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Abstract. Graph neural networks (GNNs) have been applied to various graph domains. However, GNNs based on the message
passing scheme, which iteratively aggregates information from neighboring nodes, have difficulty learning to represent larger
subgraph structures because of the nature of the scheme. We investigate the prediction performance of GNNs when the number
of message passing iteration increases to capture larger subgraph structures on classification and regression tasks using various
real-world graph datasets. Our empirical results show that the averaged features over nodes obtained by the message passing
scheme in GNNs are likely to converge to a certain value, which significantly deteriorates the resulting prediction performance.
This is in contrast to the state-of-the-art Weisfeiler—Lehman graph kernel, which has been used actively in machine learning for
graphs, as it can comparably learn the large subgraph structures and its performance does not usually drop significantly drop
from the first couple of rounds of iterations. Moreover, we report that when we apply node features obtained via GNNs to SVMs,
the performance of the Weisfeiler-Lehman kernel can be superior to that of the graph convolutional model, which is a typically
employed approach in GNNs.
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1. Introduction

Graph-structured data are ubiquitous in various domains from social networks to system engineering
and bio- and chemo-informatics. Most of the recent machine learning methods for graphs are essentially
based on the message passing scheme, which aggregates feature vectors associated with neighboring
nodes and updates them via a certain function at each node [1,2,3,4,5]. This scheme is widely employed
to learn the representation of nodes and graphs in recently proposed graph neural networks (GNNs).

In machine learning on graphs, graph kernels have been studied to measure the similarity between
graphs, which can be combined with classification or prediction tasks to achieve good predictive perfor-
mances on various graph datasets [6,7,8]. If node features in graphs are discrete — that is, each node has its
label — the Weisfeiler—Lehman (WL) sub-tree graph kernel can be the first choice for graph classification
tasks, which also shares the message passing algorithm in its process [9]. This “WL scheme” can effec-
tively and efficiently count subgraph patterns in graphs, resulting in the high predictive performance in
ML tasks for graphs. The WL scheme obtains feature vectors based on counting the node label appearance
on neighboring nodes, which implicitly obtains representation of graphs and is likely to represent some
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specific characteristics that are able to explain targets in graph ML tasks. Although huge computational
cost is a limitation of graph kernel approaches, the quadratic time complexity with respect to the number
of graphs in construction of a kernel matrix, when applied to larger datasets, make their performance
superior to other approaches in various medium sized datasets [6].

GNNs have emerged as a way of learning representation on graphs. The message passing scheme
is commonly used in most of proposed GNNs [2,4,10,11]. For example, graph convolutional network
(GCN) is known to be a simple GNN model for semi-supervised learning [10], which is similar to
the WL scheme. Graph isomorphism network (GIN) is more similar to the WL graph kernel, which
have been theoretically and empirically shown to be as powerful as the WL scheme with respect to
their discriminability and representation power [2]. In addition, to learn better representation of node
features and overcome the limitation of graph convolutions, attention-based graph neural models have
been studied [3,12]. These graph neural network models are helpful to solve graph prediction tasks as
well as node or link prediction.

In GNN:ss, the problem of over-smoothing, where the similarity between nodes becomes closer and
closer when more and more message passing is performed, is one of common issues. The over-smoothing
deteriorates the quality of graph representation, particularly when multiple convolutional layers are
stacked, because of the low information-to-noise ratio of the message received by the nodes, which is
partially determined by the graph topology [13]. As a result, the performance of a trained model such as
the accuracy of classification worsens when over-smoothing occurs. This means that the message passing
scheme may inherently have a limitation in terms of capturing large subgraph structures as it requires
many message passing iterations. Thus, if such large subgraphs are relevant in prediction, this would be a
serious problem for GNNs.

In this paper, to investigate the advantage and the limitation of the message passing scheme in GNNs and
graph kernels, we focus on the influence of the over-smoothing problem. More precisely, we empirically
examine how features of graph substructures obtained by the WL (or message passing) scheme affect
the predictive performance as the number of convolutional layers increases. First, we compare the WL
sub-tree graph kernels with GNNs, including GCNs and GINs on classification and regression real-world
graph datasets collected from a variety of domains. In GNNS, for certain types of datasets, we show
that the large number of message passing iterations deteriorates the predictive performance due to the
over-smoothing phenomenon. Second, we argue that the averaged feature vectors over nodes learned
from graph convolutional layers, which are expected to represent the overall graph characteristics, are
not stable as the number of message passing iterations increases. Finally, we evaluate graph features
on multi-layer perceptrons (MLPs) and support vector machines (SVMs) in the task of classification
and regression. We also show that SVMs with features obtained from GCNs can be used as a way of
measuring how strong the contribution of node features is, where the node features are concatenated at
each message passing iteration.

Our contributions are summarized as follows:

— The prediction performance of the WL kernel outperforms the most fundamental GNNs, GCNs and
GINs, if the number of message passing iteration increases.

— The WL kernel does not deteriorate significantly for many message passing iterations in most of
datasets, while GCNs and GINs do deteriorate due to their large number of parameters and ill-trained
previous node features.

— Transition of node features tend to be small, which leads to difficulty of determining which feature is
informative for prediction, and the features converge to indistinguishable values when the training
fails.



M. Yamada and M. Sugiyama / How graph features from message passing affect graph classification and regression? 59
2. Methods for graph machine learning
2.1. Notation

A graph is atuple G = (V, E), where V and F denote the set of nodes and edges, respectively. Nodes
and edges can have labels (attributes) via label functions Iy, : V' — Xy for nodes and lg : £ — X for
edges with some label domain ¥y, and Xz, which can be any set such as Z and R?.

For two graphs G = (V, E) and G’ = (V', E'), we say that G’ is a subgraph of G, denoted by G' C G,
ifVCVand E C (V' xV')NE.

2.2. The vertex histogram kernel

One of the simplest graph kernels is the vertex histogram kernel, which counts node label matching
between a pair of graphs. Let d be the number of types of node labels — that is, d = |3, — and assume
that ¥, = {1,2,...,d} without loss of generality. The histogram vector f; = (fi1,..., fi4) of node
labels of a graph Gj is given as f;,, = [{v € V : [, = m}| for each m € ¥,. The vertex histogram
kernel kvy between G and GG is defined as

kvu(Gi, Gj) = (6, 1)) (1)
2.3. The Weisfeiler—Lehman Kernel

The Weisfeiler—Lehman (WL) sub-tree kernel is based on the Weisfeiler—Lehman test of isomorphism.
The key idea of the kernel is the “WL scheme”, which is re-labeling of node labels by gathering
neighboring node labels. Then each new label is a good proxy of an indicator of subgraph structure.
This re-labeling step is repeated until every pair of graphs have different node labels or reaching at a
certain step ¢, which is a hyperparameter. If node label sets are different for two graphs, this indicates
that they are not isomorphic with each other. Moreover, node labels obtained from this procedure implies
its subgraph structures, resulting in the tree structure of labels. After the procedure, each graph can be
represented by the occurrence of labels (subgraph structures).

In the WL kernels, these subgraph structures obtained from the WL scheme are mapped into the Hilbert
space. In other words, the obtained node label sets are used to compute the similarity between graphs.
The WL kernel is also based on the vertex histogram, but it extends the original vertex histogram through
iterations of node re-labeling. The final kernel matrix after ¢ iteration of the WL scheme is given as
follows:

kwe(Gi, Gj) = kvn(GY, ) + kyn(GV, &) + .+ kv (G, GV, )

(2

where G() denotes the graph G with the updated node labels obtained by ¢th iteration of the WL scheme.
In the WL scheme, each node label lq(,t) foranode v € V of G = (V, E) at tth iteration is relabeled as

lf,tﬂ) by the hash function given as

l£t+1) — HASH (CONCAT (ll()t)7j\/‘(/u)> )’ lrE;O) = lv’ (3)

where N\ (v) is the set of neighboring node labels of v. The function HASH denotes the aggregated labels
into unique new labels, and CONCAT denotes the operation of concatenating labels. As the number ¢ of
iterations increases, the kernel can capture more and more overall information of graph structure. When ¢
goes to infinity, it always converges to some value.
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2.4. Graphlet kernel

The graphlet kernel is calculated by the frequency of occurrence of matched subgraphs, called
graphlets [14]. Graphs are decomposed into graphlets. Let G = {graphlet,, graphlet,, . . ., graphlet‘g‘}

be the set of size-k graphlets in G. Using the histogram vector f; = (fi1,..., f;|g|) such that
fi.m = #(graphlet,, C G) [15]. Then the graphlet kernel is defined as
k(Gi, Gj) = (£, 1;). 4)

2.5. Graph convolutional neural networks

Graph convolutional neural networks are first introduced for semi-supervised learning of classifying
nodes in a graph. In graph convolutional networks, node labels are treated as a feature matrix H € RIVIxd,
where each row is the corresponding node label. The update rule of H from H® to H¢+1D) at the tth
iteration in a graph convolutional network is defined as

HY = o(D s AD: HOW®), (5)
where A = A + I is the adjacency matrix of G with self-loop (I is the identity matrix), [)ij => ; Ais
the degree matrix with self-loop, () is a matrix composed of trainable weight parameters in a layer ¢
used for mapping of node feature matrix H, and o is a non-linear function such as ReLu(-) = max(0, -).
The initial node feature matrix H(® e RIVI¥d jg directly given by node labels of a given graph G.
This approach is related to the continuous version of the WL scheme with an additional mapping and
non-linear transformation instead of concatenating node features [10].

For regression and classification settings, the output of node features at the final layer is reduced by the
pooling operation, such as taking the mean and the sum over vertices, which is equivalent to the readout
operation that can obtain the representation of graph features. The readout graph feature is passed into
MLP layers and trained through back propagation.

In computing for classification and regression, the reduce function that returns the final output value
o¢ for a given graph G is defined as simply sum over nodes

0 = MLP(READOUTgen (H™M)), (6)
where READOUTgen(+) returns the sum pooling, the sum of each column, of an input feature matrix.

Since each row of H corresponds to each node of a graph GG, the READOUTgcn operation performs the
summation of feature vectors across nodes.

2.6. Graph isomorphism networks

The graph isomorphism network (GIN) is a model that is known to be as powerful as the WL test [2].
To update the representation of each node feature vector h, the GIN employs MLP as the core process in
the following manner.

R{FD = MLPY | (1+epd + >~ wl) || (7)
ueN (v)
where MLP(®) is a MLP layer at tth iteration, () is a learnable weight or a fixed scalar at the ¢th iteration.

For graph classification and regression tasks, the output of graph features hg) at the T'th iteration is

defined as follows:

B = CONCAT((READOUT ((th) |ve G)) [t=0,1,... T)) ®
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The READOUT function aggregates node features from the final iteration to obtain graph features of

hg) by the summation or the graph-level pooling function. In each iteration, graph features are read out
and concatenated as total features. The CONCAT function is defined as

T
he =Y wh), ©)

t=0
where w is the weights of linear layers. The final features of hg are computed through each linear layer.

2.7. Special case of GIN (Pre-fixed GCN)

Our focus in this paper is not on developing state-of-the-art GNNs, but on examining the effectiveness
of GNNss with respect to treating large substructures of graphs. Therefore, we fix every weight to be the
identity matrix and € to be zero in GINSs. In such a situation, the update of node features is fully based on
graph structure (adjacency matrix) itself. The formula is defined as follows:

HHY = oD~z AD:HW), (10)
H¢; = CONCAT (READOUT(H{”)H =0,1,... ,T). (11)

Note that the obtained features can be combined with not only MLPs but also any machine learning
models. In SVMs, the graph feature of H¢ is decomposed into a collection of graph features obtained via
iterations and the resulting kernel is obtained like the WL kernel as

k(Hg,-) = k(HY ) + k(HD ) + ...+ k(HD, ). (12)

Since the dimensionality of concatenated features of graphs becomes larger and larger if more and
more iterations are performed, we introduce the norm to normalize each feature matrix as follows:

D 2AD>H®
D~z AD:H®)|
We call these features pre-fixed GCN as the weights of GCN is prefixed into unity.

H(t+1) —

(13)

2.8. Measuring transition of node features

To measure the degree of transition of node features after weight training in graph convolutional layers,
we simply introduce the AVERAGE operation of node feature vectors for each convolutional layer. In
GCN:ss, learned node features of H are updated per layer so that we retrieve and average H, g ) over nodes
at each iteration step ¢, and we can describe the change of node features with the size f, which is the
number of node features.

t t

T
HY =+ | (14)
t t
W)

The update of H is done with Eq. (5). The dimensionality of these features is reduced by the mean
pooling as
‘VG |VG

(1) L <P G 1 &y
O T AR N A @ HOR (15)
“ Vgl &= \VG!; ? Vel &=/
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Table 1
Statistics of benchmark datasets
Name Statistics Label/attributes Task
Num. of graphs  Avg. Nodes Avg. Edges Node labels Node Attr. Dim.

MUTAG 188 17.93 19.79 + 7 Classification
PTC-MR 344 4.29 14.69 + 19
NCI1 4110 29.87 32.30 + 37
PROTEINS 1113 39.06 72.82 + 3
DD 1178 284.32 715.66 + 88
REDDIT-BINARY 2000 429.63 497.75 — —
IMDB-BINARRY 1000 19.77 96.53 — —
ESOL 1128 13.29 13.68 + 74 Regression
FreeSolv 642 8.72 8.39 + 74
Lipophilicity 4200 27.04 29.5 + 74

(t+1) 1 ey 1R 1 &

t+1 t+1 t+1 t+1

h = — h —_— h e, h . (16)
1 2
o\ W 2 g 2 g 2

We expect that embedded node features include information about the neighboring node features.

3. Experiments
3.1. Experimental setting

3.1.1. Datasets

To investigate how sub-graph structures affect the performance in classification and regression tasks,
we collected eight classification datasets and three regression datasets from various domains widely
used as benchmarks of graph machine learning. In terms of classification datasets, Kersting et al. [16]
listed various benchmark sets for graph kernels. Classification benchmarks include five bio-informatics
datasets (MUTAG, PTC, NCI1, PROTEINS, and DD) and two social network datasets IMDB-BINARY
and REDDIT-BINARY). Regression benchmarks are three chemo-informatics datasets: ESOL from
MoleculeNet for the prediction of water solubility, FreeSolv from MoleculeNet for prediction of hydration
free energy of small molecules in water, and Lipophilicity from MoleculeNet for the prediction of
octanol/water distribution coefficient (logD at pH 7.4) [17]. Node labels in graphs are converted into a
one-hot matrix for GNNs while graph kernels use node labels directly to compute gram matrices. As for
social network graphs, all node feature vectors are the same as each other according to the procedure
proposed in literature [2,18]. Our goal is to investigate whether or not graph machine learning models
can appropriately learn information of large subgraph structures when the amount of message passing
increases. We do not use edge features and node features obtained from 3D structures such as the distance
between nodes for chemo-informatics dataset as they are not relevant to our task. All datasets are available
from DGL [19] and DGL-LifeSci [20]. The statistics of datasets are summarized in Table 1.

3.1.2. Models and configuration

We chose two graph neural networks models that are highly related to the WL scheme: Graph Con-
volutional Network (GCN) [10] and Graph Isomorphism Network (GIN) [2]. All neural networks are
implemented in Deep Graph Library (DGL) [19] and PyTorch [21]. The graph kernel of vertex histograms
and the WL sub-tree kernel are implemented in GraKel [18] and GRAPHLETS are obtained using
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gSpan [22] library' for subgraph mining. Note that we enumerated all the subgraphs in GRAPHLETS
instead of performing sampling. The maximum number of nodes and the support in gSpan is set to 5 and
500 in DD and REDDIT, 5 and 100 in IMDB, and 8 and 1 in other datasets. Support Vector Machines
(SVMs) is trained with scikit-learn [23]. All methods are implemented in Python 3.7.6. All experiments
were conducted on Ubuntu 18.04.5LTS with a single core of 2.2 GHz Intel Xeon CPU E5-2698 v4,
256GB of memory and 32GB Nvidia Tesla V100.

3.1.3. Evaluation

In classification, datasets are evaluated in stratified 10-fold cross-validation, where each fold preserves
the class ratio of samples. In regression, we evaluated the performance as root mean squared errors
(RMSE) with a holdout validation set, where a training set is 70 percent in the entire dataset. To perform
fair comparison of learned node features, the dimensionality of initial weights in convolutional layers
is the same as that of initial node features, which is |[V'| x F' with the number of nodes |V'| and that of
features F'. In classification datasets, the maximum number of trainable parameters in GCN is 234,960
on the DD dataset when 30 graph convolutional layers are stacked (the number of initial features (88)
x the number of initial features + bias (89) x the number of GCN layers (30)). In regression datasets,
the number of trainable parameters in GCN is 166,500 when 30 graph convolutional layers are stacked.
The dimensionality of the convolutional weights is also set to be 64 in order to obtain the best accuracy
and the RMSE. For both classification and regression settings, after the process for node embedding
from GCN layers, the obtained features of graphs are aggregated to pass them to MLP layers with batch
normalization. In GNNs, graph datasets are mini-batched according to datasets. The default size is 32.
About hyperparameters of networks, training epochs are 350 and two layers of MLPs and its linear hidden
dimension is 1024. Adam [24] is used as an optimizer and its learning rate is 0.01. Other parameters,
such as betas for computing running averages of gradient and its square are default values on PyTorch.
The learning rate scheduler is a step function and decays the learning rate half per 50 epochs. The loss
function is cross-entropy loss in classification and mean squared loss in regression.

3.2. Results and discussion

3.2.1. Classification

In classification, we use the Vertex Histogram kernel as a baseline, which computes the similarity (kernel
value) between graphs by simply counting the matching node labels; in so doing, it completely ignores
the graph topological information. We also use the GRAPHLET kernel, which includes information of
subgraphs under the designated number of vertices.

Classification performance of each method. We show classification accuracy on the bio-informatics
and social network datasets in Tables 2 and 3. Table 2 shows the best accuracy on each dataset when
changing the number of iterations of message passing, where hyper-parameters are tuned by the 10-fold
cross-validation. In the table, the method “V” at the first row means the vertex histogram kernel that shows
our baseline of classification. The kernel shows that most of the datasets can be classified to a certain
extent by only counting node labels in graphs. Since the vertex histogram kernel does not include any
information about graph topological structures, if the classification accuracy is comparable at a certain
level, this means that the effect of subgraphs is marginal.

L https://github.com/betterenvi/gSpan.
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Table 2
Classification accuracy of 10-folds cross-validation on Bio-informatics datasets
Method Dataset
MUTAG PTC-MR NCI1 PROTEINS DD
\Y% 81.96 &+ 7.06 55.82 £ 0.91 63.24 +£1.83 7242 +253  77.85+3.11
WL 88.30 £5.13 65.68 - 7.44 86.11 + 1.09 7529 +2.52  78.78 £ 2.41
GRAPHLET 89.36 + 4.78 64.55 + 8.13 83.19 + 1.79 7395+ 1.79 79.03 £ 2.91
Pre-fixed GCN SVM  87.16 &+ 6.09 59.89 + 3.27 64.28 £ 2.19 71.53 +£4.63 75.12 £2.77
GCN 85.12 £ 6.91 64.76 + 15.18 81.53 £4.38 7493 £ 6.07 73.43 £5.56
GIN 88.89 +9.80 62.20 + 12.67 80.85 £ 14.55 75.03 £845 77.42+9.23
Table 3
Classification accuracy of 10-folds cross-validation on social network datasets
Method Dataset
REDDIT-BINARY IMDB-BINARY

A% 76.90 + 2.10 72.6 +4.27

WL 85.61 - 4.87 73.6 £ 4.10

GRAPHLET 84.60 + 1.70 70.90 £ 5.26

Pre-fixed GCN SVM 82.55 +£2.60 55.50 £ 2.25

GCN 73.43 £ 4.63 67.00 = 4.42

GIN 64.90 + 13.35 71.00 £ 5.29

The WL kernel can consider additional information of subgraph structures through the WL scheme
of iteration. The GRAPHLET kernel has a potential to include more information about substructures
than the WL kernel according to the setting of maximum number of vertices through enumeration of
subgraphs (graphlets). Note that the complexity of enumeration of subgraphs for the GRAPHLET kernel
exponentially increases as the number of vertex increases [15], so it is not feasible to set the large number
of vertices.

The pre-fixed GCN SVM is the support vector machine with input features computed from GCN layers
where the weight is the identity matrix. Such graph features represent the graph structure itself. GCN is
related to the WL kernel, while features obtained through graph convolution can include information of
subgraph structures as embeddings through training at the final layer. In contrast, GIN can include all
features of substructures at each iteration.

In Table 2, the accuracy score of the GRAPHLET kernel, which explicitly considers all the possible
subgraphs under the certain number of vertices, is highest on the MUTAG and DD dataset. The accuracy
of the WL kernel is also high overall and shows the best score in three datasets (PTC-MR, NCI1, and
PROTEINS). The accuracy scores of both GIN and GCN are comparable to those of the WL graph kernel.
When we consider downstream classification methods in GCNs, SVM with the features computed from
GCNs with pre-fixed weights, which can be viewed as the continuous version of the WL scheme and
weights in GCNs are not trained and node features depend on the initial node attributes and its structure
(the adjacency matrix) can be effective in certain types of datasets as it shows comparable or better
accuracy in, for example, MUTAG and DD than the standard GCN. While our result is different from that
in [2] due to hyperparameter settings, but our comparison is fair as hyperparameters are tuned in the same
way across comparison partners.

Effects of the number of message passing iteration. Figures 1, 2, and 3 are classification results of
GCNs and GINs when the amount of message passing increases, which investigates the impact of larger
subgraph structures on its predictive performance. As the number of iterations increases, GCNs fail to
appropriately learn representation of graphs in NCI1 and REDDIT-BINARY, and GINs fail in NCI1,
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MUTAG: GCN PTC: GCN
80
—— validation accuracy —— validation accuracy

\/\f/\/\/\\/v\/\

90 75

®
el

o

o

o
=3

=y

<)

accuracy
accuracy

v
o

50
70
a5

1 3 5 7 9 1 13 15 17 19 21 23 25 27 29 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations iterations
NCI1: GCN PROTEINS: GCN
84 P 80 TS
—— validation accuracy —=— validation accuracy
82 78

3
=3

~

o

~
s

SN TN

accuracy
accuracy

-3 ~ ~
@ =3 N

-3
o

1 3 5 7 9 1 13 15 17 19 21 23 25 27 29 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations iterations

DD: GCN

—=— validation accuracy

accuracy

o
o

62
60

1 3 5 7 9 1 13 15 17 19 21 23 25 27 29
iterations

Fig. 1. Classification results of GCNs on bio-informatics datasets. X-axis shows the number of convolutional layers (the number
of message passing). Blue bold line shows the average of accuracy evaluated in 10-fold cross validation and the filled area shows
the standard deviation.

PROTEINS, DD, REDDIT-BINARY, and IMDB-BINARY. One reason for this phenomenon is that GINs
have more parameters than GCNS, so it is more difficult to effectively learn representation of node features
as it is more affected by the previous ill-learned node features. However, as Tables 2 and 3 show, GINs
are more powerful at learning representation of graphs on various datasets and also comparable to the
WL kernel when such hyperparameters are properly tuned.

In the WL kernel, it is easy to compute the kernel even if the number of message passing iterations
increases. Figure 4 shows the classification accuracy as the number of iterations increases. We have
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Fig. 2. Classification results of GINs on the bio-informatics dataset.

increased the number of iterations in the WL kernel up to 100. In the MUTAG dataset, labels obtained
from the WL scheme become unique when iterations reach to 13, which means no more information
gains. Small fluctuations of the resulting accuracy comes from the loop structure in graphs. Overall, the
accuracy score is not largely affected by the number of iterations in the WL kernel, except for NCI1
and DD. One possible reason for such deteriorating accuracy in NCI1 and DD is that they have more
node labels than other datasets and it becomes difficult to discriminate graphs as the number of iteration
increases. Various node labels contribute to the occurrence of multiple types of unique subgraphs. Since
graph kernels fundamentally measure the similarity between graphs based on subgraph matching, the
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Fig. 3. Classification results on social network datasets.

kernel value gets smaller if there are many unique subgraphs. In the case of NCI1 and DD, when the
number of iterations increases, more and more unique subgraphs appear, and the additional contribution
to kernel values becomes smaller and smaller, resulting in the difficulty of discrimination. An interesting
observation is that the accuracy on the REDDIT-BINARY dataset increases when the number of iterations
increases, although the highest accuracy is at the first iteration.

As for GCNs and GINSs, Figs 6 and 7 show the training-validation loss and accuracy via 10-fold

cross-validation per epoch on the MUTAG and NCI1 datasets. In each figure, left and right plots represent
the training log of GCNs under the setting of the number of iterations 1 or 30, respectively. When the
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Fig. 4. Classification results of the WL kernel on Bio-informatics datasets.

number of graph convolutional layers is one, the loss and accuracy of training-validation sets are rather
smooth compared to the case where the number of graph convolutional layers is 30. After training after
350 epochs, the standard deviation of the training-validation loss and accuracy fluctuates greatly, although
the final accuracy score is almost the same, at around 70 percent. This shows the difficulty of learning
for a larger number of iterations where there are more trainable parameters as well. Figure 3 shows
results on the social networks datasets. In GCNs, the accuracy does not change so much compared to
GINs. All graphs on social network datasets have the same node labels, and GCNs may be easier to learn
representation of node features, while GINs can get the best accuracy at the first or second steps.
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Fig. 6. Accuracy and loss on MUTAG dataset.

Transitions of node features over message passing iteration. To investigate how the number of message

passing iterations affects the learning and how node features change through iteration, we plot the
transition of node features shown in Figs 8 and 9. Figure 9 shows that node features in GCNs is likely
to converge to a certain value on the NCI1 dataset, where over-smoothing is observed. Here, the size of
features may be relevant to this phenomenon; that is, when the number of trainable parameters increases
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Fig. 8. An example of transition of node features on MUTAG dataset. Each curve represents the averaged node feature value in a
graph at each iteration step.

in graph convolutional layers, it is more difficult to learn the node features appropriately. As we can see
in the MUTAG dataset in Fig. 8, when the weights are properly trained, even though the transition of
node features tends to become small, the classification performance does not change.
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Table 4

RMSE of holdout validation (training 70% test 30%). “—"" denotes
that a model can not be trained properly under this hyperparameter

Method Dataset
ESOL Free solv Lipophilicity
0-SVR 1.127 1.951 1.019
WL 0.7686 1.112 0.6074
Pre-fixed GCN SVR 1.534 3.756 1.169
1-2 layers GCN 4+ SVR  0.8675 0.941334 0.688086
2 layers GCN 1.270 1.3029752  0.8087
2 layers GIN 0.8165 1.438 0.8118
30 layers GCN 1.016 1.4068 1.219
30 layers GIN - 14.45463 -
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Fig. 9. An example of transition of node features on NCI1 dataset. Each curve represents the averaged node feature value in a

graph at each iteration step.

3.2.2. Regression

Regression performance of each method. In addition to the classification task, we investigated the
regression performance of WL kernels and GCNs. Results are shown in Table 4. In the table, 0-SVR is the
linear kernel computed from the sum of initial node features across nodes, which is similar to the Vertex
Histogram kernel. In chemo informatics datasets, graph features are often used as fingerprints (subgraphs
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Fig. 10. Regression results of SVR using node features learned from GCNs. Left plots show SVR results using features produced
from each GCNs layer and right plots show SVR results using concatenating features.

in molecules) such as extended-connectivity fingerprints (ECFPs) [25] to deal with larger datasets. We
chose smaller datasets for regression because ECFPs have a problem of bit collision, where fingerprints
have duplication of subgraph structure in vectors. In the WL kernel, atomic numbers are directly used as
node labels. The WL kernel shows the best result (the smallest RMSE) in ESOL and lipophilicity. GCNs
and GINs are inferior to the WL kernel for the two datasets, while GCNs show the best score in FreeSolv
using node features from two convolutional layers with their training.

Effects of the number of message passing iteration. To investigate the impact of message passing
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iteration in the regression task, we plot RMSE results of SVR with node features learned from GCNs
in Fig. 10. In the plots, the x-axis (iteration) means the number of message passing (graph convectional
layers). In the left plots, the output of node features from each GCNs layer is used in SVR, and in the right
plots, concatenated node features from GCNs are used in SVR. In ESOL and Lipophilicyty, an increase
in the amount of message passing does not contribute to its predictive performance, while in FreeSolv it
makes some contribution to the predictive performance. Concatenating graph features from each layers
can be an effective choice when using a large number of iterations. In addition, the place where features
from each GCNs layer become a plateau can provide good features. In FreeSolv, the score of GCNs with
SVR fluctuates, and concatenating graph features gets the best score, at around five iterations. However,
SVR is still effective and, with a little hyperparameter tuning, can learn the model with high predictive
performance. The result of the RMSE of GCNs shows that increasing the number of message passing does
not contribute to its predictive performance. Especially in GINs, the performance deteriorates, or learning
is too unstable to train the model properly. This phenomenon often occurs, as shown in the classification
section. However, as can be seen in Fig. 10, node features obtained from each layer in trained GCNs
seem to be informative for SVR prediction on ESOL and lipophilicity datasets when concatenating these
features. In contrast, the resulting RMSE of FreeSolv shows that calculated node features are likely to
include noise because the performance of SVR decreases when they are concatenated. Therefore, as one
of the options to circumvent the over-smoothing problem, we recommend empirically checking whether
the iteration affects over-smoothing in SVR with node features learned from GCNs.

4. Conclusion

In this paper, we have investigated the effect of iterations of GCNs layers. In the WL kernel (which
is the state-of-the-art graph kernel and shares the iteration process with GNNs to incorporate graph
topological information), it usually maintains the good performance for large number of iterations in
both classification and regression tasks. This may be because the WL kernel implicitly constructs a
feature vector and addition of iteration means the concatenation, not the summation, of features. Since
the large number of iterations means that the corresponding method tries to capture larger subgraphs, it
can become insignificant if only local graph information is relevant. In GNN models such GCNs and
GINs, by contrast, the number of iterations is largely affected because there are more and more trainable
parameters and it is often difficult to learn them properly. Another reason could be that since node features
can include noise, message passing iteration contributes to accumulate noise, resulting in worsening the
performance of even the WL kernel. Since the predictive power of GCNs and GINs is comparable to that
of the WL graph kernel, GNNs with mini-batch training can be an effective choice on larger dataset, as it
is much more efficient than the WL kernel that requires the computation of the full kernel matrix. In our
future work, we will investigate other methods such as attention-based graph neural networks.
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