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analysis of legislative bills
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Abstract. Probabilistic Latent Semantic Analysis (PLSA) is a fundamental text analysis technique that models each word in a
document as a sample from a mixture of topics. PLSA is the precursor of probabilistic topic models including Latent Dirichlet
Allocation (LDA). PLSA, LDA and their numerous extensions have been successfully applied to many text mining and retrieval
tasks. One important extension of LDA is supervised LDA (sLDA), which distinguishes itself from most topic models in that it
is supervised. However, to the best of our knowledge, no prior work extends PLSA in a similar manner sLDA extends LDA
by jointly modeling the contents and the responses of documents. In this paper, we propose supervised PLSA (sPLSA) which
can efficiently infer latent topics and their factorized response values from the contents and the responses of documents. The
major challenge lies in estimating a document’s topic distribution which is a constrained probability that is dictated by both
the content and the response of the document. To tackle this challenge, we introduce an auxiliary variable to transform the
constrained optimization problem to an unconstrained optimization problem. This allows us to derive an efficient Expectation
and Maximization (EM) algorithm for parameter estimation. Compared to sLDA, sPLSA converges much faster and requires less
hyperparameter tuning, while performing similarly on topic modeling and better in response factorization. This makes sPLSA an
appealing choice for latent response analysis such as ranking latent topics by their factorized response values. We apply the
proposed sPLSA model to analyze the controversy of bills from the United States Congress. We demonstrate the effectiveness of
our model by identifying contentious legislative issues.
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1. Introduction

Hofmann [1] introduced Probabilistic Latent Semantic Analysis (PLSA), which is also known as
Probabilistic Latent Semantic Indexing (PLSI) when used in information retrieval and text mining [2].
The basic idea of PLSA is to treat the words in each document as observations from a mixture model
where the components of the model are word distributions for latent topics. The selection of the latent
topics is controlled by a set of mixing weights such that words in the same document share the same
mixing weights. PLSA was initially proposed for text-based applications that do indexing, retrieval,
mining, and clustering. Later, its use was expanded to other fields including collaborative filtering [3],
computer vision [4], and audio processing [5].

PLSA can be viewed as a probabilistic version of the seminal work on latent semantic analysis [6],
which revealed the utility of the singular value decomposition of the document-term matrix. PLSA is
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the precursor of probabilistic topic models which are widely used nowadays including Latent Dirichlet
Allocation (LDA) [7]. The basic generative processes of PLSA and LDA are very similar. In PLSA,
the topic mixture is conditioned on each document, while the topic mixture in LDA is drawn from a
conjugate Dirichlet prior. Theoretically, PLSA is equivalent to MAP estimated LDA under a uniform
prior [8]. The PLSA model does not make any assumptions about how the mixture weights are generated
and thus its generative semantics are not well defined [7]. Consequently, there is no natural way to predict
a previously unseen document. On the other hand, the LDA model is more complex and cannot be solved
by exact inference. Gibbs sampling [9] and variational inference [7] are often used for inference in LDA
type of topic models. However, these methods scale poorly to large datasets. Variational inference requires
dozens of expensive passes over the entire dataset, and Gibbs sampling requires multiple Markov chains
[10]. In contrast, the parameter estimation and inference of PLSA can be efficiently done by the EM
algorithm.

PLSA and LDA are the two most representative topic models. Various empirical comparisons have
been conducted between them. Blei et al. [7] shows that LDA outperforms PLSA in the perplexity of new
documents. On the other hand, Lu et al. [11] conduct a systematic empirical study of PLSA and LDA on
three representative IR tasks, including document clustering, text categorization, and ad-hoc retrieval.
They found that LDA and PLSA tend to perform similarly on these tasks. Furthermore, the performance
of LDA on all tasks is quite sensitive to the setting of its hyperparameters, and the optimal setting of
hyperparameters varies according to how the model is used in a task.

The original PLSA and LDA models as well as most of their variants are unsupervised models. Many
real-world text documents are associated with a response variable connected to each document such as
the number of stars given to a movie, the number of times a news article was downloaded, or the category
of a document. Incorporating such information into latent aspect modeling could guide a topic model
towards discovering semantically more salient statistical patterns that may be more interesting or relevant
to the user’s task. Thus, a very important extension of LDA is supervised LDA (sLDA) [12]. sLDA
jointly models the content and responses of documents in order to find latent topics that best predict the
responses of documents.

In this paper, we propose supervised Probabilistic Latent Semantic Analysis (sPLSA) by extending
PLSA to learn from the responses of documents. For PLSA, our proposed model is the analog of
what sLDA is to LDA. The major challenge lies in estimating a document’s topic distribution which
is a constrained probability that is dictated by both the content and the response of the document. We
introduce an auxiliary variable to transform the constrained optimization problem to an unconstrained
optimization problem. This allows us to derive an efficient EM algorithm to estimate the parameters of
our model. Compared to sLDA, sPLSA is much more efficient and requires less hyperparameter tuning,
while performing similarly on topic modeling and better in response factorization. This makes sPLSA the
ideal choice for latent response analysis such as ranking latent topics by their factorized response values.
We utilize the sPLSA model to analyze the controversy of bills from the United States Congress. We
demonstrate the effectiveness of our model by identifying contentious legislative issues. The contributions
of the paper can be summarized as follows.

– We propose a novel supervised PLSA model which can efficiently infer latent topics and their
factorized response values from the contents and the responses of documents.

– We derive an efficient EM algorithm to estimate the parameters of the model.
– We utilize sPLSA and sLDA to analyze the controversy of bills from the United States Congress. We

demonstrate the effectiveness of sPLSA over sLDA as part of this analysis.
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2. Related work

2.1. Probabilistic topic models

In 1999, three papers [1,2,13] introduced the model of Probabilistic Latent Semantic Analysis. One
variant of the model appeared in 1998 [14] and all these models were originally discussed in an earlier
technical report [15]. PLSA was a probabilistic implementation of latent semantic analysis (LSA)
introduced by Deerwester et al. [6]. LSA was extended from the vector space model. It aimed to represent
documents in a low dimensional vector space consisting of common semantic factors. Differing from LSA
in projecting document or word vectors into the latent semantic space, PLSA extracted the aspects related
to documents. This aspect model was interpreted as a mixture model containing latent semantic mixtures.
Parameters of mixture probabilities were estimated by the maximum-likelihood (ML) principle. PLSA
did not provide a straightforward way to make inferences about new documents not seen in the training
data and the parameterization of the model was susceptible to overfitting. Latent Dirichlet Allocation
(LDA) addressed these limitations by proposing a Bayesian probabilistic topic model.

PLSA and LDA established the field of probabilistic topic models. Many extensions of the two basic
models have been proposed. In Zhai et al. [16], PLSA was extended to include a background component
to explain the non-informative background words and a cross-collection mixture model was proposed
to support comparative text mining. Mei and Zhai [17] propose a general contextual text mining model
which is an extension of PLSA to incorporate context information. They further regularize PLSA with
a harmonic regularizer based on a graph structure in the data [18]. One active area of topic modeling
research is how to relax and extend the assumptions of PLSA and LDA to uncover more sophisticated
structure in the texts. For example, the work by Rosen-Zvi et al. [19] extends LDA to include authorship
information. Recently, probabilistic topic models are proposed for unsupervised many-to-many object
matching [20] and cross-lingual tasks [21]. There are many other topic models proposed. Blei [22] gives
an overview of the field of probabilistic topic models.

The original PLSA and LDA and most of their variants are unsupervised models. Blei and McAuliffe
[12] proposed supervised LDA (sLDA) to capture real-valued document rating as a regression response.
The generative process of sLDA is similar to LDA, but with an additional step: draw a reponse variable.
The sLDA model is trained by maximizing the joint likelihood of the contents and the responses of
documents. They tested sLDA on two real-world datasets: movie reviews with ratings and web pages
with popularity, and the experimental results demonstrated the advantages of sLDA versus regularized
regression, and versus an unsupervised LDA analysis followed by a separate regression. Other extensions
include multi-class sLDA [23], which directly captures discrete labels of documents as a classification
response; and discriminative LDA (DiscLDA) [24], which also performs classification, but with a
mechanism different from that of sLDA; and MedLDA [25], which leverages the maximum margin
principle for estimation of latent topical representations. Recently, Jameel et al. [26] integrate class label
information and word order structure into a supervised topic model for document classification. More
variants of supervised topic models can be found in a number of applied domains, such as Labeled
LDA [27], automatic summarization of changes in dynamic text collections [28], modeling of numerical
time series [29], inferring topic hierarchies [30], and query expansion [31]. In computer vision, several
supervised topic models have been designed for understanding complex scene images [32,33]. Mimno
and McCallum [34] also proposed a topic model for considering document-level meta-data; for example,
publication date and venue of a paper.

Most of the above supervised topic models are based on LDA. There exist very few work on extending
PLSA to the supervised setting. One such work was to use the spoken content of a multimedia document
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as a query for retrieving similar or relevant documents [35]. The query was used to train the model in
a supervised fashion with respect to a query-document similarity objective function. Fergus et al. [36]
extend PLSA to include spatial information in a translation and scale invariant manner, and utilized this
modified PLSA model to learn an object category. Another work added a category-topic distribution in
PLSA for human action recognition [37]. However, these models do not associate the topic distribution
of the document with the response variable. Consequently, the discovered topics may not be indicative
of the response. Aliyanto et al. [38] proposed a version of supervised PLSA to estimating technology
readiness level, but they assumed the topics of each word in a document are observed which are actually
not available in many real-world applications. In this paper, we follow the way LDA was extended to
sLDA by directly associating the documents’ topic distributions with the response. The response is at the
document level instead of the word level and it is more readily accessible. The learned topics depend on
both the document’s content and response. To the best of our knowledge, no prior work has extended
PLSA in a similar manner.

Recently, with the rise of deep learning, novel topic models based on neural networks have been
proposed. Salakhutdinov and Hinton [39] proposed a two layer restricted Boltzmann machine (RBM)
called the replicated-softmax to extract low level latent topics from a large collection of unstructured
documents. Larochelle and Lauly [40] proposed a neural auto-regressive topic model inspired from
the replicated softmax model but replacing the RBM model with a neural auto-regressive distribution
estimator (NADE). Kingma and Welling [41] proposed variational autoencoders by combining topic
modeling and neural networks. Cao et al. [42] proposed neural topic model (NTM), and it is supervised
extension (sNTM) where words and documents embedding are combined. Moody [43] proposed the
lda2vec, a model combining LDA and word embeddings. Dieng et al. [44] integrated to a recurrent
neural network based language model global word semantic information extracted using a probabilistic
topic model. Gupta et al. [45] integrated to an LSTM recurrent neural network, a neural auto-regressive
topic model. Murakami and Chakraborty [46] investigated the use of word embedding with NTM
for interpretable topics from short texts. Grootendorst [47] proposed BERTopic to generate document
embedding with pre-trained transformer-based language models and then produce topic representations
with the class-based TF-IDF procedure. Two recent surveys [48,?] provided comprehensive reviews
of neural topic models, with nearly a hundred models developed and a wide range of applications in
neural language understanding such as text generation, summarization and language models. Despite the
popularity of deep learning, our work has focused on traditional probabilistic methods because they are
often easier to implement and more efficient to train, which may be more suitable in resource constrained
environments where only limited computation and storage are accessible. Nevertheless we will explore to
combine the proposed model with neural networks in a future work.

2.2. Controversy analysis of legislative bills

Legislative voting is a major area of research. Most of the research is focused on the ideal point
estimation of the ideological positions of legislators. This is primarily for the purpose of predicting
their voting patterns. An early work in this area presented a spatial model of legislative voting [50].
Londregan [51] estimated the preferred positions of legislators by modeling the legislative agenda. Cox
and Poole [52] used a spatial model to assess the role of partisanship in influencing the votes of legislators.
Variational methods were applied to predict votes [53]. Thomas et al. [54] modeled voting behavior from
congressional debate transcripts. Gerrish and Blei [55] demonstrated roll call predictive models which
link legislative text with legislative sentiment. They [56] further derived approximate posterior inference
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Table 1
Notations

D Corpus of documents d A document in D
w A word that occurs in D k A topic
n(d,w) Count of word w in d K Total number of topics
N Total number of words Nd Number of words in d
M Total number of documents θdk P (k|d)
θd Topic distribution of d Θ Matrix of all θdk
βkw P (w|k) βk Word distribution of k
β Matrix of all βkw Zdn Topic of the nth word in d
Wdn nth word in document d W Matrix of all Wdn

cd Response of d c Vector of all cd
vk Regression coefficient on topic k v Vector of all vk
σ2 Variance of the Gaussian noise

algorithms based on variational methods to predict the positions of legislators. Fang et al. [57] analyzed
public statements from legislators to build a contrastive opinion model of the legislators. Gu et al. [58]
conducted ideal point estimations of legislators on the latent topics of voted documents.

Some of the work cited above utilized topic models. For example, Gerrish and Blei [55] extended LDA
to build a generative model of votes and bills called the ideal point topic model. The model infers two
bill related latent variables. One of the latent variables explains bills that all legislators will vote for or
against while the other variable explains bills that do not have unanimous approval or disapproval. In
addition, the model infers a latent variable for the legislators’ ideal points. Another example, Fang et al.
[57] present the cross-perspective topic model which unifies two identically extended LDA models to
contrast the opinion words of a bipolar legislative body. The opinion words reflect the subjective positions
of the polar entities on various topics. The model discriminates between opinion words and topics words
by treating them as two separate observed variables.

On the broader field of controversy analysis, much work has been done detecting contradictions in
textual data. One of the early works studied the dynamics of conflicting opinions in texts by visually
inspecting graphs [59]. Tsytsarau et al. [60] further investigated two types of contradictions, namely,
“overlapping contradicting opinions” and “change of sentiment”. Many supervised learning approaches
have been proposed for classifying texts into one of the two opposing opinions using annotated controver-
sial corpora including sentences [61], documents [62] and document collections [61]. Some recent work
addresses the task of identifying controversial contents on Wikipedia [63,64,65] and on social media [66,
67,68].

3. Supervised PLSA

3.1. Notations

Assume the corpus D contains M documents with K topics. Nd is the number of words in document
d. Each document d has two set of observed variables: Wdn, which is the nth word of d; and cd, which is
the response of d, such as the rating of a review. Table 1 includes the main notations in the paper.

3.2. Generative process

Similar to many other topic models, sPLSA assumes that a document consists of multiple topics.
Therefore, there is a distribution θd over a fixed number of K topics for each document d. Like PLSA,
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Fig. 1. Graphical model representation of (a) PLSA and (b) sPLSA.

this distribution is a multinomial distribution where each element θdk in the vector represents the
probability that topic k appears in document d, i.e., θdk = P (k|d). In addition, we assume each topic
represents a distribution over words w in a fixed vocabulary of size V , denoted by βk. This distribution is
also a multinomial distribution where each element βkw represents the probability that term w is chosen
by topic k, i.e., βkw = P (w|k).

The essential difference between PLSA and sPLSA lies in the modeling of the response variable cd
connected to document d. Under the sPLSA model, each document and response arises from the following
generative process:

– For each word w in document d
∗ Choose a topic zdw ∼ Multinomial(θd)
∗ Choose a word w ∼ Multinomial(βzdw

)

– Draw a response cd ∼ N (θd
Tv, σ2)

Here the response comes from a Gaussian linear model. The mean is the inner product of topic
distribution θd and coefficient parameter vector v.

Figure 1 illustrates the graphical model representation of PLSA and sPLSA, respectively.
It is worth noting that our approach for modeling cd is different from that of sLDA. sLDA approximates

a response variable, which in our case is cd, as a linear combination of the mean Zdn values. sLDA
represents each Zdn = k as an indicator vector of length K where the kth position is set to 1 and the
others are set to 0. sLDA evaluates the mean Zdn by taking the mean value of the vectors, which is
expressed as zd =

∑Nd

n=1 Zdn. In Section 4, we empirically show that using a linear combination of θdk
instead of zdk yields vk values that better factorize the response of the latent topics.

3.3. Likelihood function

The likelihood function in supervised PLSA consists of two parts. The first part is the likelihood for
observing all the words in the corpus, W, given the topic distributions for the documents, Θ, and the
word distributions for the topics, β. Mathematically, it is as follows:

P (W|Θ, β) =

M∏
d=1

∏
w∈d

( K∑
k=1

θdkβkw

)n(d,w)
(1)
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where n(d,w) is the number of times word w appears in document d. Therefore, the log likelihood of the
observed words is

J1(Θ, β) =

M∑
d=1

∑
w∈d

n(d,w) log

(
K∑
k=1

θdkβkw

)
(2)

The second part of the likelihood function comes from the likelihood of the response variable. As
shown in the generative process, we assume a linear model with Gaussian noise for modeling the response
cd. Specifically, we express cd as follows:

cd ∼ N
( K∑
k=1

θdkvk, σ
2

)
(3)

where vk is the coefficient for θdk. The expression indicates that cd is a random variable drawn from a
Gaussian distribution with a mean

∑K
k=1 θdkvk and a variance σ2. The likelihood of observing all the

responses is as follows:

P (c|Θ,v) =

M∏
d=1

1√
2πσ2

exp

(
−

(cd −
∑K

k=1 θdkvk)
2

2σ2

)
(4)

where c is a vector of all cd in the corpus, and v is a vector of all vk. vk can be viewed as the contribution
of topic k to the overall response. That is the higher a vk value is the more its latent topic contributes to
the response variable.

We assume a Gaussian prior on the coefficients vk, i.e., vk ∼ N (0, η2), which is equivalent to L2

norm regularization. By ignoring some constants which do not impact the outcome of the likelihood
maximization, the log likelihood of observing all the responses can be specified as:

J2(Θ,v) = −
M∑
d=1

(cd −
∑K

k=1 θdkvk)
2

2σ2
− 1

2η2

K∑
k=1

v2k (5)

Equations (2) and (5) share Θ as a parameter to estimate. This means we will need to unify both
likelihoods into a single unified likelihood equation in order to estimate Θ. We accomplish this by
normalizing the two likelihoods, and then linearly combining Eqs (2) and (5) as follows:

J(Θ, β,v) = (1− λ) J1(Θ, β)∑M
d=1

∑
w∈d n(d,w)

+ λ
J2(Θ,v)

M
(6)

where λ is a weighing constant and is a real number λ ∈ [0, 1]. Its value affects the perplexity of the
latent topics, β, inferred by the unified likelihood. We discuss this in Section 4.

3.4. Parameter estimation

Now that we have established the unified likelihood, we can use it to derive formulas for iteratively
updating the parameters v, β, and Θ in order to converge the likelihood to its maximum value. At a
high-level, we iteratively update the parameters one at a time until the likelihood converges. We illustrate
the process in Fig. 2.
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Fig. 2. The iterative updates of the parameter estimation process.

3.4.1. Updating v
The values of v are only found in the second term of the unified likelihood. This means we can simply

use J2(Θ,v) as the maximization objective to update v while fixing Θ and β. If we use vector and matrix
representations, maximizing J2(Θ,v) is equivalent to minimizing the following objective:

min
v

(c−Θv)T (c−Θv) +
σ2

η2
vTv (7)

It can be seen that the above objective function is strictly convex in v by its positive second derivative.
By taking the first derivative of the function with respective to v and setting it to zero, we can obtain the
analytic solution to v as follows

v =

(
ΘTΘ +

σ2

η2
I

)−1
ΘTc (8)

This solution is equivalent to Ridge Regression or Tikhonov regularization [69].

3.4.2. Updating β
The values of β are only found in the first term of the unified likelihood. This means we can simply

use J1(Θ, β) as the maximization objective. Similar to PLSA, we can use the EM algorithm to update β
while fixing Θ and v. In the E-step, we apply Bayes’ theorem and estimate the posterior probability of
the topic k based on current parameters as follows:

P (k|d,w) = θdkβkw∑K
k′=1 θdk′βk′w

(9)

In the M-step, we maximize the expected complete data log-likelihood as follows:

max
β

E(J1) =

M∑
d=1

∑
w∈d

n(d,w)

K∑
k=1

P (k|d,w) log(θdkβkw) (10)

with the constraint of
∑

w∈d βkw = 1. Here P (k|d,w) is obtained from the E-step. By using the Lagrange
multiplier method to solve the constrained optimization problem in Eq. (10), we obtain the following
update rule for β:

βkw =

∑M
d=1 n(d,w)P (k|d,w)∑M

d=1

∑
w∈d n(d,w)P (k|d,w)

(11)
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3.4.3. Updating Θ
The values of Θ are found in both terms of the unified likelihood. However, it is difficult to maximize

J(Θ, β,v) with respect to Θ, because J1(Θ, β) has a log of sums term that contains θdk. Instead of
using J1(Θ, β) in J(Θ, β,v) , we use the same lower bound objective that the EM algorithm uses to
approximate J1(Θ, β), which is derived as follows:

J1(Θ, β) =

M∑
d=1

∑
w∈d

n(d,w) log

( K∑
k=1

θdkβkw

)

=

M∑
d=1

∑
w∈d

n(d,w) log

( K∑
k=1

P (k|d,w) θdkβkw
P (k|d,w)

)

>
M∑
d=1

∑
w∈d

n(d,w)

K∑
k=1

P (k|d,w) log
(

θdkβkw
P (k|d,w)

)
(12)

=

M∑
d=1

∑
w∈d

n(d,w)

K∑
k=1

P (k|d,w) log(θdk) +
M∑
d=1

∑
w∈d

n(d,w)

K∑
k=1

P (k|d,w) log(βkw)

−
M∑
d=1

∑
w∈d

n(d,w)

K∑
k=1

P (k|d,w) log
(
P (k|d,w)

)
Since the second and third terms in the above lower bound are constants with respect to Θ, we can

drop them to obtain a simpler lower bound objective for optimizing Θ. The objective is as follows:

J3(Θ) =

M∑
d=1

∑
w∈d

n(d,w)

K∑
k=1

P (k|d,w) log(θdk) (13)

This means we use the following objective instead of the unified likelihood to update Θ:

JL(Θ,v) = (1− λ) J3(Θ)∑M
d=1

∑
w∈d n(d,w)

+ λ
J2(Θ,v)

M
(14)

The above objective is a concave function with respect to Θ when we fix v. We can solve for the values
of Θ that maximize the objective provided that the following constraint is met for every document d.

K∑
k=1

θdk = 1, ∀ d ∈ D (15)

The constraint must be met because each θd is a probability distribution. However, this constraint
results in a constrained optimization problem that is hard to solve with a simple closed form expression
similar to the constrained optimization problem for estimating βkw (Eq. (11)). This is because the gradient
of JL(·) with respect to θdk (Eq. (25)) yields an expression that consists of all the θdk parameters for all
documents and the given k. This makes finding a closed form solution for θdk difficult. To overcome this
difficulty, we transform the constrained optimization problem to an unconstrained optimization problem
by expressing θdk in terms of a parameter τdk as follows:

θdk = SOFTMAX(τdk) (16)
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where τdk ∈ R and SOFTMAX(·) is defined as follows:

SOFTMAX(τdk) =
exp(τdk)∑K

k′=1 exp(τdk′)
(17)

Irrespective of the value of τdk, SOFTMAX(τdk) returns a value in the range of [0, 1] and the sum of all
SOFTMAX(τdk) for each τdk ∈ τd is always 1. As a result, expressing θdk in terms of SOFTMAX(τdk)
innately allows θdk to satisfy the constraint, and effectively transforms the constrained optimization to an
unconstrained optimization problem.

Furthermore, we can reduce the number of τdk parameters from K to K − 1, because one τdk is
redundant since:

θdk = SOFTMAX(τdk) = 1−
K−1∑
k′=1

SOFTMAX(τdk′) (18)

when k = K. To remove the redundant parameter, we note that subtracting a value from all τdk does not
change the value of SOFTMAX(.):

SOFTMAX(τdk − h) =
exp(τdk − h)∑K

k′=1 exp(τdk′ − h)

=
exp(τdk) exp(−h)∑K

k′=1 exp(τdk′) exp(−h)
(19)

=
exp(τdk)∑K

k′=1 exp(τdk′)

= SOFTMAX(τdk)

As a result, we can express τdk with an auxiliary parameter µdk that is as follows:

µdk = τdk − τdK (20)

This results in µdK = 0, which eliminates µdK for being an additional parameter of µd. Therefore,
SOFTMAX(.) simplifies to the following when 1 6 k 6 K − 1:

SOFTMAX(µdk) =
exp(µdk)

1+
∑K

k′=1 exp(µdk′ )
(21)

and to the following when k = K:

SOFTMAX(0) =
1

1 +
∑K

k′=1 exp(µdk′)
(22)

Finally, we can express θdk as follows in terms of µd:

θdk =


exp(µdk)

1+
∑K−1

k′=1
exp(µdk′ )

if 1 6 k 6 K − 1

1
1+

∑K−1

k′=1
exp(µdk′ )

if k = K
(23)

The above representation of θdk ensures Eq. (15) holds. Therefore, instead of doing a constrained
maximization with respect to Θ, we perform an unconstrained maximization with respect to µ.

We use the gradient ascent algorithm to maximize the objective function JL(Θ,v) in Eq. (14) with
respect to µ by fixing v. The partial derivative we use to update each µdk is as follows:

∂JL
∂µdk

=

K∑
k′=1

∂JL
∂θdk′

∂θdk′

∂µdk
(24)
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where:

∂JL
∂θdk′

=
1− λ∑M

d=1

∑
w∈d n(d,w)

∑
w∈D n(d,w)p(k

′|d,w)
θdk′

+
λ

σ2M

M∑
d=1

(
cd −

K∑
k=1

θdkvk

)
vk′ (25)

and:

∂θdk′

∂µdk
=

{
θdk(1− θdk) if k′ = K

−θdk′θdk if k′ 6= k
(26)

After we update each µdk, we update each θdk using Eq. (23).

3.5. Inference

After the parameter estimation is completed, we do the following to infer the latent topics and their
factorized response values:

– We infer the latent topics from the topic-word distribution β by ranking the words for each latent
topic k in descending order of the probability of the words belonging to the topic (βkw). We then
extract the most probable words of the topic to get an intuition about what each latent topic is about.
We do this by analyzing the semantics of the extracted words.

– We infer the factorized response for each latent topic k from its vk value. The larger the vk value, the
more dominant the topic is in determining the response variable.

4. Experiments

In this section, we discuss the dataset we used to test sPLSA, present experimental results, and compare
our model to the baselines.1

4.1. Dataset

We tested sPLSA using bills which were placed for a vote in the United States Congress. The objective
of our test is to generate the latent topics of the bills, and then rank them by controversy. We do this by
first assigning a controversy score to each bill followed by inferring the factorized controversy score of
each topic using sPLSA. We assign a controversy score to each bill by using the spread of the number of
yes and no votes. The formula we use is as follows:

cd = 1− |ad − bd|
ad + bd

(27)

where cd is the controversy score of bill d, ad is the number of yes votes for the bill, and bd is the number
of no votes for the bill. A value of 0 indicates no controversy and occurs when the votes are either all yes
or all no. A value of 1 indicates maximum controversy and occurs when the number of yes and no votes
are evenly split. sPLSA uses the cd value of the bills as the response variable and generates the latent
topics of the bills. We use the vk values generated by the model to rank the latent topics by controversy.

The reason why we selected congressional bills and their controversy scores as our dataset is to
demonstrate applying sPLSA to a real world problem. Specifically, we want to identify contentious issues

1The dataset and source code for our experiments can be found at https://github.com/ealemayehu/splsa.
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Fig. 3. Histogram of the distribution of the response variable calculated using Eq. (27).

in the United States Congress by generating their latent topics. By inferring their relative controversy
using sPLSA, we can rank the topics by controversy, and identify the contentious issues by selecting the
most controversial topics.

We collected bills starting from the 100th Congress and ending with the 114th Congress. This is for the
years 1987 to early 2016. We used the Vote API of GovTrack 2 to obtain information about the votes.
Next, we discarded the votes that are not associated with a bill. For votes that are associated with a bill,
we kept the final votes for the bill. Finally, we obtained the digital content of the bills from the website
of the U.S. Government Publishing Office.3 We only obtained the content of bills that had a plain text
version.

We were able to collect the votes and content of 6,403 bills. 5,531 bills were from the House of
Representatives and 872 bills were from the Senate. 6,160 bills had more yes votes than no votes, and
243 bills had more no votes than yes votes. Figure 3 shows the distribution of the bills’ controversy score.

We did the following preprocessing of the bills to create our dataset:
– Removed words which have characters that are not in the English alphabet.
– Removed words less than 4 characters in length.
– Removed common English words using Mallet’s4 stop-word list.
– Removed domain specific words using a custom stop-word list. The stop-word list has 157 words,

and we created it by analyzing the word frequency of the bills. It mostly consists of legal terms.
– Selected the 15,000 most frequent words as the vocabulary of our corpus.
We then created the dataset as a bag-of-words representation of each bill.

4.2. Setup

We randomly partition our dataset as follows: 80% for training, 10% for validation, and 10% for testing.
We initialize µ by sampling from a Gaussian distribution of mean 0 and variance 1. We initialize Θ from
the initial values of µ using Eq. (23). We initialize β by sampling from a uniform distribution and then

2https://www.govtrack.us.
3http://www.gpo.gov/fdsys.
4http://mallet.cs.umass.edu/.
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Fig. 4. The sparsity of θd by plotting the average probability of the kth order statistic of the topics in all θd for K = 20 and
λ = 0.5.

normalizing each βk, the word distribution of topic k, so that it becomes a valid probability distribution.
We initialize v by setting all vk = 0. We initialize values for λ, K, and η depending on the experiment
we are running. Our implementation of sPLSA iteratively updates in lockstep v, β, and µ until the unified
likelihood converges. At the beginning of each iteration, we update Θ using Eq. (23).

4.3. Evaluation metrics

We test a trained model by folding-in the test dataset similar to the way specified in [1]. This is
essentially the same as training the model with the test dataset except β and v are not updated, and their
values are obtained from the trained model. The only parameter we estimate in the folding-in process is
Θ. We evaluate the performance of the model with test data as follows:

– For Θ and β, we use the perplexity of the topics inferred from the test dataset. The lower the
perplexity is, the better the values of Θ and β.

– For v, we use Pearson correlation to correlate each vk with the average controversy score of the bills
which have k as their most probable topic (sk). sk is calculated as follows:

sk =

∑
d 1{max θd = θdk}cd∑
d 1{max θd = θdk}

(28)

The higher the correlation between v and s is, the better the values of v, and the better v represents
the relative controversy between the topics.

The reason why we can correlate each vk with sk is because the θd are sparse. An example of the
sparsity is illustrated in Fig. 4 where we aggregate the average probability of the kth order statistic of the
topics in all θd for K = 20 and λ = 0.5. We can clearly see from the plot that the 20th order statistic is
by far the most dominant topic.

4.4. Results

Table 2 shows the top 5 words for the 1st, 2nd, median, 2nd last, and last controversial topics for
four experiments. Each experiment selected a unique K ∈ {10, 20, 30, 40}, and all the experiments set
λ = 0.5 and η = 1. As we will see later, our choice of λ and η are optimal for our dataset. In addition
to the top 5 words, the table shows the vk coefficient of each topic. As we mentioned earlier, the vk
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Table 2
The top 5 words for the 1st, 2nd, median, 2nd last, and last most controversial
topics of selected K values as well as the vk values of the topics

Rank K = 10 K = 20 K = 30 K = 40

1 v = 1.36 v = 1.886 v = 1.942 v = 2.527
Fundraising Fisa Alien Educating
Expense Buddhist Immigrants Institutes
Fisa Outdoor Secures High
Alien Functions Employing Struggle
Secures Loaded Stationing Structuring

2 v = 1.145 v = 1.268 v = 1.885 v = 2.262
Fundraising Fundraising Fisa Payers
Fisa Expense Buddhist Fisa
Buddhist Relocates Expense Indispensable
Expense Appropriations Fundraising Paygo
Appropriations Expendable Functions Plain

bK
2
c v = −0.508 v = −0.251 v = 0.229 v = 0.106

Defending Finances Foregone Education
Milestone Commissary Internal Schofield
Fisa Board Secures Lobbying
Forced Persian Nation Educating
Forbs Companionship Verifying Childless

K − 1 v = −0.844 v = −1.316 v = −2.381 v = −2.188
Plain Propene Defending Chances
Propene Therapeutics Milestone Header
Lancaster Chaplains Proclaimed Chaplains
Mammography Lien Forbs Sequester
Tarp Fisa Researcher Frederick

K v = −0.977 v = −1.829 v = −3.604 v = −2.569
Healing Drowning Commissary Houses
Houses Prison Safeguarding Expense
Fundraising Bushel Chaplains Prohibited
Secures Mammography Vessel Amounts
Payers Sttr Transnational Distributors

values estimate the controversy of the topics and we use them to select the topics shown in the table. For
K = 10, we find that some of the topics overlap. For example, the words “fundraising”, “expense” and
“fisa” (Foreign Intelligence Surveillance) appear in multiple topics. This is because the number of topics
is insufficient. On the other hand, K = 40 has more granular topics that overlap less. For K = 40, we
can infer from the words that the 1st topic is about higher education, the 2nd is about funding, the 3rd is
about child education, the 4th is either about religion or sequester related budget cuts, and the 5th topic is
about housing. We can therefore conclude that K has to be large enough in order to avoid topic overlap.
We also observe that as the value of K increases so does the variance of the vk values. This means that
the most controversial topics of larger K values are more controversial than the most controversial topics
of smaller K values. This makes intuitive sense since the overlap between the most controversial topics
and other topics gets smaller as K increases.

4.4.1. Comparison to baseline
Our baseline is an sLDA model. The response variable for the model is the controversy score. We

used the ’slda.em’ function in the R “lda” package5 to train the sLDA model using the training dataset.

5https://cran.r-project.org/web/packages/lda/lda.pdf.
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Table 3
Comparison of the Pearson correlation between
vk and sk for our model and sLDA

K 10 20 30 40
sPLSA 0.9837 0.9850 0.9632 0.9182
sLDA 0.9530 0.8427 0.7550 0.4614

We run the model for each K ∈ {10, 20, 30, 40} by setting α = 0.1, β = 0.1, and variance = 0.25. We
then correlated the vk and sk values of sLDA and compared the correlation to that of our model when
λ = 0.5 and η = 1. For a fair comparison, we used the training data to evaluate the sk values. This is
because unlike sPLSA, sLDA does not have access to the response variable when using test data, since
its purpose is to predict the response variable. Table 3 illustrates the comparison. From the table, we
clearly see our model correlates significantly better as K increases in value. This is the case because the
vk values of sPLSA are trained on the topic distributions, θd, whereas the equivalent coefficients in sLDA
are trained on the realized topic distributions. For sLDA, the variance between the θd and the realized
topic distributions significantly increases as K increases, and this deteriorates the ability of the sLDA
coefficients in approximating the controversy of the θd.

sPLSA is designed for topic discovery and latent response inference. This comes at the expense of its
prediction performance. Theoretically, we can use sPLSA in a semi-supervised setting where we mix both
labeled and unlabeled data, and then try to predict the labels for the unlabeled data. In such a scenario,
we update v using the labeled data, β using both the labeled and unlabeled data, and Θ using both the
labeled and unlabeled data. However, for the unlabeled data, we update Θ by setting λ = 0, since we do
not have a response value. Once we train our model, we linearly combine the θd values of the unlabeled
data with the v values to predict the labels. Figure 5 shows the RMSE values of our model’s predictions
versus the RMSE values of the sLDA predictions. Clearly, we can see that the RMSE values of our model
are significantly worse than the RMSE values of sLDA. The reason why our model performs weakly
is because it uses θd values to do the prediction. The θd values are the average estimate for the topic
distributions of the words in each document. In the case of sLDA, the realized topic distributions of the
words, Zd, is used.

4.4.2. Efficiency
We run sPLSA and sLDA on a MacPro laptop with a 2 GHz processor and 16 GB RAM on the training

dataset for various values of K. Figure 6 compares the training time of sPLSA with sLDA for various
values of K. As we can see, the training time of sPLSA was at least 6 times faster than sLDA. This is
the case because the EM algorithm used by sPLSA converges much faster than the Gibbs sampling used
by the sLDA implementation. This is despite the fact that our implementation is a single-threaded Java
program not optimized for efficiency while the core of sLDA is efficiently implemented in C.

The reason why Gibbs sampling converges a lot slower than the EM algorithm is because the topics
tend to depend on one another. This prolongs the burn-in period for the Gibbs sampling process where a
stationary distribution has not been achieved. A stationary distribution needs to be achieved for the actual
sampling to take place. During the burn-in period, the Gibbs sampling process can diverge at times. On
the other hand, EM does not have the equivalent of a burn-in period and every iteration of the algorithm
is guaranteed to monotonically improve the convergence of the likelihood.

4.4.3. Impact of η
We trained the model with K = 20 and λ = 0.5 for each η ∈ {10−3, 10−2, 10−1, 1, 10, 102, 103}. We

then tested each model with the validation dataset, and obtained the results shown in Table 4. Overall, we
can see from the table η = 1 yields the best results.
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Table 4
The perplexity and Pearson correlation values on the validation dataset for different values of η

η 0.001 0.01 0.1 1 10 100 1000
Perplexity 2072.6 2307.3 2062.4 2102.3 2056.7 2151.2 2053.5
Correlation 0.335 −0.302 0.982 0.987 0.951 0.966 0.976

Fig. 5. The prediction RMSE values of sPLSA and sLDA at various values of K.

Fig. 6. Comparison of the training time of sPLSA and sLDA for various values of K.

4.4.4. Impact of λ
We trained the model for each combination of K ∈ {10, 20, 30, 40} and λ from 0 to 1 in increments of

0.1. We then tested the model using the test dataset. Figure 7 shows the perplexity values for the various
combinations of K and λ.

From the figure, we can generally see that as λ increases the perplexity increases as well. For smaller
K values this increase is noisy, but for larger K values it gets smoother. The increase in perplexity
accelerates as λ approaches 1. We also notice that as K gets larger the overall perplexity gets lower.
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Fig. 7. The perplexity for various combinations of K and λ.

Fig. 8. The Pearson correlation between vk and sk for various combinations of K and λ.

Figure 8 shows the values of the Pearson correlation between vk and sk for the various combinations of
K and λ.

From the figure, we can generally see that the correlation increases steeply from λ = 0 to approximately
λ = 0.3. It then decelerates rapidly and levels off to within a noisy range. We can conclude from Figs 7
and 8 that for a fixed K improving the perplexity by increasing λ generally deteriorates the correlation
and vice-versa. However, there is a range of λ values between 0.4 and 0.5 where the perplexity is not that
far from the lowest perplexity and the correlation is not much different from the maximum correlation.
Our ideal λ is therefore in the range of [0.4, 0.5] for our dataset.

4.4.5. Sample topics
Tables 5, 6, and 7 show the top words for the topics generated by PLSA, sLDA, and sPLSA. In general,

we can see that very similar topics are generated by all three models. For example, topic 7 for PLSA,
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Table 5
Top 5 words for the topics of PLSA when K = 10

1 Transnational Alien Finances Board Persian
2 Fisa Buddhist Outdoor Loaded Healing
3 Washoe Prohibited Enemy Lancaster Mammography
4 Healing Plain Indispensable Cards Chiefs
5 Defending Milestone Fisa Forbs Forced
6 Plain Houses Inclusive Indispensable Propene
7 Education Educating Lobbying Schofield Fundraising
8 Secures Intell Directly Foregone Rescind
9 Fundraising Expense Appropriations Fisa Relocates
10 Defending Fisa Fundraising Milestone Plain

Table 6
Top 5 words for the topics of sLDA when K = 10

1 Foregone Internally Securitization Nationally Countries
2 Educating Education Lobbyists Scholars Childless
3 Fundraising Blvd Subsystem Administrator Entitles
4 Lance Wastewater Enemy Conservancy Prohibition
5 Defending Milford Forbs Forced Armstrong
6 Authorities Constructing Traineeships Subsystem Systematically
7 Plains Healing Paying Cards Inclusive
8 Persistent Commissary Coursework Finances Attitudes
9 Fundraising Expense Relocations Transplantation Appropriation
10 Fisa Buddhist Fundraising Reseller Securitization

Table 7
Top 5 words for the topics of sPLSA when K = 10

1 Fundraising Expense Fisa Alien Secures
2 Healing Houses Fundraising Secures Payers
3 Finances Companionship Commissary Bank Lobbying
4 Transnational Prohibited Enemy Washoe Synthetic
5 Persian Font Loaded Agricultural Eligibility
6 Educating Healing Lobbying Education Fisa
7 Plain Propene Lancaster Mammography Tarp
8 Fundraising Fisa Buddhist Expense Appropriations
9 Defending Milestone Fisa Forced Forbs
10 Fisa Healing Plain Secures Transnational

topic 2 for sLDA, and topic 6 for sPLSA are about education. This illustrates that the perplexity trade-off
we did in selecting λ = 0.5 did not adversely affect the quality of the topics generated by sPLSA.

4.5. Case study

For each topic listed in Table 2 where K = 40, we sampled the bill which has the highest probability
for the topic. We summarize the bills and analyze their connectedness to their corresponding topics in
Tables 8, 9, 10, 11, and 12. As we can see from the tables, the controversy score of the bills closely aligns
with the controversy level of the topics. In addition, the themes of the topics we specified in the beginning
of Section 4.4 partially or fully match the theme of the bills with the exception of the bill for the second
least controversial topic. This is primarily because the theme of the second least controversial topic is
hard to determine based on the top words of the topic.
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Table 8
Sample bill for the most controversial topic

Bill ID H.R. 609
Title College Access and Opportunity Act.
Year 2006
Yes Votes 221
No Votes 199
Controversy Score 0.95
Topic Probability 0.52
Description This bill is about higher education, and amends the Higher Education Act of 1965.
Analysis The controversy score is on the high-end and the theme of the bill, higher education, matches that of

the topic.

Table 9
Sample bill for the second most controversial topic

Bill ID H.R. 2491
Title Budget Reconciliation Act of 1995
Year 1995
Yes Votes 235
No Votes 192
Controversy Score 0.90
Topic Probability 0.50
Description This bill is about the federal budget for 1996.
Analysis The controversy score is close to the high-end, and the theme of the bill, funding, matches that of the

topic.

Table 10
Sample bill for the most moderately controversial topic

Bill ID H.R. 2
Title Student Results Act of 1999
Year 1999
Yes Votes 358
No Votes 67
Controversy Score 0.31
Topic Probability 0.91
Description This bill is about child education.
Analysis The controversy score is in the middle range, and the theme of the bill, child education, matches that of

the topic.

Table 11
Sample bill for the second least controversial topic

Bill ID S. RES. 501
Title A resolution honoring the sacrifice of the members of the United States Armed Forces who have been

killed in Iraq and Afghanistan.
Year 2008
Yes Votes 95
No Votes 0
Controversy Score 0.00
Topic Probability 0.78
Description As the title indicates this bill is a resolution honoring servicemen killed in combat.
Analysis The controversy score is the lowest possible. However, it is hard to align the theme of the bill with that

of the topic.
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Table 12
Sample bill for the least controversial topic

Bill ID H.R. 2158
Title Departments of Veterans Affairs and Housing and Urban Development, and Independent Agencies

Appropriations Act, 1998
Year 1998
Yes Votes 397
No Votes 31
Controversy Score 0.10
Topic Probability 0.34
Description This bill is about benefits to veterans. Among the benefits is a program account to fund veterans housing

benefits.
Analysis The controversy score is close to the low end. Partially, the theme of the bill matches that of the topic.

5. Conclusion and future work

In this paper, we introduce sPLSA. We describe sPLSA as an extension of PLSA that is an analog
of what sLDA is to LDA. Similar to sLDA, sPLSA processes a response variable associated with the
documents to factorize the responses on a per-topic basis. We discuss the advantage sPLSA has over
sLDA for doing latent response analysis such as the ranking of the topics by their factorized responses and
the execution efficiency of the model. In addition, we discuss the advantage sLDA has over sPLSA for
predicting the responses of documents. We experimentally demonstrated sPLSA on a real world problem
by doing a latent controversy analysis of topics inferred from the bills of the United States Congress.

This work is an initial step towards a promising research direction. The presented model assumes
the response comes from a Gaussian linear model. This assumption can be relaxed by extending the
distribution of the response to a generalized linear model (GLM) [70], which allows for response variables
that have error distribution models other than a Gaussian distribution. In future work, we plan to extend
sPLSA to other types of response variables including the multinomial, the Poisson, the gamma, Weibull,
inverse Gaussian, and so on. This will allow us to apply sPLSA to do latent topic analysis on a more
diverse set of problems. Last but not the least, we will explore to combine the proposed model with neural
networks by leveraging their nonlinearity modeling capability and extend the work to the realm of neural
topic models [71].
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