
co
rre

cte
d p

roo
f v

ers
ion

Galley Proof 29/02/2024; 10:59 File: ida–1-ida230631.tex; BOKCTP/yn p. 1

Intelligent Data Analysis -1 (2024) 1–18 1
DOI 10.3233/IDA-230631
IOS Press

Ultrasound breast images denoising using1

generative adversarial networks (GANs)2

Yuliana Jiménez-Gaonaa,b,c,∗, María José Rodríguez-Alvarezb, Líder Escuderoc,3

Carlos Sandovalc and Vasudevan Lakshminarayanand,e
4

aDepartamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja, Ecuador5
bInstituto de Instrumentacion Para la Imagen Molecular I3M, Universitat Politécnica de Valencia,6

Valencia, Spain7
cMedihospital, Loja-Ecuador, Av. Eugenio Espejo y Shuaras 07 39 50 600, Ecuador8
dTheoretical and Experimental Epistemology Lab, School of Optometry and Vision Science, University of9

Waterloo, Waterloo, ON, Canada10
eDepartment of Systems Design Engineering, Physics, and Electrical and Computer Engineering,11

University of Waterloo, Waterloo, ON, Canada12

Abstract.13

INTRODUCTION: Ultrasound in conjunction with mammography imaging, plays a vital role in the early detection and diag-14

nosis of breast cancer. However, speckle noise affects medical ultrasound images and degrades visual radiological interpretation.15

Speckle carries information about the interactions of the ultrasound pulse with the tissue microstructure, which generally causes16

several difficulties in identifying malignant and benign regions. The application of deep learning in image denoising has gained17

more attention in recent years.18

OBJECTIVES: The main objective of this work is to reduce speckle noise while preserving features and details in breast19

ultrasound images using GAN models.20

METHODS: We proposed two GANs models (Conditional GAN and Wasserstein GAN) for speckle-denoising public breast21

ultrasound databases: BUSI, DATASET A, AND UDIAT (DATASET B). The Conditional GAN model was trained using the22

Unet architecture, and the WGAN model was trained using the Resnet architecture. The image quality results in both algorithms23

were measured by Peak Signal to Noise Ratio (PSNR, 35–40 dB) and Structural Similarity Index (SSIM, 0.90–0.95) standard24

values.25

RESULTS: The experimental analysis clearly shows that the Conditional GAN model achieves better breast ultrasound de-26

speckling performance over the datasets in terms of PSNR = 38.18 dB and SSIM = 0.96 with respect to the WGAN model27

(PSNR = 33.0068 dB and SSIM = 0.91) on the small ultrasound training datasets.28

CONCLUSIONS: The observed performance differences between CGAN and WGAN will help to better implement new tasks29

in a computer-aided detection/diagnosis (CAD) system. In future work, these data can be used as CAD input training for image30

classification, reducing overfitting and improving the performance and accuracy of deep convolutional algorithms.31

Keywords: Breast cancer, ultrasound image denoising, generative adversarial network32

1. Introduction33

Medical image analysis plays an important role in breast cancer screening, feature extraction, segmen-34

tation, and classification breast lesions locally. There are several breast cancer detection methods, such as35
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Positron Emission Tomography (PET) [1], Computer Tomography (CT) [2] and Magnetic Resonance36

Imaging (MRI) [3], which are usually used when women are at high risk of breast cancer. Other comple-37

mentary techniques such as X-ray mammography [4] and ultrasound (US) [5] are more commonly used38

in screening programs, according to the American Cancer Society.39

Among these modalities, US is used as a complementary imaging modality for further evaluation of40

lesions detected early by mammography due to its non-invasive nature, low cost, safety, portability, and41

low radiation dose. However, one of its main shortcomings is the poor quality of US image, which is42

corrupted by random noise added during its acquisition [6,7], i.e. low contrast and different brightness43

levels, resulting in increased noise and artifacts that can affect the radiologist’s opinion and diagnosis. US44

images have a granular appearance called speckle noise, which degrades visual assessment [8], making it45

difficult for humans to distinguish normal from pathological tissue in diagnostic examinations.46

Image denoising techniques, typically low-dose, address this problem [9]. The primary purpose of47

denoising is to restore the maximum detail of the image by removing excess noise [10], while preserving48

as much as possible the feature details to benefit the diagnosis and classification of benign, premalignant,49

and malignant abnormalities (microcalcifications, masses, nodules, tumors, cysts, fibroadenoma, adenosis,50

and lesions) that may be difficult to identify at first sight or early in the patient.51

Thus, denoising medical images is essential before training a classifier based on deep-learning models.52

Recently, several US denoising techniques based on deep learning have been widely used, such as53

Convolutional Neural Networks (CNN) [11,12,13,14], Generative Adversarial Networks (GANs) [15,54

16,17], and Autoencoders (AEs) [18,19], which can recover the original dataset and make it noise-55

free with better robustness and precision [20]. Deep learning methods have obtained better results in56

medical imaging in comparison with previous methods such as Wavelet, Wiener, Gaussian [21], Multi-57

Layer perceptron [22], Dictionary Learning [23], Least Square, Bilateral Filter, Non-Local Mean [24].58

Variational approaches [6,25], because these filters have presented some limitations such as smoothing59

problems, more computational cost, and inability to preserve information such as edges and textures of60

images as well as possible [25].61

2. Related work62

Many traditional denoising filtering techniques have been proposed in the literature to reduce speckle63

noise [26,27,28,29], which can be categorized into three main types: 1) Spatial domain (Median filter,64

Mean filter, Adaptive Mean Filter, Frost, Total variation filter, Anisotropic Diffusion, Nonlocal means65

filter, Linear Minimum Mean Squared Error (LMMSE)). 2) Transform domain (Wiener filter, Low pass66

filter, Discrete wavelet transform), and 3) Deep learning-based techniques such as Convolutional Neural67

Networks (CNN), Generative Adversarial Networks (GAN), and Variational Autoencoders (VAEs).68

The Spatial and Transform domain methods are computationally simple and fast but sometimes blur69

the image, and there can be a loss of resolution and low accuracy. Spatial domain filters also have size70

limitations and window shape problems [28].71

However, Deep learning-based models can provide better results compared to these traditional methods,72

because deep models gives better visual quality by extracting various features of an image as example73

Li et al. proposed TP-Net [30] as 3D shape classification and segmentation tasks, on a wide range of74

common datasets, which main contribution is the design of dilated convolution strategy tailored for the75

irregular and non-uniform structure of 3D mesh data.76

Several Generative models (GANs, VAEs) have been successfully used for medical image denoising77

and data augmentation to improve robustness and prevent overfitting in deep CNN image classification78

algorithms. Some relevant works are discussed in this section.79
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Wu et al. [31] implemented a perceptual metrics-guided GAN (PIGGAN) framework to intrinsically80

optimize generation processing, and experiments show that PIGGAN can produce photo-realistic results81

and quantitatively outperforms state-of-the-art (SOTA) methods. Pang et al. [32] implemented the82

TripleGAN model to augment the breast US images. These synthetic images were used to classify breast83

masses classification using the CNN model, achieving a classification accuracy of 90.41%, sensitivity of84

87.94% and specificity of 85.86%. Al-Dhabyani et al. [33] first used breast US data augmentation with85

GAN and then two deep learning classification approaches: (i) CNN (AlexNet) and (ii) TL (VGG16,86

ResNet, Inception, and NASNet), achieving in the BUSI dataset an accuracy of 73%, 84%, 82%, 89%,87

91% and in Dataset B (UDIAT) an accuracy of 75%, 80%, 77%, 86%, 90% respectively.88

Jain et al [34] found that CNN provided comparable and, in some cases, superior performance to89

Wavelet and Markov Random Field methods. Thus, the Resnet approach proposed by MRDG et al. [11]90

was used to improve mammography image quality with a peak signal-to-noise ratio (PSNR) of 36.18 and91

a similar structural index metrix (SSIM) of 0.841. Feng et al [13] implemented a hybrid neural network92

for US denoising based on the Gaussian noise distribution and VGGNet model to extract the structural93

boundary information, the results show a (PSNR = 30.57, SSIM = 0.90, Mean Square Error (MSE) =94

66.61) US denoising effectiveness.95

Denoising autoencoders based on convolutional layers also perform well for their ability to extract96

spatial solid correlation [35]. Kaji et al. [9] present an overview describing encoder-decoder networks97

(pix-2-pix) and cycle GAN as image noise reduction.98

Chen et al. [12] proposed the autoencoder and the residual encoder–decoder CNN for low-dose99

computer tomography (CT) imaging, achieving a good performance index (PSNR of 39.19/SSIM of 0.93100

and Root Mean Square Deviation (RMSD) of 0.0097), compared to with other methods in terms of noise101

suppression, structure preservation, and lesion detection.102

However, the use of GANs is considered more stable than autoencoders. GANs are typically used when103

dealing with images or visual data and work better for signal image processing, such as anomaly detection;104

on the contrary, VAEs are used for predictive maintenance or security analysis applications [35]. For the105

previous reason, several GANs have recently been used for data augmentation [36,37,38,39,40], image106

super-resolution [21], image translation [9], and noise reduction in the medical field [41,42].107

Zhou et al. [37] proposed a GAN + U-Net network (generator model) to achieve mapping between108

low-quality US images and corresponding high-quality images. In contrast to the traditional GAN method,109

U-Net is used to reconstruct the image’s tissue structure, details, and speckles. The evaluation indices110

indicated that PSNR, SSIM, and MI (Mutual dependence index) values are increased by 48.3%, 205.0%,111

and 44.0% and that the proposed method can successfully reconstruct a high-quality image.112

The most recent deep GAN models used for image denoising are Conditional GAN [43] and Wasserstein113

GAN [44], which have shown better performance than conventional denoising algorithms [45,46]. Kim et114

al. [43] implemented a CGAN network as a medical image denoising algorithm, where the SSIM metric115

was improved by 1.5 and 2.5 times over conventional methods (Nonlocal Means and Total Variation)116

respectively, demonstrating a superiority in quantitative evaluation. Vimala et al. [47] proposed an image117

noise removal in US breast images based on Hybrid Deep Learning Technique, where local speckle noise118

was destroyed, reaching a signal-to-noise ratios (SNRs) greater than 65 dB, PSNR ratios greater than119

70 dB, edge preservation index values more significant than the experimental threshold of 0.48. Zou et120

al. [37] proposed a network model based on the Wasserstein GAN for image denoising, which improved121

the noise removal effect.122

Based on the previous mentioned our propose integrates concepts from breast cancer research and123

ultrasound image denoising in a comparative study to evaluate the effect of image pre-processing in124
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Table 1
Breast ultrasound public databases

Dataset Benign Malignant Total
BUSI 437 210 647
Dataset A 100 150 250
Dataset B 110 53 163
Total 647 413 1060

improving breast image quality. Improving image quality clarifies patterns, allowing the deep learning125

model to identify and classify features within the image more accurately. In this study, we explore a novel126

approach by combining fine-tuning techniques GANs + CNNs, providing new insights into breast cancer127

classification.128

Denoising of medical images has been used to improve the performance of CNN segmentation and129

classification algorithms [48,50]. Ans several CNN methods for general image denoising have been130

studied ADNet, NERNet, SAnet, CDNet, DRCNN [51], but in this research, as a technical novelty, we131

combine Conditional GAN + Unet and WGAN + Resnet particularly focusing on the medical image132

quality improvement of breast ultrasound. The results will help to better implement new tasks in a133

computer-aided detection/diagnosis (CAD) system.134

Consenquently, this study aims to: (i) to implement two types of GANs+CNNs architecture models135

as speckle denoising in ultrasound breast images, and (ii) to select the best architecture to generate new136

quality images based on the quantitative evaluation metrics (PSNR and SSIM).137

3. Materials and methods138

3.1. Databases collection139

Three publicly available breast US databases were used in this study: (i) The Breast Ultrasound140

Images Dataset (BUSI, https://scholar.cu.edu.eg/?q=afahmy/pages/dataset) [52]. This contains data from141

600 female patients. The dataset consists of 780 images (133 normal, 437 benign and 210 malignant)142

with an average image size of 500 × 500 pixels. (ii) The Dataset A is obtained from Rodrigues et143

al. [53] (https://data.mendeley.com/datasets/wmy84gzngw/1) and contains 250 breast cancer images, 100144

benign and 150 malignant. The Dataset B (Breast Ultrasound Lesions Dataset, http://www2.docm.mmu.145

ac.uk/STAFF/m.yap/dataset.php) collected in UDIAT-Centre Diagnóstic, Corporació Parc Taulí, Sabadell146

(Spain). The dataset consists of 163 images of different women with an average image size of 760 × 570147

pixels, each of the images shows one or more lesions. Of the 163 images of lesions, 53 are images of148

cancerous masses and 110 with benign lesions [54].149

A total of 1060 US images were used to train the GAN models; see Table 1.150

Figure 1 shows the workflow used in denoising breast ultrasound images, which is divided into the151

following steps: i) Acquisition of public ultrasound databases, ii) Dimensionality and cropping of regions152

of interest (RoIs), iii) Image denoising using two GANs + CNN models, and iv) Image quality evaluation.153

3.2. Data dimensionality and rois cropping154

The torchvision (pytorch) library was used to perform transformations (preserving all features and155

structure of the images) and to standardize the images to a single dimension (256 × 256 pixels), which156
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Fig. 1. Workflow of GANs+CNN models implementation in breast ultrasound denoising.

were acquired in different sizes (BUSI: 431 × 476, 765 × 590, 786 × 556; Dataset A: 153 × 87, 95 ×157

75, 93 × 57; Dataset B: 760 × 570).158

According to Wu et al. [36], synthesizing a lesion into RoIs (regions of interest) gives advantages to the159

generative model, as it generates more realistic lesions, improving subsequent classification performance160

over traditional augmentation techniques. Thus, automatic RoI extraction was performed on all US161
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images.162

Then, using a cross-validation technique, the dataset was randomly divided (with the Sklearn library)163

into a training set (80%, 851 images) and a testing set (20%, 209 images) for training the GAN models164

(with the Tensorflow, Keras libraries).165

3.3. Generative adversarial network166

The GAN architecture is represented by a generative (G) network and a discriminator (D) network,167

which are trained simultaneously. While the G network is trained to produce realistic images G(z) from168

a random vector z, the D network is trained to discriminate between real and generated images [55]. In169

the original GAN the optimization function was formulated by the Eq. (1).170

minGmaxD V (D,G) = Ex∼Pr(x)
[logD (x)] + Ez∼Pz(z) [log (1−D (G (z)))] (1)

Given random noise vector z and real image x, the generator attempts to minimize log (1−D(G(z))171

and the discriminator attempts to maximize logD (x). Whre, Pr and Pz sare the real data distribution and172

the noise data distribution, x is the input variable, D(x) is the prediction label and D(z) is the generated173

sample.174

In this work, we used two ultrasound denoising GANs; (i) conditional GAN and (ii) WGAN, both has175

been widely used in medical image reconstruction, denoising and data augmentation [56]. Especially176

CGAN model have been propose as new framework that can largely mitigate the biases and discrimi-177

nations in machine learning systems while at the same time enhancing the prediction accuracy of these178

systems [57].179

3.3.1. Conditional GAN (CGAN)180

CGAN was introduced by Douzas et al. [58], as an extension of GAN with conditional information in181

D and G. GANs are generative models that learn a mapping from random noise vector z to output image182

y, (G: z→ y) [59]. In contrast, conditional GANs learn a mapping from observed image x and random183

noise vector z to y, (G : {x, z}→ y). The CGAN objective function is framed by Eq. (2), where G tries184

to minimize this objective function and D tries to maximize it.185

LcGAN (G,D) = Ex,y [logD (x, y)] + Ex,z [log(1−D (x,G (x, z))] (2)

In this work, the generator and discriminator architectures were adapted from [60,61]. A manual186

exploration of different configurations in the general hyperparameters was performed to optimize the187

denoising of breast US images, before selecting and implementing our CGAN model. The selected188

hyperparameters are: Number of epochs = 40, Buffer size = 954, Batch size = 80; Optimiser = Adam,189

Activation function = Binary Cross-Entropy Loss, Generator layers = 48 and Discriminator layers = 12.190

The denoiser generator network is based on the U-Net [61] architecture, which consists of a contraction191

path and an expansion path. This is composed of 48 convolutional layers including the input layer, 8192

contraction layers, 7 expansion layers, 6 concatenation layers spread over the expansion layers, and193

finally a transposed convolutional layer. Each encoder and decoder block is replaced by residual dense194

connectivity and batch normalization to remove speckle noise followed by the ReLU function (Fig. 2,195

Appendix S.1 and S.2).196

The denoiser discriminator network is based on a Markovian random field (PatchGAN). This consists197

of an input convolutional layer and 24 convolutional layers followed by batch normalization and a ReLU198

function (Fig. 2). The output consists of successive convolutional layers 256, 128, 64 and 1. This means199

that as the input image passes through each of the convolution blocks, the spatial dimension is reduced by200

a factor of two.201
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Fig. 2. CGAN model.

3.3.2. Wasserstein GAN (WGAN)202

WGAN was introduced by Arjovsky et al. [62], which uses a Wasserstein distance instead of a JS203

(Jensen-Shanon) or KL (Kullback-Leibler) divergence to evaluate the discrepancy between the distribution204

distance of noisy and denoised images. It provides a better approximation of the distribution of the205

observed data in the training data.206

The Wassertein (W) model is defined as Eq. (3):207

W (Pr, Pg) = infγ ∼ Π (Pr, Pg) E (x, y) ∼ γ||x− y|| (3)
Where Π (Pr, Pg) denotes the set of all the joint distributions γ (x, y) based on the marginal values of208

Pr and Pg; γ (x, y) indicates how many “RoIs” must be transported from x to y in order to transform the209

distributions Pr into the distribution Pg; x and y denote the predicted and real actual values, respectively,210

and P denotes the probability distribution. The general hyperparameters implemented in this model are211

number of epochs = 130, buffer size = 954, batch size = 60; optimizer = Adam, cctivation function =212

Wasserstein, generator layers = 26 and discriminator layers = 12.213

The denoising generator, was trained by the Resnet model [63]. The generator contains 54 layers,214

including the input layer, 8 sequential layers of 3 layers each (convolutional layer, normalisation layer215

and LeakyReLU layer), 7 residual sequences of 4 layers each (transposed convolutional layer, normali-216

sation layer, dropout layer and LeakyReLU layer) and finally a transposed convolutional layer (Fig. 3,217

Appendix S.3 and S.4).218

The denoising discriminator uses the PatchGAN model combined with the Res-Net architecture219

(convolutional layer, normalization layer and LeakyReLU layer), where the layers were connected220

directly in a single sequence instead of linking several sequences.221

The training phase was carried out with the Google Colab GPU PRO environment, using the Tensorflow222

and Sklearn libraries for image pre-processing, and PyTorch (CUDA 10.2 graphics cores) to obtain more223

computational resources and minimise the algorithm execution time. The Tensorflow and Keras libraries224

were used to train the GAN models.225

3.4. Evaluation metrics226

In addition, most filter techniques use various evaluation metrics such as Mean Square Error (MSE),227

Root-Mean-Square Error (RMSE), Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR)228

and Structural Similarity Index (SSIM) to assess image quality.229
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Table 2
PSNR and SSIM range values

Quality PSNR SSIM
Low < 30 < 0.90
Aceptable 35–40 0.90–0.95
High 40–50 0.95–1

Fig. 3. WGAN model. Adapted from Hao, Zhuangzhuang et al. (2022).

For quantitative comparison, the PSNR and SSIM [64,65] were introduced to measure image restoration230

quality, which is widely used in biomedical applications, especially in mammography and US diagnosis231

and cancer detection fields.232

The PSNR is the metric used to measure the quality of the denoising image when it is corrupted due to233

noise and blur. A higher value of PSNR indicates a higher quality rate. The standard value of PSNR is 35234

to 40 dB (Table 2). The PSNR is calculated by Eq. (4), where is the variance of noise evaluated over the235

RoI image and is the variance of the filtered image.236

PSNR = 10 log

(
σ2s
σŝ

)
(4)

SSIM is a perception-based model that considers the image degradation as perceived change in contrast237

and structural information. Thus, we can apply this value to assess the quality of any images [66], which238

lies from 0 to 1 (Table 2).239

SSIM index is computed using the correlation coefficient, see Eq. (5).240

SSIM (x, y) =
(2µx + µy) (2σxy)

(µx2 + µy2) (σx2 + σy2)
(5)

Where,241

ux =
1

N

N∑
i

= 1xi

uy =
1

N

N∑
i

= 1yi
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Table 3
Summary of the CGAN and WGAN average comparison results (PSNR and SSIM)

ID CGAN ID WGAN
PSNR (dB) SSIM PSNR (dB) SSIM

BUSI
img_busi _7 39.8433 0.974624 img_busi_7 35.0476 0.930708
img_busi _56 39.8223 0.906241 img_busi_56 35.1609 0.818753
img_busi _58 39.8341 0.976325 img_busi_58 35.5627 0.952616
img_busi_60 40.1839 0.978979 img_busi_60 35.2361 0.931421
img_busi _70 39.7809 0.971730 img_busi_70 35.7736 0.943916
img_busi _175 39.4099 0.972768 img_busi_175 35.5431 0.942358
img_busi _199 39.7116 0.929269 img_busi_199 35.3159 0.939286

DATASET A
img_datasetA_6 41.8245 0.977663 img_datasetA_6 38.2882 0.965505
img_datasetA_11 42.1565 0.977758 img_datasetA_11 37.7888 0.965114
img_datasetA_23 41.8171 0.978695 img_datasetA_23 38.2925 0.967823
img_datasetA_76 41.9047 0.977636 img_datasetA_76 38.4245 0.971207
img_datasetA_188 41.9888 0.977348 img_datasetA_188 37.2507 0.968667
img_datasetA_217 41.9424 0.978819 img_datasetA _217 37.7399 0.971379
img_datasetA_222 42.6280 0.980217 img_datasetA_222 37.2250 0.967832

UDIAT
img_udiat_55 38.0735 0.876853 img_udiat_55 34.1079 0.936932
img_udiat_77 40.4911 0.967255 img_udiat_77 36.4130 0.939990
img_udiat_102 36.9104 0.967851 img_udiat_102 34.5283 0.932152
img_udiat_114 36.8855 0.967821 img_udiat_114 34.1357 0.930100
img_udiat_135 36.9244 0.972911 img_udiat_135 33.3826 0.939381
img_udiat_165 38.8622 0.967638 img_udiat_165 34.3925 0.922628
img_udiat_200 37.9759 0.961544 img_udiat_200 33.7251 0.918583
Total average 38.1873 0.961547 Total average 33.0068 0.919955

σx =

√√√√ 1

N − 1

N∑
i=1

(xi − µx)2

σy =

√√√√ 1

N − 1

N∑
i=1

(yi − µy)2

σxy =
1

N − 1

N∑
i=1

(xi − µx) (yi − µy)

242

N is the total number of pixels in the image. xi,j is the filtered image at i and j coordinates and yi,j243

is the noisy image at i and j coordinates. µx µI is the mean of reference images, µy µi is the mean of244

filtered images, σx is the variance of reference images, σy is the variance of filtered image, covIicovIiσxy245

is the covariance of filtered image.246

4. Results247

This section presents the most relevant numerical experiments obtained from speckle removal GAN248

algorithms. First, to improve the algorithm performance, the RoI images were used as GAN training249

models; in total, we denoising 1060 malignant and benign RoIs. The image quality of the generated250



co
rre

cte
d p

roo
f v

ers
ion

Galley Proof 29/02/2024; 10:59 File: ida–1-ida230631.tex; BOKCTP/yn p. 10

10 Y. Jiménez-Gaona et al. / Ultrasound breast images denoising using generative adversarial networks (GANs)

Fig. 4. Dispersion report for PSNR/SSIM metrics. a). CGAN network with PSNR metric. b). CGAN network with SSIM metric.
c). WGAN network with PSNR metric. d). WGAN network with SSIM metric.

data was evaluated with PSNR and SSIM metrics, which are expressed in terms of average value. The251

most relevant scores are displayed in Table 3; these indicate that the Conditional GAN model showed a252

significant improvement compared to the other model.253

Although they are visually very similar according to Table 4, the quality values obtained define that254

the CGAN network achieves a higher mean value in PSNR = 41.03 dB and SSIM = 0.97 concerning255

the WGAN network values (PSNR = 35.47 dB/SSIM = 0.43). This indicates that the CGAN model is256

the network that best eliminates the speckle noise in ultrasound images while preserving the structural257

details and quality better than the WGAN model. Furthermore, we can see from Table 5 that the best258

visual results correspond mainly to dataset A, whose original images had the lowest resolution compared259

to the other datasets.260

To confirm the previous information, the test dataset (239 US images) was used to evaluate the data261

dispersion of the CGAN and WGAN algorithms using the PSNR and SSIM metrics.262

Figure 4a–4d show the statistical results obtained using R software, where a and b show the dispersion263

data obtained by CGAN. The blue points represent the PSNR metric, which ranges from 30 to 40 dB, and264

the red points represent the SSIM metric, which ranges from 0 to 1.265

Figure 4a and 4b show more signal of better image quality using CGAN network, it means better266

luminance (PSNR 36–42dB/SSIM 0.85 to 0.98), contrast and structural information in the restructured267

images by CGAN with respect to WGAN network (PSNR 36–48dB/SSIM 0.85 to 0.95) Fig. 4c and 4d.268

5. Discussion269

Ultrasound is a complementary technique to mammography and is used for breast cancer detection due270

to its sensitivity. However, the appearance of speckle noise in US is an interference mode that causes low271
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Table 4
Visual comparison between original ultrasound RoI images and denoising images generated by Conditional GAN
and WGAN

ID Original CGAN
PSNR/SSIM

WGAN
PSNR/SSIM

img_busi_34

40.18 dB / 0.9789 34.35 dB / 0.9535
img_busi _70

39.78 dB / 0.9717 35.77 dB / 0.9439
img_busi _175

39.40 dB / 0.9727 35.54 dB / 0.9423
img_datasetA_6

41.82 dB / 0.9776 38.28 dB / 0.9655
img_datasetA_11

42.15 dB / 0.9777 38.29 dB / 0.9678
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Table 4, continued

ID Original CGAN
PSNR/SSIM

WGAN
PSNR/SSIM

img_datasetA_76

41.90 dB / 0.9776 38.42 dB / 0.9712
img_udiat_77

38.86 dB / 0.9676 36.41 dB / 0.9399
img_udiat_165

40.49 dB / 0.9672 33.38 dB / 0.9393
img_udiat_200

37.97 dB / 0.9615 33.72 dB / 0.9185

contrast resolution [33], which makes it difficult to specialize in identifying abnormalities in the breast.272

In this paper, we trained a pair of GANs combined with CNN architectures as US image denoising, and273

then evaluated the quality of the denoised images using PSNR and SSIM metrics.274

The quality of the denoising image in the Conditional GAN achieved a higher average PSNR (41.03 dB)275

and SSIM (0.97) in contrast to the average PSNR (35.47 dB) and SSIM (0.93) in the WGAN. Thus,276

according to the values given in Table 4, the CGAN is consistent with a higher quality image [63] and277

achieves success in ultrasound denoising images compared to the WGAN. This can be attributed to the278

fact that CGAN uses the Unet architecture as the generator model and Binary Cross Entropy (BCE) as the279

loss function (in addition to the L1 loss) [67,68] to generate real images and provide greater robustness to280
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Table 5
Comparison of the accuracy of our denoising method with others GAN and CNN denoising methods

Author Method Main idea PSNR/SNR
(dB)

SSIM Acc/Sen/Spec
(%)

Eckert et
al. [11]

MRDGet DL method based on CNNs for mammogram
denoising to improve the image quality.

36.18 0.841 −

Feng et
al. [13]

VGGNet The network extracts the structure boundaries
before and after US image de-speckling

30.57 0.90 −

Pang et
al. [32]

TripleGAN Method to perform data augmentation in breast US
images.
Then its images are used to classify breast masses
using a CNN.

− − 90.41/
87.94/85.86

Al-Dhabyani
et al. [33]

AlexNet +
GAN

US breast masses classification with data
augmentation.

99/-/-

Vimala et
al. [47]

Recurrent
Neural
Network

Hybrid deep learning technique to remove local
speckle noise from breast US images.

70/65 − −

Li et al. [72] CGAN WGAN loss are combined as the objective loss
function to ensure the consistency of denoised
image (lung and chest) and real image.

3326 0.92

Huang, et
al. [76]

DUGAN +
UNET

Deep learning-based model for Low-dose CT
denoising

34.6 0.91 −

Elhoseny and
Shankar [77]

CNN Edge preservation and effective
noise removal in MRI and CT images. Then, CNN
classifier is used to classify the denoised image as
normal or abnormal

47.52 0.95 −

Ours WGAN
CGAN

Reduce speckle noise while preserving features
and details in breast US images.

33.00
38.18

0.92
0.96

the model. The Unet has an encoder-decoder network to reconstruct the despeckled image by extracting281

features from the noisy image to effectively enhance the image features and suppress some speckle noise282

during the encoding phase [69].283

In contrast, WGAN uses Wasserstein distance and Resnet architecture as the generator model with284

gradient clipping as the loss function to achieve a 1-Lipschitz function. Although this network sometimes285

avoids the mode collapse problem, resulting in more stable training and less sensitivity to hyperparameter286

settings (because it is trained based on image distribution loss, rather than image pixel loss) [69], in this287

work the results generated by WGAN are not statistically significantly better than those generated by288

CGAN. For the previous reason Gulrajani et al. [70] proposed a WGAN with gradient penalty (GP) to289

replace the gradient clipping and to enforce Lipschitz continuity, which performs better and more stable290

training than WGAN with almost no hyperparameter setting291

These performance differences in performance observed between the CGAN and the WGAN will also292

help to better implement new tasks in a computer system for detection/diagnosis of benign or malignant293

breast lesions. The pre-processing steps such as denoising, super resolution, or data augmentation based294

on deep learning algorithms help to improve the performance and accuracy in terms of clinical relevance295

in detection, diagnosis, segmentation, or image classification using CNN algorithms.296

The main advantage of using GAN algorithms are the quality of the new images produced and the297

ability to generalize beyond the boundaries of the original dataset to produce new patterns.298

Consequently, many researchers have been proposed a deep residual network structure based on GAN299

networks for image denoising.300

Zhang et al. [71] used GANs Unet-based architecture as ultrasound image denoising, with residual dense301

connectivity and weighted joint loss (GAN-RW) to overcome the limitations of traditional denoising302
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algorithms. The results demonstrated that the noise level (PSNR = 3.08% and SSIM 1.84%) was303

effectively removed by the method, image detail was better preserved and the subjective visual effect304

was improved. Lan et al. [69] implemented a mixed-attention mechanism (MARU) with UNet model for305

real-time ultrasound image despeckle, using an encoder-decoder network to reconstruct the despeckled306

image by extracting features from the noisy image. Visual comparison shows that the proposed method307

outperforms the compared despeckling methods (SBF, SRAD, NML) in terms of speckle noise reduction308

and detail preservation.309

The GAN-based combination methods have been applied to different tasks, and have achieved better310

results. For example [72], proposed a conditional GAN using a WGAN as an objective loss function in311

medical image denoising, the PSNR/SSIM values (29.4/0.88) demonstrated good results with respect to312

other state-of-the-art methods, perceiving the structure and details of the images.313

Cantero J. [73] investigated two GANs (DCGAN and WGAN-GP) for the generation of synthetic PET314

(positron emission tomography) breast images. The visual results show that these two architectures can315

generate sinogram images that confound human evaluators. According to [74] the lower the amount of316

noise present in the real images the faster the DCGAN network learns to generate high fidelity images, but317

the results obtained here by WGAN-GP are not significantly better than those produced by DCGAN. In318

conclusion joint training of denoising and image classification significantly improves the performance of319

classification. A comparison of the accuracy of our work with more recent methods is shown in Table 5.320

Finally, in this study, some limitations were presented, particularly in the availability of private321

data collection, because only public breast ultrasound databases were used. The implementation of322

hyperparameters in GAN training is very complex due to the sensitivity of their modification, generating323

some challenges (collapse mode, convergence, Nash equilibrium, and gradient), which are typical of324

generative networks. To minimize this problem during the training, it is essential to manually modify325

some hyperparameters (optimization functions, loss functions, number of epochs, layers, iterations),326

even to implement new alternatives based on deep convolutional networks to train the generator and the327

discriminator in a better way.328

The research is reproducible, replicable and generalizable, and all code, data and materials have been329

deposited in the Mendeley repository [75], where the information can be accessed and used by others.330

6. Conclusions331

In conclusion, in this work CGAN proved to be a useful tool with a better-quality result for denoising332

breast ultrasound images than the WGAN model. This was obtained by comparing the mean statistical333

values (PSNR and SSIM) of the GAN models. The higher robustness demonstrated by CGAN is attributed334

to the fact that the generator uses U-Net encoder-decoder architecture with BCE loss function to remove335

the speckle noise in a better way than the Resnet architecture used in WGAN. The proposed CGAN336

technique is particularly useful for small data sets with low variance. These networks are widely used for337

image generation or data augmentation, but their application in US image denoising is still limited. In338

future work, other advanced deep learning methods for denoising such as convolutional neural networks339

and autoencoders will be used, and additional features will be considered in denoising breast images such340

as PET, thermal, CT, MRI to improve the performance of breast lesion classification algorithms.341
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