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Abstract. Analyzing the relationships among various drugs is an essential issue in the field of computational biology. Different
kinds of informative knowledge, such as drug repurposing, can be extracted from drug-drug relationships. Scientific literature
represents a rich source for the retrieval of knowledge about the relationships between biological concepts, mainly drug-drug,
disease-disease, and drug-disease relationships. In this paper, we propose DDREL as a general-purpose method that applies deep
learning on scientific literature to automatically extract the graph of syntactic and semantic relationships among drugs. DDREL
remarkably outperforms the existing human drug network method and a random network respected to average similarities
of drugs’ anatomical therapeutic chemical (ATC) codes. DDREL is able to shed light on the existing deficiency of the ATC
codes in various drug groups. From the DDREL graph, the history of drug discovery became visible. In addition, drugs that
had repurposing score 1 (diflunisal, pargyline, fenofibrate, guanfacine, chlorzoxazone, doxazosin, oxymetholone, azathioprine,
drotaverine, demecarium, omifensine, yohimbine) were already used in additional indication. The proposed DDREL method
justifies the predictive power of textual data in PubMed abstracts. DDREL shows that such data can be used to 1- Predict
repurposing drugs with high accuracy, and 2- Reveal existing deficiencies of the ATC codes in various drug groups.
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1. Introduction

Recently, discovering relationships among drugs, side-effects, and many other biological concepts
has attracted much attention [1–8]. Biological literature is a rich source of knowledge for discovering
relationships among drugs [9–14], as well as diseases [15] and accordingly, computational text mining
approaches play an important role in current drug studies [16–18]. Recognizing the relationships among
drugs leads to the creation of a knowledge graph that can be used efficiently for the task of discovering
repurposing drugs [19,20]. Drug repurposing is a process of discovering new usages for existing drugs
and currently widely discussed in the drug discovery domain [21–26].
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In this paper, we proposed a method called DDREL that applies a deep learning method on 29 million
abstract articles extracted from the PubMed dataset. DDREL builds the graph of drug-drug relationships
among 2061 drugs. As an evaluation, DDREL uses homophily measure with respect to average similar
ATC levels that indicates the average number of similar ATC levels of connecting drugs (Discussed in
detail in Section 2, Step 6 and Eq. (3)). As an application, DDREL first clusters the graph of drug-drug
relationships and then uses outlier detection mechanisms to discover repurposing drugs in each cluster.

The structure of this paper is as follows: Section 2 overviews available methods. DDREL is described
in detail in Section 3. The empirical results are discussed in Section 4. Section 5 provides the explanation
and interpretation of results. Section 6 concludes and discusses future work.

2. Background

Traditional methods used to discover drug relationships from the biological texts, generally calculated
the similarity of drugs by applying text mining techniques such as co-occurrence of drugs, drug frequency,
n-gram, and TF-IDF [27–29]. Griffith et al. [27] and Wagner et al. [28] applied the co-occurrence analysis
to discover the interaction among drugs and genes and built the drug-gene interaction databases. Rahmani
et al. [30] used the random walk algorithm to construct a Human Drug Network (HDN) for 200 different
drugs based on functional and structural information. Stenetorp et al. [29] implemented a text mining-
based clustering approach and n-gram to study the effect of corpus size and domain in the biological
domain. Frijters et al. [31] proposed a text-based CoPub method to find new hidden relationships among
biological concepts using the co-occurrence method. Sun et al. [32] used a new approach called X-Cluster
to discover new goals for medications. The main drawback of the most traditional methods is that they
consider only the syntactic relations among drugs and neglect the semantic relationships. The syntactic
method considers each term individually (by features such as term-frequency (TF), Inverse document
frequency (IDF), etc.) or with limited context around terms (by local features such as n-gram, word
occurrence, etc.). On another side, semantic methods consider a wide range of contexts (k words before
and k words after the term). Word2Vec is a very well known semantic approach that literature has shown
which considers the context of terms in the text very efficiently [33–35].

Among the methods that inherently consider semantic relationships among concepts, deep neural
network-based approaches have recently attracted much attention [36–39]. There are several ways to
implement deep learning, the most well-known of which are the Convolution and Recurrent networks [40].
Deep neural networks extract features from text using Word2Vec [41–44] and GloVe [33,45,46]. Moen et
al. [36] applied Word2Vec and n-gram to cluster the words in the biological text. Kosmopoulos et al. [37]
used Word2Vec and TF-IDF to classify biological text in the PubMed dataset. Allahgholi et al. [47]
applied Word2Vec on PubMed abstracts to predict interaction types among drugs. They recommend
alternatives for drug-drug interactions (DDIs) which have Negative Health Effects Types (NHETs). Ma
et al. [38] proposed a recurrent neural network (RNN) approach to predict risks based on the electronic
health record (EHR) data. Dey et al. [39] used RNN on chemical structures of various drugs to discover
substructures that construct adverse drug reactions (ADR).

Patrick et al. [20] applied a word-embedding based machine learning approach to predict drug re-
purposing for Immune-Mediated Cutaneous diseases. The results of Patrick et al. [20] is limited to a
small range of Immune-Mediated Cutaneous diseases (353 drugs). Zhou et al. [48] and Singh et al. [49]
discovered repurposing drugs for COVID-19 using artificial intelligence techniques. Kingsmore et al. [50]
introduced treatments for rheumatic autoimmune inflammatory diseases using machine learning and drug
repurposing. Udrescu et al. [51] extracted drug-drug relationships from DrugBank (1141 drugs) and
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Fig. 1. The block diagram of DDREL, which contains seven steps: Datasets and their pre-processing, constructing Word2Vec
model, extracting drugs, building graph, homophily evaluation, and discovering repurposing drugs.

then applied modularity-based clustering on the network. They labeled inconsistence drugs with respect
to drug properties as repurposing drugs. Zhou et al. [52] used the Tanimo similarity coefficient [53] to
construct drug-drug interaction networks. Then they applied the Markov clustering algorithm to cluster
589 drugs into 98 groups. In the end, they recommended drugs with the most different functions in each
cluster as repurposing drugs.

The Anatomical Therapeutic Chemical (ATC) Classification System is a wieldy used method to classify
drugs chemical and anatomical properties [54]. There are methods that are trying to predict the ATC
codes from compound structure [55]. Predicting a drug’s ATC code can give a novel indication of a drug.
The NetInfer method used the drug’s structure to predict their ATC code and by that potential novel
therapeutic uses [56,57]. The ATC code itself is a fuzzy annotation, which means it does not contain all
indications of a drug [58]. We used the ATC codes to show how the DDREL method can give a historic
perspective on drug repurposing.

3. Method

The main steps of our proposed DDREL method are shown in Fig. 1. These steps are as follows:
(1) DDREL accepts three datasets as input data.

(a) The first dataset is PubMed dataset.1 We downloaded the whole PubMed dataset, and we only
considered the abstract of the papers, which results in the repository of 30G data.

(b) To detect the drug terms in the raw text, we use the DrugBank dataset2 which contains
6,640 drugs. In contrast, only 3,912 drugs are approved (DrugBank contains eight categories
including Approved, Small Molecule, Biotech, Experimental, Nutraceutical, Illicit, Withdrawn,
Investigational. Approved drugs are indicated by the status “Approved”). As a result, the
remaining drugs to be considered are 3,912. To evaluate the homophily measure of the final

1https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/.
2https://www.drugbank.ca/.
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Table 1
Parameters configuration of Word2Vec
models in DDREL

Parameter Setting
model CBOW
min-count 5
dim 200
samp 1e-4
win 8

drug-drug network, we focused on the drugs that their ATC codes are available at DrugBank.
Among the 3,912 remaining drugs, only 2,061 drugs have ATC codes (List of drugs that do not
have ATC codes are available at [59]. As a result, 2,061 drugs remained.

(c) DDREL uses a graph of drug-drug relationships to discover repurposing drugs. The third
dataset (called RepoDB [60]) that is used in DDREL is the drug repurposing dataset, which
contains 1571 drugs. DDREL uses RepoDB to evaluate the novel repurposing drugs discovered
by DDREL.

(2) DDREL applied Word2Vec model Cbow [61] on the PubMed dataset to describe each biology term
in the PubMed. The configuration of Word2Vec is shown in Table 1.
The minimum count (min-count) interprets the minimum number of occurrences needed for a
word to be included in the word vectors. The vector dimension (dim) is the learned word vector
size. Sub-sampling (samp) is the process of diminishing frequent word occurrences. The context
window size (win) denotes words range to be included as target word context [33,62,63]. The value
of these parameters are determined in Table 1 according to the best practices of similar work in the
literature [33–35,42,45,64,65].

(3) For 2,061 drugs that have appeared both in drugBank dataset and PubMed corpus, DDREL applied
the Cosine similarity among their Word2Vec vectors and calculated the semantic similarity (see
Eq. (1)).

Semantic_sim(di, dj) =
~W2V (di) · ~W2V (dj)

~||W2V (di)|| × ~||W2V (dj)||
(1)

In Eq. (1), ~W2V (di) · ~W2V (dj) is dot product of two Word2Vec vectors of di and dj and symbol
~||W2V (di)|| stands for the magnitude of that vector. Regarding consideration of the drug synonyms,

as deep learning considers the context of the terms, the word2vec similarity value of two synonym
drugs is very high. Table 2 shows 10 synonym drugs with high word2vec similarity. All synonym
drugs in our word2vec model are available at [59].

(4) DDREL considered only the most informative discovered relationships among drugs by pruning
the relationships with semantic similarity value less than γ1. We considered 0.70 for the values of
γ1. In our studies, according to Table 3, we found that 0.7 is high enough to exclude most irrelevant
relationships among drugs and low enough to prevent the loss of possibly relevant ones.

(5) DDREL constructed graph G(V,E) of the drug-drug relationships. In this graph, each node vi ∈ V
is a drug and each edge eij ∈ E indicates the semantic similarity (Eq. (1)) more than 0.7 between
two interacting drugs di and dj .

(6) DDREL evaluated the built graph using homophily measure [66]. Homophily is a measure used in
network science, showing how similar the nodes that are connected are [67]. We calculated the
network homophily measure of the drug-drug network by considering the number of similar levels
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Table 2
10 synonym drugs with high word2vec similarity

Index Main drug Synonyms drug Similarity
1 Brinzolamide Dorzolamide 0.93
2 Telaprevir Boceprevir 0.91
3 Tropicamide Cyclopentolate 0.89
4 Eltrombopag Romiplostim 0.89
5 Desloratadine Levocetirizine 0.89
6 Terfenadine Astemizole 0.88
7 Tafluprost Latanoprost 0.88
8 Salmeterol Formoterol 0.88
9 Eptifibatide Abciximab 0.88
10 Cilazapril Quinapril 0.88

Table 3
Homophily of graph and number of relationships
among drugs in different value of γ1

γ1 Homophily Number of relationships
0.1 0.21 1718864
0.2 0.29 1087864
0.3 0.74 489376
0.4 0.87 163375
0.5 1.56 48136
0.6 2.37 13917
0.7 3.05 3430
0.8 3.61 417
0.9 3.42 7

Table 4
14 anatomical main groups

Code Contents
A Alimentary tract and metabolism
B Blood and blood forming organs
C Cardiovascular system
D Dermatologicals
G Genito-urinary system and sex hormones
H Systemic hormonal preparations, excluding sex hormones and insulins
J Antiinfectives for systemic use
L Antineoplastic and immunomodulating agents
M Musculo-skeletal system
N Nervous system
P Antiparasitic products, insecticides and repellents
R Respiratory system
S Sensory organs
V Various

between ATC codes of two interacting drugs in the network. ATC code classifies drugs into groups
at five different levels:3

(a) Anatomical main group (one letter). There are 14 main groups (see Table 4).
(b) Therapeutic subgroup (two digits).

3https://en.wikipedia.org/wiki/Anatomical_Therapeutic_Chemical_Classification_System.
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(c) Therapeutic/pharmacological subgroup (one letter).
(d) Chemical/therapeutic/pharmacological subgroup (one letter).
(e) Chemical substance (two digits).

Example 1: Consider Acetaminophen with N02BE01 ATC code, which is classified as follows:

(a) N: Nervous system group
(b) N02: Analgesic drug subgroup
(c) N02B: Other Analgesic drugs subgroup
(d) N02BE: Anilide subgroup
(e) N02BE01: Acetaminophen drug

To compare the similarity of drugs, the similarity of the first 4 levels of the ATC code will be
measured. Sim_ATCk(di, dj) returns 1, if the most k significant levels of ATC codes of drug di and
drug dj are similar; otherwise, Sim_ATCk(di, dj) returns 0 (see Eq. (2)). Since there are 4 levels, k
varies from 0 to 4.

Sim_ATCk(di, dj) =

{
1, k levels of ATC codes of drug di and dj are similar
0, otherwise (2)

Example 2: Consider drug Diflunisal with ATC code N02BA11 and drug Bromocriptine with ATC
code N04BC01, then Sim_ATC1(di, dj) returns 1 and Sim_ATC2(di, dj) returns 0.
Equation (3) calculates the homophily of edge eij between two interacting drugs di and dj .

Homophily(eij) = arg-maxk(Sim_ATCk(di, dj)) (3)

Where arg-maxk returns the maximum value of k. k is the number of similar levels of the ATC
codes of two interacting drugs di and dj .
To calculate the homophily for the whole graph, we use Eq. (4) that calculates the average similar
ATC levels among all edges.

Homophily(G) =

∑
eij∈E Homophily(eij)

|E|
(4)

Where |E| is the number of edges in the graph G.
Based on similar ATC codes of the connected drugs, Eq. (5) calculates the accuracy of discovered
drug-drug relationships. DDREL uses the same homophily measure to compare its approach with
existing methods and a family of graphs generated randomly with a similar number of nodes and
edges.

Accuracy =
Number of correct drug-drug relationships detected
Total number of drug-drug relationships detected

(5)

In Eq. (5) “Number of correct drug-drug relationships detected” is the number of drugs pair (di, dj)
that Sim_ATCk(di, dj) = 1 and “Total number of drug-drug relationships detected” is the number
of drug pairs (di, dj) that Semantic_sim(di, dj) > γ1.

(7) One of the main applications of DDREL is discovering novel repurposing drugs. For this purpose,
DDREL, first applies Glay algorithm [68] to cluster the graph of drug-drug relationships. Second,
DDREL uses an outlier detection mechanism to discover the drugs with the most different ATC
codes comparing to other drug members of the same cluster (see Eq. (6)). In DDREL, we considered
a drug as an outlier that differs in the first level of the ATC code from other drugs in its cluster. If
D is the set of all drugs then Sim_cluster(di, dj) returns 1 if both di ∈ D and dj ∈ D are members
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Fig. 2. The accuracy of DDREL in terms of the number of similar ATC code levels between the two drugs that are connected in
the graph.

of the same cluster; otherwise Sim_cluster(di, dj) returns 0. In the end, DDRel labels outlier drugs
as repurposing drugs and uses a drug repurposing dataset (RepoDB) [60] for the evaluation.

outlier-score(di) =

∑
dj∈D Sim_cluster(di, dj)× (1− Sim_ATC1(di, dj))∑

dj∈D Sim_cluster(di, dj)
(6)

outlier-score(di) indicates how much drug di, comparing to other co-cluster drugs, is considered
outlier with respect to drugs ATC codes similarities.

Pseudocode of DDREL is provided in Algorithm 1. DDREL used the accuracy measure, same as
previous work [69,70] to evaluate the detected repurposing drugs.

Algorithm 1 DDREL algorithm
for each drug di in graph G do

NOSimilarDrugs← 0
cli ← cluster(di) // cluster(di) returns the cluster number that di belongs to
for each drug dj in cli do

if Sim_ATC1(di, dj) == 0 then
NOSimilarDrugs← NOSimilarDrugs + 1

end if
end for
outlier-score(di)← NOSimilarDrugs/Count(cli)

end for

4. Results

DDREL succeeded in discovering 3,430 relationships among 1,297 drugs. In the following subsections,
we first evaluate the DDREL, and then we discuss one of the possible usages of DDREL in discovering
the repurposing drugs.

4.1. Homophily evaluation

We calculated the network homophily measure [66] of the drug-drug graph created by Word2Vec by
considering the ATC codes of each drug-drug relationship. Since the ATC code is four levels, DDREL
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computed the number of similar levels between ATC codes of two interacting drugs in the graph. Figure 2
shows the accuracy of DDREL based on the number of similar ATC levels of the connected drugs. In
Fig. 2, the accuracy of 94% in the first level of the ATC means that 94% of the connected drugs were
similar with respect to the first level of their ATC codes (

∀eij∈ESim_ATC1(di,dj)=1

|E| = 94%), or the accuracy
of 79% in the first four levels of the ATC code means that 79% of the connected drugs were similar with
respect to the fourth level of their ATC codes (

∀eij∈ESim_ATC4(di,dj)=1

|E| = 79%).

4.2. Application of DDREL: Discovering repurposing drugs

Drug repositioning refers to the unexpected use of a drug for a different disease indication, most likely
due to the accidental discovery of new targets or new mechanisms of action [24,71–75]. For example,
Sildenafil (Viagra) was initially developed as an anti-hypotension drug but later was found to be more
effective in treating erectile dysfunction. Axitinib is a VEGFR inhibitor approved for renal cancer, but it
was recently discovered that axitinib has an off-target called BCR-ABL that can treat leukemia.4 One
possible application of DDREL is its capability in discovering repurposing drugs.

The first step can be to visualize and cluster the DDREL network (Fig. 3). The drug network is clustered
using the Glay Algorithm [68] on the drug-drug graph to partition the graph into clusters of related drugs.
Glay is suitable for the decomposition, display, and exploratory analysis of large biological networks
due to high-performance [68]. The result of the Glay clustering algorithm is available at [59]. According
to Fig. 3 the DDREL network has many components representing the general therapeutic modalities.
The network’s giant component consists of the two largest classes of drugs the central nervous system
targeting drugs and the antihypertensive agents. The second-largest component is the various antibiotics.
The Glay clustering clustered the network based on the currently available target groups.

The main hypothesis behind discovering repurposing drugs is the detection of outlier drugs in each
cluster. Equation (6) calculates the outlier-score for each drug di by comparing the ATC of di with other
members of the same cluster. Figure 5 shows the number of drugs for different values of outlier-score. As
it is shown in Fig. 5, there are 480 drugs with outlier-score 0 which means that 480 drugs are co-located
with similar drugs (with respect to the first level of their ATC-codes) in the same cluster. Figure 4 shows
a sample cluster of similar drugs. All of these drugs’ ATC code starts with A02B (Drugs for peptic ulcer
and gastro-oesophageal reflux disease (GORD)).

There are 12 drugs with outlier-score 1 in Fig. 5. The first level of ATC codes of these drugs are
completely different from their co-cluster drugs. Figure 6 shows a sample cluster of these drugs. It shows
the clusters containing the diflunisal and doxazosin drugs. In Fig. 6a are non-steroid anti-inflammatory
drugs (NSAID). On the bottom part of Fig. 6a, the COX2 inhibitors such as valdecoxib, lumiracoxib,
etc. can be seen. Meanwhile at the top are the COX1 inhibitors like at one end ibuprofen and the other
phenylbutazone etc. This is similar how the various NSAIDs were discovered: 1st the COX1 inhibitors
then the COX2 inhibitors. The DDREL graph shows the evolution of NSAIDs here. The cluster is
not connected to any other part of the DDREL graph, making them a separate entity of this particular
therapeutic class. All of them are having ATC code M01A except diflunisal. The outlier diflunisal’s ATC
code starts with N02B. It is a salicylic-acid derived such as aspirin. It has anti-inflammatory and analgesic
activity, like all NSAIDs. Diflunisal also used in rheumatic arthritis. The classification is coming to form
the ATC intention to “All preparations containing salicylic acid and derivatives are classified in N02BA –

4https://en.wikipedia.org/wiki/Axitinib.
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Fig. 3. The DDREL network clustered with the Glay clustering method. With red border are the drugs with repurposing score
1. Some of the clusters of these drugs are enlarged in detail in the results section. The network clusters and components are
showing the major targeting areas of the current drug discovery. The network has many small components which contain specific
drugs. To discover the DDREL network further see [59].

Salicylic acid and derivatives, as it is difficult to differentiate between the use of salicylates in rheumatic
conditions and other therapeutic uses.” Based on our data maybe it worth considering diflunisal just as an
NSAID like many other drugs in this cluster.
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Table 5
Twelve drugs with outlier-score 1. 8 drugs are indicated in the dataset [60] as repurposing drugs

Index Drug Found in repurposing dataset Cited as a repurposing drug
1 Diflunisal True [79]
2 Pargyline True [80]
3 Fenofibrate True [81]
4 Guanfacine True [82]
5 Chlorzoxazone True [83]
6 Doxazosin True [84]
7 Oxymetholone True [85]
8 Azathioprine True [86]
9 Drotaverine False –
10 Demecarium False –
11 Nomifensine False [87]
12 Yohimbine False [88]

Fig. 4. Sample cluster of similar drugs – all of these drugs’ ATC code starts with A02B.

Fig. 5. Number of drugs for different values of outlier score.

In Fig. 6b cluster are the urologic agents with ATC code G04. At the top of the cluster are sildenafil
and its derivates vardenafil and tadalafil. These cGMP-specific phosphodiesterase type 5 inhibitors, were
developed as antihypertensive agents and became the definitive treatment of erectile dysfunction [76]. The
bottom part of the cluster is alfuzosin, tamsulosin, and terazosin which are alpha 1 adrenergic inhibitors.
These agents are used for benign prostate hypertrophy to release the urethra’s smooth muscle [77]. The
outlier in the cluster is doxazosin, which also targets the alpha 1 adrenergic receptor but is classified as an
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Fig. 6. Clusters containing doxazosin and diflunisal drugs – a) The cluster containing diflunisal drug – Excluding diflunisal, all
the remaining drugs in this cluster are antirheumatic agents (ATC: M01A ATC), meanwhile diflunisal is in the N02B ATC class.
b) The cluster containing doxazosin drug – Excluding doxazosin, all the remaining drugs in this cluster are used in the urological
subgroup (ATC starts with G04), but doxazosin is an antihypertensive agent (ATC: C02), which is considered as an outlier and
has a repurposing score of 1.

antihypertensive agent with the ATC code C02. Doxazosin connects the urological agents to the various
antihypertensive agents on the DDREL graph (Fig. 3). This classification connects the two therapeutic
groups (antihypertensive agents and urological agents) by their mechanism on the alpha 1 adrenergic
receptor. Doxasosizne is already used in benign prostate hypertrophy even if it was developed as an
antihypertensive agent [78].

Table 5 focuses on 12 drugs with an outlier-score 1. Eight drugs out of 12 drugs with outlier-score 1
are indicated in RepoDB dataset [60] as repurposing drugs. All the clusters containing outlier drugs are
available at [59].

5. Discussion

Rahmani et al. [30] proposed a method to build relationships among human drugs. They used a random-
walk-based approach to discover relationships among 200 drugs. We compared the graph discovered by
DDREL with their work. As a comparison measure, we used the average similar ATC levels between
connecting drugs (Eq. (4)) of Rahmani et al., and DDREL. This measure is 2.7 in Rahmani et al. and
3.1 in DDREL. Additionally, for random control, we built 100 graphs keeping the degree distribution
of the DDREL network. In this case, the ATC level similarity was 2.1 (+− 0.1), significantly below the
DDREL graph’s similarity.

Drug repurposing is an approach for discovering new applications for approved or investigational
drugs that are outside the scope of the primary medical indication [73]. The accuracy of DDREL for
detecting repurposing drugs is 81% (Accuracy needs to be seen in the light of incomplete annotations
of indications). DDREL was able to discover 8 repurposing drugs (see, e.g., Table 5). The supporting
papers, which indicate that drugs in Table 5 are repurposing drugs, are available at [79–86] and are shown
in Table 5. All the clusters containing repurposing drugs are available at [59].
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Fig. 7. Clusters containing methylphenobarbital, trimethadione and clobazam drugs a) The cluster containing methylphenobarbital
and trimethadione drugs – Excluding methylphenobarbital and trimethadione, all the remaining drugs in this cluster have N05
ATC class, but methylphenobarbital and trimethadione drugs have N03 ATC class, which are considered as repurposing drugs.
b) The cluster containing clobazam drug – Excluding clobazam, all the remaining drugs in this cluster have N03 ATC class, but
clobazam has an N05 ATC class, which is considered as a repurposing drug.

Moreover, due to a large number of repurposing drugs in the nervous system, we focused on the drug
clusters where ATC codes of all the cluster members start with “N”. We found the cluster contains
26 drugs where 24 drugs in this cluster start with “N05” and two drugs “methylphenobarbital” and
“trimethadione” which starts with “N03” (see, Fig. 7a). We found a cluster contains 26 drugs where 24
drugs in this cluster start with “N05” meaning psycholeptics, drugs used during schizophrenia, but also
hypnotics and sedatives. Most of the drugs are benzodiazepines (see, Fig. 7a). The two drugs which do
not have the N05 label are methylphenobarbital and trimethadione. Their ATC code starts with “N03” –
meaning anticonvulsant drugs administered during epilepsy. Methylphenobarbital a barbiturate derivate.
Its metabolite phenobarbital and itself was used in epilepsy, however, it has like all other barbiturate
sedative effects. It is withdrawn from the market [89]. Trimethadione was one of the first drug used in in
petit mal epilepsies, but later it was found teratogen [90–92]. The example shows the problem with the
ATC categories. Methylphenobarbital is an outlier of the barbiturate family which is in the N05 group
(N05CA). Surprisingly, both drugs are mentioned in two very recent papers [93,94] as repurposing drugs
(Phenobarbital against psoriasis and trimethadione against retinoblastoma).

Another cluster contains 11 drugs where ATC codes of 10 drugs in that cluster start with “N03”,
meaning these drugs are, anticonvulsants based on their ATC code. Meanwhile, the 11th drug clobazam
which is a psycholeptic with ATC code starting “N05”, however, clobazam is also used in epileptic
seizures (see, Fig. 7b). This drug is mentioned in paper [95] as a repurposing drug.

These examples show the problem of the ATC classification because one drug can have multiple
indications [58]. DDREL was able to find these inconsistencies based on the text-mined similarity graph.

6. Conclusions

In recent years, much effort has been invested into discovering new relationships among drugs. To the
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best of our knowledge, most of the existing text mining approaches did not consider semantic relations
among drugs. In this paper, we proposed DDREL, a method that applied deep learning to discover
syntactic and semantic relationships among drugs to predict repurposing drugs. The experimental results
show that in the terms of average similar ATC levels (Eq. (4)), DDREL significantly outperformed the
existing human drug network method in addition to a random network built 100 times. DDREL was
able to find the discrepancies in the ATC classification and show how the indication of various drugs
changed during a time (e.g. in the case of alpha-adrenergic antagonists). Of course selecting drugs for
repurposing requires expert knowledge, but DDREL can be the first step to suggest which drugs need
further evaluation.

For future work, first, we will extend DDREL to detect drug combinations (i.e., synergistic or antago-
nistic interactions) in the network of drug-drug relationships; fortunately, there are existing comprehensive
databases that may serve as ground-truth data sources such as DrugComb.5 Second, we will apply DDREL
to discover novel relationships, among other biological concepts such as drug side-effects. Third, we will
augment the input information of DDREL with more varied genetic information.
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