution, or data augmentation based
on deep learning algorithms help to improve the performance and accuracy in terms of clinical relevance
in detection, diagnosis, segmentation, or image classification using CNN algorithms.

The main advantage of using GAN algorithms are the quality of the new images produced and the
ability to generalize beyond the boundaries of the original dataset to produce new patterns.

Consequently, many researchers have been proposed a deep residual network structure based on GAN
networks for image denoising.

Zhang et al. [71] used GANs Unet-based architecture as ultrasound image denoising, with residual dense
connectivity and weighted joint loss (GAN-RW) to overcome the limitations of traditional denoising
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algorithms. The results demonstrated that the noise level (PSNR = 3.08% and SSIM 1.84%) was
effectively removed by the method, image detail was better preserved and the subjective visual effect
was improved. Lan et al. [69] implemented a mixed-attention mechanism (MARU) with UNet model for
real-time ultrasound image despeckle, using an encoder-decoder network to reconstruct the despeckled
image by extracting features from the noisy image. Visual comparison shows that the proposed method
outperforms the compared despeckling methods (SBF, SRAD, NML) in terms of speckle noise reduction
and detail preservation.

The GAN-based combination methods have been applied to different tasks, and have achieved better
results. For example [72], proposed a conditional GAN using a WGAN as an objective loss function in
medical image denoising, the PSNR/SSIM values (29.4/0.88) demonstrated good results with respect to
other state-of-the-art methods, perceiving the structure and details of the images.

Cantero J. [73] investigated two GANs (DCGAN and WGAN-GP) for the generation of synthetic PET
(positron emission tomography) breast images. The visual results show that these two architectures can
generate sinogram images that confound human evaluators. According to [74] the lower the amount of
noise present in the real images the faster the DCGAN network learns to generate high fidelity images, but
the results obtained here by WGAN-GP are not significantly better than those produced by DCGAN. In
conclusion joint training of denoising and image classification significantly improves the performance of
classification. A comparison of the accuracy of our work with more recent methods is shown in Table 5.

Finally, in this study, some limitations were presented, particularly in the availability of private
data collection, because only public breast ultrasound databases were used. The implementation of
hyperparameters in GAN training is very complex due to the sensitivity of their modification, generating
some challenges (collapse mode, convergence, Nash equilibrium, and gradient), which are typical of
generative networks. To minimize this problem during the training, it is essential to manually modify
some hyperparameters (optimization functions, loss functions, number of epochs, layers, iterations),
even to implement new alternatives based on deep convolutional networks to train the generator and the
discriminator in a better way.

The research is reproducible, replicable and generalizable, and all code, data and materials have been
deposited in the Mendeley repository [75], where the information can be accessed and used by others.

6. Conclusions

In conclusion, in this work CGAN proved to be a useful tool with a better-quality result for denoising
breast ultrasound images than the WGAN model. This was obtained by comparing the mean statistical
values (PSNR and SSIM) of the GAN models. The higher robustness demonstrated by CGAN is attributed
to the fact that the generator uses U-Net encoder-decoder architecture with BCE loss function to remove
the speckle noise in a better way than the Resnet architecture used in WGAN. The proposed CGAN
technique is particularly useful for small data sets with low variance. These networks are widely used for
image generation or data augmentation, but their application in US image denoising is still limited. In
future work, other advanced deep learning methods for denoising such as convolutional neural networks
and autoencoders will be used, and additional features will be considered in denoising breast images such
as PET, thermal, CT, MRI to improve the performance of breast lesion classification algorithms.
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