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Classification from positive and unlabeled
data based on likelihood invariance for
measurement
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Abstract. We propose novel approaches for classification from positive and unlabeled data (PUC) based on maximum likelihood
principle. These are particularly suited to measurement tasks in which the class prior of the target object in each measurement
is unknown and significantly different from the class prior used for training, while the likelihood function representing the
observation process is invariant over the training and measurement stages. Our PUCs effectively work without estimating the class
priors of the unlabeled objects. First, we present a PUC approach called Naive Likelihood PUC (NL-PUC) using the maximum
likelihood principle in a nontrivial but rather straightforward manner. The extended version called Enhanced Likelihood PUC
(EL-PUC) employs an algorithm iteratively improving the likelihood estimation of the positive class. This is advantageous
when the availability of the labeled positive data is limited. These characteristics are demonstrated both theoretically and
experimentally. Moreover, the practicality of our PUCs is demonstrated in a real application to single molecule measurement.

Keywords: Semi-supervised learning, classification from positive and unlabeled data, maximum likelihood estimation, likelihood
invariance, application to measurement

1. Introduction

Classification from positive and unlabeled data (PUC) [7,27] has been actively researched in recent
years. PUC is required in many problems where large amounts of unlabeled data are easily acquired but
only limited quantities of one-class-labeled data are available. Many measurement tasks in scientific,
industrial, and social sensing face such problems.

For example, the reinforced concrete in various real-world environments is classified as damaged or
undamaged by ultrasonic testing [12]. The measurements of actually damaged samples are acquired
from a limited number of past incidents, while many non-incident samples, which are either damaged or
undamaged, are acquired without their labels. Similar situations are common in the field of industrial
nondestructive inspection. Another example is the problem of classifying the risks of an individual
suffering heart failure within the next 10 years based on cardiac function indices such as stroke volume
(SV) and fractional shortening (%FS) which are geometrically measured by ultrasonic imaging [16].
Occurrences of heart failure are only recorded for persons who are actually hospitalized within the
10 years after their heart inspections, whereas most of those who are inspected but did not experience the
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heart failure remain unlabeled. Similar problems appear in other medical fields. As described later, some
advanced scientific measurement such as single molecule measurement also includes the similar problem.

The problem setting underlying many measurement tasks, including these examples, is that we have a
large data set DU of unlabeled samples X and a small data set DP of other samples X having positive
labels Y = P such as “damaged” and “heart failure.” X ∈ DP is drawn from the positive marginal
density p(X|Y = P ), and X ∈ DU is from the marginal density:

pD(X) = πDp(X|Y = P ) + (1− πD)p(X|Y = N),

where πD is the positive class prior probability pD(Y = P ). PUC learns a classifier from DP and DU ,
and this classifier can be used to obtain the measurement consequence.

A distinguishing feature of the measurement tasks is that p(X|Y = P ) and p(X|Y = N) are defined
by the sensing devices as likelihood functions of Y ; these functions are mostly invariant because the
sensing devices are designed to preserve their characteristics for long periods to ensure high accuracy. In
the aforementioned two examples, the ultrasonic sensors provide invariant likelihood functions on the
concrete and the heart motion as long as they are well maintained. Another distinguishing feature of the
measurement tasks is that the class prior probability of an individual target object or a set of target objects
is unknown in each measurement and can be significantly different from the class prior probabilities
of the objects targeted in other measurements. For instance, the prior probability of concrete damage
deviates according to the real-world environment surrounding the individual concrete object. The prior
probability of the heart failure is heavily dependent on the individual’s living environment. Thus, the
problem setting underlying the measurement tasks can be more precisely stated as being that a newly
measured sample follows the new marginal density

pM (X) = πMp(X|Y = P ) + (1− πM )p(X|Y = N),

where an unknown prior probability πM (= pM (Y = P )) can be very different from πD of DU used for
the PUC training.

These arguments reveal difficulties to apply conventional PUCs to measurement problems [7,27].
First, all past PUCs learn maximum a posteriori (MAP) classifiers in the standard setting of machine

learning. A MAP classifier estimates the label Y assuming that p(Y |X) ∝ p(X|Y )p(Y ) = p(X,Y ) is
unchanged over the training and test (measurement) stages, and thus does not anticipate a large difference
between πD and πM . This nature does not fit the aforementioned problem setting of the measurement
tasks.

Second, all past PUCs require the availability of the class prior probabilities πD and πM before
the training and test (measurement) stages [27] or a special labeling mechanism in the training data
acquisition [7]. These requirements also do not meet the conditions of the measurement tasks.

In measurement tasks having the invariant p(X|Y ) and the large discrepancies between πD and
unknown πM , the maximum likelihood estimation of Y from X relying on the invariance of p(X|Y )
has been widely employed to avoid the above difficulty of the MAP approach, when both positive and
negative labeled data sets: DP and DN are available for estimating p(X|Y ) [28]. However, to the best of
our knowledge, there is no principle for accurately estimating p(X|Y ) from positive and unlabeled data
sets: DP and DU without knowing πD. If maximum likelihood PUCs based on such a principle could be
established, they would enable various new measurement tasks.

The contributions of the present study are as follows.
1. We propose the novel principle of maximum likelihood PUCs to address the aforementioned

problems. These are the first PUCs that learn from the independently acquired two sample datasets:
DP and DU and that do not require the estimation of the class prior probability.
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2. The proposed PUCs are accurate even when a small labeled data set DP and a massive unlabeled
data set DU are given, and thus have a practical advantage.

3. These characteristics and the statistical accuracies of the proposed PUCs are theoretically demon-
strated.

4. We further show a feasible performance measure of the PUCs requiring positive and unlabeled
data sets only. This measure can be used to select appropriate parameters for the PUCs in cross
validation.

5. The performance of our proposed PUCs is confirmed through numerical experiments using artificial
and benchmark data and a real-world application to noise reduction in advanced single molecule
measurement.

2. Problem setting

Here, we define our problem setting more precisely. Let X ∈ X ⊆ Rd (d ∈ N) and Y ∈ {P, N} be
a sample in its domain X and a positive (P ) or negative (N ) label, respectively. Given a training data
set DU of unlabeled samples X and a training data set DP of other samples X having positive labels
Y = P , let MU be an unlabeled test data set given by measuring new objects. MU may include only one
sample, when the target object is unique. Samples in DP are i.i.d. sampled from the positive marginal
density pD(X|Y = P ), and samples in DU and MU are i.i.d. sampled from marginal densities pD(X)
and pM (X), respectively. No negative data are given.

We now introduce two assumptions on p(X|Y ).

Assumption 1. pD(X|Y = P ), pD(X) and pM (X) share an invariant p(X|Y ). �

Assumption 2. p(X|Y ) is positive and has bounded and continuous second derivatives on X . �

These are not special assumptions. All past PUCs assumed a common p(X|Y ) over all data sets [7,27].
All past classifiers using a non-parametric estimation of the probability densities in a continuous space
rely on Assumption 2. This assumption is used in a later section. From the first assumption, pD(X|Y =
P ) = p(X|Y = P ) holds, and pD(X), pM (X) consist of the common p(X|Y ) and the positive class
prior probabilities πD = pD(Y = P ) and πM = pM (Y = P ), respectively, as follows.

pD(X) = πDp(X|Y = P ) + (1− πD)p(X|Y = N), (1)

pM (X) = πMp(X|Y = P ) + (1− πM )p(X|Y = N). (2)

πD, πM ∈ (0, 1) are unknown and independently given.
Our problem is to learn an accurate non-parametric classifier of unseen samples in the unlabeled test

data set MU using only DP and DU . This is a two sample setting of PUC [27], whereas DU and MU

follow mutually different unknown class prior probabilities.

3. Related work

There are two issues in tackling this problem. The first relates to the distinguishing feature of the
measurement tasks such that no information about MU is known before classifying a sample in MU while
its class prior πM can be significantly different from πD of DU . In the field of traditional classifiers that
learn from both positive and negative labeled data, many approaches for adapting the classifiers to slight



60 T. Yoshida and T. Ohshiro / PU classification based on likelihood invariance for measurement

or gradual concept drift [8] and larger differences between the training and test data sets [19,20] have
been proposed. Classical semi-supervised classifiers that learn from small positive and negative labeled
data sets and a large unlabeled data set are based on the transductive learning framework [1,29], and the
adaptation of the classifiers to different class prior distributions has been studied. Saerens et al. proposed
a covariate shift adaptation for the difference in the class prior in the semi-supervised setting [22]. More
recent study has proposed a transductive transfer learning method to estimate the change in the class prior
under the same setting [5]. In the PUC setting, most of the conventional PUCs are unsuitable because they
assumes an invariant p(X,Y ) as mentioned earlier. An exception is the PUC proposed by Li et al. which
adapts to gradual changes in micro-cluster labels in a data stream [15]. However, all these approaches
rely on the availability of a certain size of MU before classifying its samples or a gradual change in the
class prior distribution of MU , and they are therefore not applicable to our problem.

The second issue comes from the fact that the values of πD and πM are unknown, while the training
processes of many PUCs need these values. The past PUCs use one of the following two options to
overcome this difficulty. The PUC of Elkan and Noto [7] uses an option called the one sample setting
which assumes that πD and πM are identical, positive samples drawn from pD(X) are labeled with a
constant probability and included in DP , and the remaining unlabeled samples are included in DU [4].
This PUC implicitly estimates the class priors by partially matching the distribution of DP to that of
DU . However, these assumptions are not always valid in measurement tasks where DP and DU are
independently given and πD and πM are largely different. Some PUCs use the other option called the two
sample setting which accepts independently acquired DP and DU [6,18,27]. This setting assumes that
πD and πM are correctly estimated from DP , DU and MU by relying on irreducibility of p(X|Y ) that
p(X|Y = P ) is not represented by a linear combination of p(X|Y = N) and another probability density
function of X [2,6,21,23]. However, this irreducibility is not generally guaranteed in measurement tasks.
Moreover, MU is not usually available for estimating πM before the new measurement, and so cannot be
applied to our problem setting.

In the next section, we propose two maximum likelihood PUCs not requiring MU in advance nor the
estimation of πD and πM . Thus, they do not suffer the difficulties for the measurement tasks.

4. Proposed method and theoretical analysis

4.1. Naive Likelihood PUC (NL-PUC)

To design a PUC that is robust to differences between πD and πM , we employ the following maximum
likelihood measure that does not depend on the class prior probabilities. According to Assumption 1, the
maximum likelihood estimation of Y under x ∈MU is given as follows:

y =

{
P if p(x|Y = P ) > p(x|Y = N),
N if p(x|Y = P ) < p(x|Y = N).

(3)

Associated with this measure, the following lemma holds.

Lemma 1. Given a marginal density

pπ(X) = πp(X|Y = P ) + (1− π)p(X|Y = N),

the following inequalities are equivalent for any π ∈ (0, 1) and X.

p(X|Y = P ) > pπ(X)⇔ p(X|Y = P ) > p(X|Y = N).

�
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Proof. We obtain the following relation by substituting the definition of pπ(X) to p(X|Y = P ) > pπ(X).

p(X|Y = P ) > πp(X|Y = P ) + (1− π)p(X|Y = N)

⇔ (1− π)p(X|Y = P ) > (1− π)p(X|Y = N)

⇔ p(X|Y = P ) > p(X|Y = N) s.t. π ∈ (0, 1).

�

From this lemma and Assumption 1, we immediately obtain the following, which is our core theorem.

Theorem 1. For any combination of πD and πM in (0, 1), the following formula is the maximum
likelihood measure equivalent to Eq. (3) for all x ∈MU following pM (X).

y =

{
P if p(x|Y = P ) > pD(x),
N if p(x|Y = P ) < pD(x).

(4)

�

Proof. From Eqs (1) and (2) and Lemma 1, the following holds:

p(X|Y = P ) > pD(X)⇔ p(X|Y = P ) > pM (X)

⇔ p(X|Y = P ) > p(X|Y = N).

Because the last inequality is independent of πD and πM according to Assumption 1, these three
inequalities equivalently and invariantly hold for any πD and πM in (0, 1). Equation (4) is therefore
equivalent to Eq. (3), and the theorem holds. �

We construct a maximum likelihood PUC by substituting the non-parametric estimations p̂(x|Y =
P ) := p̂D(x|Y = P ) and p̂D(x) derived from DP and DU , respectively, into this measure. They are
provided by

p̂D(x|Y = P ) =
1

|DP |
∑
x∈DP

pK(X|x) and p̂D(x) =
1

|DU |
∑
x∈DU

pK(X|x),

where we use kernel densities pK(X|x) such as Gaussian kernel which well approximates p(x|Y = P )
and pD(x) under the condition of Assumption 2. We refer to this classification as Naive Likelihood PUC
(NL-PUC).

4.2. Enhanced Likelihood PUC (EL-PUC)

Although NL-PUC satisfies our requirements, the classification may be degraded by large statistical
errors in p̂D(X|Y = P ) induced from the small size of DP , i.e., |DP |. To alleviate this difficulty, we
estimate p̂(x|Y = P ) := p̂(k)(X|Y = P ) more accurately by iteratively improving p̃(k−1)(X|Y = P )
using its linear combination with p̂D(X|Y = P ).

p̂(k)(X|Y = P )
(5)

:= (1− r)p̂D(X|Y = P ) + rp̃(k−1)(X|Y = P ).

where r ∈ (0, 1) and k = 2, 3, . . .. p̃(k−1)(X|Y = P ) is given by the following non-parametric
approximation of p(X|Y = P ) using kernel densities pK(X|x) and their weights w̃(k−1)(x). We use
pK(X|x) such as Gaussian kernel as well as in NL-PUC.

p̃(k−1)(X|Y = P ) =
∑
x∈DU

w̃(k−1)(x) pK(X|x). (6)
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w̃(k−1)(x) =
p̂(k−1)(x|Y = P )/p̂D(x)∑

x′∈DU
p̂(k−1)(x′|Y = P )/p̂D(x′)

. (7)

Their initial values are set as follows.

p̃(1)(X|Y = P ) =
∑
x∈DU

w̃(x)pK(X|x)

(8)
s.t. w̃(x) =

p̂D(x|Y = P )/p̂D(x)∑
x′∈DU

p̂D(x′|Y = P )/p̂D(x′)
.

Equation (8) is a weighted non-parametric approximation of p(X|Y = P ) using the samples in DU

and the normalized weights w̃(x) where DU follows pD(X) and w̃(x) approximates w(x) defined by
pD(x|Y = P ) ∝ w(x)pD(x) [10,26]. Equations (6) and (7) further repeat the weighted non-parametric
approximation of p(X|Y = P ) using its estimation from the previous step.

In the next subsection, we show that, if DU is of sufficient size and we choose an appropriate r, the
mean square error of p̂(k)(X|Y = P ) can be no more than that of the non-parametric approximation
p̂D(X|Y = P ) directly derived from DP . Moreover, the mean square error of p̂D(X|Y = P ) is
limited under Assumption 2, because p(X|Y = P ) is positive and has bounded and continuous second
derivatives on X [10,24]. Accordingly, p̂(k)(X|Y = P ) converges to a value having better accuracy than
p̂D(X|Y = P ). In practice, our numerical experiments show that p̂(k)(X|Y = P ) using almost any
r ∈ (0, 1) widely gives a better estimation of p(X|Y = P ) than p̂D(X|Y = P ).

When the rate of change of w̃(k−1)(x) converges within a small tolerance ε = 10−4 for all x ∈ DU , we
obtain a more accurate p̂(k)(X|Y = P ) than p̂D(X|Y = P ) given by NL-PUC, and apply p̂(k)(X|Y =
P ) to Eq. (4) with p̂D(X). This is called Enhanced Likelihood PUC (EL-PUC) and expected to have
better accuracy particularly when |DP | is small.

4.3. Theoretical accuracy of EL-PUC

pD(X) is positive and has bounded and continuous second derivatives on X from Assumption 2, Eq. (1)
and πD ∈ (0, 1). Moreover, the size of DU is sufficiently large in most practical cases. Accordingly,
the non-parametric estimation p̂D(X) given by DU and used on the r.h.s. of Eq. (4) has a limited mean
square error [10,24]. Thus, we focus on the error of p̂(k)(X|Y = P ) which is used on the l.h.s. of Eq. (4).

Let q̂(X) be the estimation of q(X), B[q̂(X)] be the absolute value of the bias |E[q̂(X) − q(X)]|,
V[q̂(X)] be the variance E[{q̂(X)− E[q̂(X)]}2], and MSE[q̂(X)] be the mean square error B[q̂(X)]2 +
V[q̂(X)]. Here, E[·] denotes the expectation over the distribution p(DP ∪DU ).

Lemma 2. Let ∆(k)(X) = |E[p̃(k)(X|Y = P )]−E[p̂(k)(X|Y = P )]|, then ∆sup(X) = supk>1 ∆(k)(X)
is bounded, and the following holds for k →∞.

B[p̂(k)(X|Y = P )] 6
r

1− r
∆sup(X) + B[p̂D(X|Y = P )].

�

Proof. From Eqs (6) and (7), p̃(k)(X|Y = P ) is a weighted non-parametric approximation of
p̂(k)(X|Y = P ). As p̂(k)(X|Y = P ) in Eq. (5) is a linear combination of p̂D(X|Y = P ) and
p̃(k−1)(X|Y = P ) which are positive and have bounded and continuous second derivatives by the
use of the kernel density pK(X|x) satisfying the condition of Assumption 2, the absolute expected error
of p̃(k)(X|Y = P ) against p̂(k)(X|Y = P ) is bounded [10,24]. Hence, ∆(k)(X) is bounded for any k,
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i.e., ∆sup(X) is bounded. Accordingly, by subtracting p̂D(X|Y = P ) from both sides of Eq. (5) and
taking their absolute expectations, the following holds.

|E[p̂(k)(X|Y = P )− p̂D(X|Y = P )]|

= r|E[p̃(k−1)(X|Y = P )− p̂D(X|Y = P )]|

= r|E[p̂(k−1)(X|Y = P )]±∆(k−1)(X)− E[p̂D(X|Y = P )]|

6 r|E[p̂(k−1)(X|Y = P )− p̂D(X|Y = P )]|+ r∆(k−1)(X).

By repeatedly applying this formula and applying p̂(1)(x|Y = P ) := p̂D(x|Y = P ) in Eq. (8) when
i = k − 1, we derive:

|E[p̂(k)(X|Y = P )− p̂D(X|Y = P )]| 6
k−1∑
i=1

ri∆(k−i)(X) 6 ∆sup(X)

k−1∑
i=1

ri −−−→
k→∞

r

1− r
∆sup(X).

Moreover, the following holds.

B[p̂(k)(X|Y = P )] = |E[p̂(k)(X|Y = P )− p(X|Y = P )]|

6 |E[p̂(k)(X|Y = P )− p̂D(X|Y = P )]|

+|E[p̂D(X|Y = P )− p(X|Y = P )]|

= |E[p̂(k)(X|Y = P )− p̂D(X|Y = P )]|+ B[p̂D(X|Y = P )].

By substituting the former inequality into this last line, we obtain our following result for k →∞.

B[p̂(k)(X|Y = P )] 6
r

1− r
∆sup(X) + B[p̂D(X|Y = P )].

�

This lemma shows that B[p̂(k)(X|Y = P )] can be less than B[p̂D(X|Y = P )], if r is sufficiently
small.

Lemma 3. The following holds for all k > 2.

V[p̂(k)(X|Y = P )] 6 {V[p̂D(X|Y = P )]1/2

+r(V[p̃(k−1)(X|Y = P )]1/2 − V[p̂D(X|Y = P )]1/2)}2.

�

Proof. By taking the expectation of Eq. (5) and subtracting it from Eq. (5) itself, we obtain the following
for k > 2.

p̂(k)(X|Y = P )− E[p̂(k)(X|Y = P )]

= (1− r){p̂D(X|Y = P )− E[p̂D(X|Y = P )]}

+r{p̃(k−1)(X|Y = P )− E[p̃(k−1)(X|Y = P )]}.

By taking the mean square of both sides, the following formula is derived.
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V[p̂(k)(X|Y = P )] = (1− r)2V[p̂D(X|Y = P )]

+2(1− r)rE[(p̂D(X|Y = P )− E[p̂D(X|Y = P )])

×(p̃(k−1)(X|Y = P )− E[p̃(k−1)(X|Y = P )])]

+r2V[p̃(k−1)(X|Y = P )].

According to the Cauchy-Schwarz inequality and the positivity of the variances, the underlined term is
no more than V[p̂D(X|Y = P )]1/2V[p̃(k−1)(X|Y = P )]1/2. Thus the following inequality is obtained,
and the lemma holds.

V[p̂(k)(X|Y = P )] 6 (1− r)2V[p̂D(X|Y = P )]

+2(1− r)rV[p̂D(X|Y = P )]1/2V[p̃(k−1)(X|Y = P )]1/2

+r2V[p̃(k−1)(X|Y = P )]

= {(1− r)V[p̂D(X|Y = P )]1/2 + rV[p̃(k−1)(X|Y = P )]1/2}2

= {V[p̂D(X|Y = P )]1/2

+r(V[p̃(k−1)(X|Y = P )]1/2 − V[p̂D(X|Y = P )]1/2)}2.

�

This lemma indicates that V[p̂(k)(X|Y = P )] can be less than V[p̂D(X|Y = P )], if r is sufficiently
small. The following theorem is easily derived from these two lemmas.

Theorem 2. If the following holds, there exists some r ∈ (0, 1) such that MSE[p̂(k)(X|Y = P )] <
MSE[p̂D(X|Y = P )].

B[p̂D(X|Y = P )]∆sup(X) < V[p̂D(X|Y = P )]
(9)

−V[p̃(k−1)(X|Y = P )]1/2V[p̂D(X|Y = P )]1/2.

�

Proof. MSE[p̂(k)(X|Y = P )] is bounded above by

MSEsup[p̂(k)(X|Y = P )]

=

{
B[p̂D(X|Y = P )] +

r

1− r
∆sup(X)

}2

+
{

V[p̂D(X|Y = P )]1/2

+r(V[p̃(k−1)(X|Y = P )]1/2 − V[p̂D(X|Y = P )]1/2)
}2

according to Lemmas 2 and 3. Therefore,

MSEsup[p̂(k)(X|Y = P )] −−−→
r→0+

MSE[p̂D(X|Y = P )],

and MSEsup[p̂(k)(X|Y = P )] −−−−→
r→1−

∞
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hold. These facts imply that there exists some r ∈ (0, 1) such that MSE[p̂(k)(X|Y = P )] <
MSE[p̂D(X|Y = P )], if the differential of MSEsup[p̂(k)(X|Y = P )] for r is negative in a vicinity
of 0+, i.e.,

∀ε > 0, ∃δ ∈ (0, 1), c < 0, s.t. ∀r ∈ (0, δ),

⇒

∣∣∣∣∣dMSEsup[p̂(k)(X|Y = P )]

dr
− c

∣∣∣∣∣ 6 ε.
The above condition is equivalent to the following, which proves the lemma.

lim
r→0+

dMSEsup[p̂(k)(X|Y = P )]

dr

= 2

{
B[p̂D(X|Y = P )] +

r

1− r
∆sup(X)

}
1

(1− r)2
∆sup(X)

+2
{

V[p̂D(X|Y = P )]1/2

+r(V[p̃(k−1)(X|Y = P )]1/2 − V[p̂D(X|Y = P )]1/2)
}

×(V[p̃(k−1)(X|Y = P )]1/2 − V[p̂D(X|Y = P )]1/2) s.t. r → 0+

= 2B[p̂D(X|Y = P )]∆sup(X)

+2V[p̃(k−1)(X|Y = P )]1/2V[p̂D(X|Y = P )]1/2

−2V[p̂D(X|Y = P )] < 0.

⇔ B[p̂D(X|Y = P )]∆sup(X) < V[p̂D(X|Y = P )]

−V[p̃(k−1)(X|Y = P )]1/2V[p̂D(X|Y = P )]1/2.

�

The variances of p̂D(X|Y = P ) and p̃(k−1)(X|Y = P ) obtained by non-parametric estimation using
|DP | i.i.d. samples and |DU | weighted i.i.d. samples are known to be

V[p̂D(X|Y = P )] ' C

|DP |
p(X|Y = P ), and (10)

V[p̃(k−1)(X|Y = P )] ' C

|DU |(k−1)eff

p(X|Y = P ), (11)

respectively [10,14,26].C is a positive constant given by the integrated square of pK(X|x), and |DU |(k−1)eff
is the effective size of DU with weights w̃(x)(k−1) defined as

|DU |(k−1)eff =
1∑

x∈DU
(w̃(x)(k−1))2

s.t.
∑
x∈DU

w̃(x)(k−1) = 1.

From Eqs (1) and (7), x in a certain fraction α of DU have w̃(x)(k−1) > 1/|DU |, and thus∑
x∈DU

(w̃(x)(k−1))2 > α|DU |(1/|DU |)2 = α/|DU | ⇒ |DU |(k−1)eff = O(|DU |) holds. According to this
fact, Eqs (10) and (11), the r.h.s. of Eq. (9) is large, i.e., Eq. (9) may hold, when |DP | is small and |DU |
is large. Therefore, when there are few samples in DP and many samples in DU , MSE[p̂(k)(X|Y = P )]
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is generally less than MSE[p̂D(X|Y = P )] if using an appropriate r ∈ (0, 1), and EL-PUC is expected
to attain higher accuracy than NL-PUC.

This theoretical result is more intuitively explained by the nature of statistical bias end variance. The
expectations of p̃(k)(X|Y = P ) and p̂(k)(X|Y = P ) do not mutually deviate significantly, since they are
kernel based nonparametric estimations of p(X|Y = P ). Thus, ∆sup(X) is small, and this ensures the
small difference of the expected biases of p̂D(X|Y = P ) and p̂(k)(X|Y = P ) over the wide range of r
in Lemma 2. Whereas, the variance of p̂D(X|Y = P ) is expected to be significantly larger than that of
p̂(k)(X|Y = P ) under the condition of |DP | � |DU |, because they are dominated by |DP | and |DU |,
respectively. In total, the mean square error of p̂(k)(X|Y = P ) is less than that of p̂D(X|Y = P ).

4.4. Performance measure and parameter selection

When a certain amount of test data is available, the performance of our PUCs can be empirically
evaluated for the purpose of comparison with other candidate PUCs and to tune the PUC parameters.
However, standard performance indices such as AUC and F-measure are not applicable, because the test
data sets in practical problems targeted by PUCs usually do not include labeled negative samples.

For such circumstances, a number of studies have proposed performance indices similar to the traditional
AUC that assess the goodness of the classifier classes, but not particular parameter selections of the
classifiers [9,11,17]. Only a few studies have proposed indices that are directly applicable to parameter
selection. Lee and Liu proposed an index equivalent to the geometric mean of precision and recall in the
one sample setting [13]. Calvo et al. proposed a generic pseudo F-measure that matches the traditional
F-measure if we substitute the correct πM [3]. We employ the latter index because it is applicable to the
two sample setting.

The unavailability of πM in our problems presents an issue. Given a labeled positive test data set MP

and a unlabeled test data set MU with Assumption 1, assuming that both MP and MU have certain sizes
for statistically stable evaluations, we derive the following lemma for our likelihood based PUC which
uses Eq. (3) or equivalent Eq. (4). It ensures that the pseudo F-measure using an arbitrary π̃ in place of
πM is a maximum if and only if the PUC correctly classifies all samples in MU . In the case where MP is
not given, we use a subset D′P ⊂ DP as MP under Assumption 1 and use DP \D′P to train the PUC. In
this study, we use a moderate π̃ = 0.5.
Lemma 4. Let MP

U be the set of all positive samples in MU , and let M̂P and M̂P
U be the sets of all

samples classified as positive in MP and MU , respectively, by using Eq. (3) or equivalent Eq. (4). The
following pseudo F-measure [3] is expected to be a maximum for any π̃ > 0, if and only if M̂P

U = MP
U .1

F̃ =
2π̃|M̂P |/|MP |
|M̂P

U |/|MU |+ π̃

�

Proof. By Assumption 1, the positive samples in MP
U and MP have identical p(X|Y = P ). Thus, the

probability of MP
U that a positive sample in MP

U is correctly classified as positive by applying Eq. (3)
or equivalent Eq. (4) is identical with that of MP . In addition, M̂P ⊆ MP always holds. Accordingly,
E[|MP

U ∩ M̂P
U |/|MP

U |] = E[|MP ∩ M̂P |/|MP |] = E[|M̂P |/|MP |], and the following holds.

F̃ '
2π̃|MP

U ∩ M̂P
U |/|MP

U |
|M̂P

U |/|MU |+ π̃
.

1MP
U is unknown since MU is unlabeled.
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When |M̂P
U | > |MP

U |, the denominator is positive under π̃ > 0 and attains a minimum when |M̂P
U | =

|MP
U |, because the denominator monotonically increases on |M̂P

U | ∈ [|MP
U |, |MU |]. The numerator with

π̃ > 0 attains a maximum when MP
U ⊆ M̂P

U where |MP
U ∩ M̂P

U | is a maximum for any |M̂P
U | (> |MP

U |).
Thus, F̃ is a maximum when M̂P

U = MP
U .

Similarly, when |M̂P
U | < |MP

U |, the numerator with π̃ > 0 is a maximum for any |M̂P
U | (< |MP

U |) if
M̂P
U ⊆MP

U where F̃ is represented as

F̃ '
2π̃/|MP

U |
1/|MU |+ π̃/|M̂P

U |
,

which is monotonically increasing on |M̂P
U | ∈ [0, |MP

U |] under π̃ > 0. Thus, F̃ is maximized when
M̂P
U = MP

U .
By combining these two cases, we conclude that, for any π̃ > 0, F̃ is maximized if and only if

M̂P
U = MP

U . �

The analysis in Subsection 4.3 indicated that the parameter r in Eq. (5) affects the accuracy of the
EL-PUC. We set up EL-PUC using two candidate values of r. EL-PUCdf uses arbitrary default r = 0.5
which is a moderate value in the interval (0,1). Another EL-PUCcv uses r selected by cross validation
using F̃ . In the first stage of EL-PUCcv, we apply 10CV to select the best r by randomly splitting DP

and DU into 10% fractions: D′P and D′U for testing, i.e., MP and MU , and remaining 90% fractions:
DP \D′P and DU \D′U for training in each fold, respectively.2 Finally, EL-PUCcv is trained using the
entire DP and DU and the selected parameter.

We use a Gaussian kernel density with kernel width h for the non-parametric estimation of the
probability density functions required in NL-PUC and EL-PUC. Wang empirically showed that the
theoretical value of h that minimizes the mean integrated square error of the un-weighted non-parametric
estimator is also optimal in case of a weighted non-parametric estimator, and called this a plug-in
estimator [26]. We use h of this plug-in estimator.

5. Experimental evaluation

Using both artificial and UCI data sets, we evaluated the accuracy of NL-PUC, EL-PUCdf and EL-
PUCcv and their robustness to differences between πM and πD. The results were compared with those
given by Elkan & Noto’s PUCs [7] using Gaussian Naïve Bayes based (NB-E&N) and Gaussian kernel
density based (KD-E&N) estimators of p̂D(X|Y = P ) and p̂D(X). As with our proposed PUCs, we
applied the kernel width h of the plug-in estimator to KD-E&N. We did not include other PUCs for the
two sample setting in comparison [6,15,18,27], because they require MU to estimate πM , and this is not
available in advance in our problem setting.

The codes of the five PUCs were implemented using MATLAB and run in Windows 10 PC equipped
with Intel Core i7-4790-3.6GHz-8 cores CPU and 32GB RAM.

5.1. Performance evaluation using artificial data

We used artificial data containing p(X|Y = P ) and p(X|Y = N) which are two Gaussians having

a common covariance Σ =

[
1 0
0 1

]
and distinct means µP = (0, 0), µN = (2, 0). Given πD and πM ,

2We use a line search to seek the best r.
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Fig. 1. Performance for artificial data having three different πD = 0.1, 0.5 and 0.9 (|DP | = 1000, |DU | = 1000, |MU | = 1000
and πM ∈ {0.1, 0.5, 0.9}).

the three data sets DP , DU and MU were generated by i.i.d. sampling from pD(X|Y = P ), pD(X) in
Eq. (1) and pM (X) in Eq. (2), respectively.

Figure 1 shows comparisons of precision, recall and F-measure between the five PUCs in terms of
the three class prior probabilities of DU : πD = 0.1, 0.5 and 0.9. Under given πD with fixed data sizes
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|DP | = 1000, |DU | = 1000 and |MU | = 1000, we generated 100 cases of {DP , DU ,MU} for each
class prior probability of MU : πM ∈ {0.1, 0.5, 0.9},i.e., 300 cases in total. The respective PUC trained
using DP and DU is tested by using MU to measure its performance indecies in each case. A bar, a
whisker and a diamond shape of a PUC in the figures represent the mean, the standard deviation and the
minimum/maximum of the performance index over the 300 cases covering the three πM ∈ {0.1, 0.5, 0.9},
respectively. The mean represents the accuracy of a PUC over the difference of the class prior probabilities
between DU and MU . The less standard deviation and the less interval between the minimum and the
maximum show the higher robustness of a PUC to the difference.

In these figures, the accuracy and robustness of all PUCs mostly decrease with increasing πD, because
the negative samples in DU become less while they are the unique information source on p(X|Y = N).
NB-E&N and KD-E&N particularly lose their recall in this condition, since they use classifiers of labeled
and unlabeled samples which do not capture the difference between the labeled positive samples and the
unlabeled negative samples when almost all samples are positive. Nevertheless, all the three indecies
show high accuracy and higher robustness of our three PUCs than NB-E&N and KD-E&N in almost all
conditions. This comes from the fact that the classification measures Eqs (3) and (4) used in our PUCs
are independent of the class prior probabilities. The accuracy of EL-PUCdf and EL-PUCcv is particularly
higher than that of NL-PUC under πD = 0.9. This may be because V[p̃(k−1)(X|Y = P )] is kept small
by estimating p̃(k−1)(X|Y = P ) from both DP and DU , while B[p̂D(X|Y = P )] is small as long as
Assumption 2 holds on a continuous space X [10,24]. These effects make Eq. (9) in Theorem 2 to widely
hold even under the large πD where the performance of NL-PUC is degraded by the shortage of the
information on p(X|Y = N).

Figure 2 shows comparison of the three indices between the five PUCs over |DP | = 10, 100, 1000 and
10000. As in Fig. 1, we generated 300 cases over πM = 0.1, 0.5 and 0.9 under given |DP |, |DU | = 1000
with fixed πD = 0.5 and |MU | = 1000 in an experiment, and measured the mean, the standard deviation
and the minimum/maximum of the three indices of each PUC over the 300 cases covering the three πM ∈
{0.1, 0.5, 0.9}, respectively. Figure 3 was created for the comparison over |DU | = 100, 1000 and 10000
under fixed πD = 0.5, |DP | = 1000 and |MU | = 1000 in similar manner. In these figures, our three
PUCs again show higher accuracy and robustness than NB-E&N and KD-E&N in the most conditions
including the case of DP = 10 in Fig. 2. Elkan & Noto’s PUCs show larger standard deviations and
intervals between the minimum and the maximum of the accuracy. Particularly, they show significant
decreases of the accuracy in the imbalanced conditions between |DP | and |DU | such as the cases of
|DP | = 10 and 10000 in Fig. 2, and DU = 100 in Fig. 3. This is because they use classifiers of labeled
and unlabeled samples which are statistically degraded under the highly imbalanced conditions. The
accuracy of EL-PUCdf and EL-PUCcv is particularly higher than that of NL-PUC when a small size
|DP | = 10 and a large size |DU | = 1000 are provided in Fig. 2. This character is consistent with the
suggestion of Theorem 2 and (10) and (11).

Figures 4a and b represent the dependency of the computation times required to train the five PUCs
using the artificial data in log-log plots. The computation times under given |DP | were averaged over
all combinations of |DU | and πD in the former, and those under given |DU | were averaged over all
combinations of |DP | and πD in the latter. The line of “EL-PUCcv” shows its computation times after
the tuning of the parameter r, and the line of “r tuning time” indicates its times required for the tuning
by the 10 fold cross validation. Since NL-PUC simply learns Eq. (4), its complexity for training is
O(|DP |+ |DU |). Both EL-PUCdf and EL-PUCcv have their complexity of O(K(r)|DU |(|DP |+ |DU |))
where K(r) is the number of the iteration of Eqs (5)–(7). In each iteration step, the computation of
w̃(k−1)(x) is repeated |DU | times in Eq. (6) where each w̃(k−1)(x) is computed by Eqs (5) and (7)
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Fig. 2. Performance for artificial data having various |DP | = 10, 100, 1000 and 10000 (πD = 0.5, |DU | = 1000, |MU | = 1000
and πM ∈ {0.1, 0.5, 0.9}).
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Fig. 3. Performance for artificial data having various |DU | = 100, 1000 and 10000 (πD = 0.5, |DP | = 1000, |MU | = 1000 and
πM ∈ {0.1, 0.5, 0.9}).

using |DP |+ |DU | samples. In the r tuning, a test computes the pseudo F-measure using the samples
proportional to |DP |+ |DU | where each sample is classified by using the other |DP |+ |DU | samples.
This is repeated 10 times with the training of EL-PUCcv. Thus, the total complexity of the r tuning
is O(10(|DP |+ |DU |)2 + 10K(r)|DU |(|DP |+ |DU |)). NB-E&N and KD-E&N process |DP |+ |DU |
samples for classifying a sample if it is labeled or unlabeled. They repeat this process |DP | times to
evaluate the probability that a positive sample is labeled. Thus, their total complexity is O(|DP |(|DP |+
|DU |)). These facts are well reflected to Fig. 4a and b where the dependency of their computation times
is linear or quadratic. Particularly, KD-E&N needs computation times comparable with or more than our
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Fig. 4. Computation times of the five PUCs.
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Fig. 5. Performance for UCI concrete compressive strength data having various πD = 0.1, 0.5 and 0.9 (|DU | = 200, |DP | ∈
{10, 30, 90, 270} and πM ∈ [0.1, 0.5, 0.9]).

proposed PUCs. Note that these computation times may be positively biased by some overhead process
under small |DP | = 10.

5.2. Performance evaluation using UCI data

In the UCI repository, there are only a few data sets having known measurement processes. We used
“Concrete Compressive Strength" (#samples: 1030, #observed variables [X]: 7, target variable [Y]:
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Fig. 6. Performance for UCI airfoil self-noise data having various πD (|DU | = 300, |DP | ∈ {15, 45, 135, 405} and πM ∈ [0.1,
0.5, 0.9]).

compressive strength), “Airfoil Self-Noise" (#samples: 1503, #observed variables [X]: 5, target variable
[Y]: angle of attack), and “Steel Plates Faults" (#samples: 1941, #observed variables [X]: 26, target
variable [Y]: sigmoid of areas) from the physical sciences. We removed their categorical variables,
binarized the target variables by applying their median values as a threshold, and chose one of the binary
values as positive. Thus, they became balanced data sets in terms of their positive and negative samples.
In each data set, we drew 20% of the total to produce three DU having the probabilities πD = 0.1, 0.5
and 0.9 to include positive samples, respectively. We also took extra 1%, 3%, 9% and 27% of the total
to create four DP , respectively, by choosing positive samples only. Furthermore, we drew extra 10% of
the total to produce three MU having πM = 0.1, 0.5 and 0.9, respectively. For each of the three DU , we
computed the mean, the standard deviation, and the minimum/maximum of the accuracy indices of the
five PUCs by marginalizing over all combinations of DP and MU .

Figures 5–7 compare the results using these UCI data sets. Because the figures of precision and recall
of the last two data sets show similar behaviors with those of the first one, they are omitted. The figures
mostly show a similar tendency with those of the artificial data. Under the most conditions of πD, our
three PUCs are more accurate and robust than NB-E&N and KD-E&N to the varieties of the size |DP |
and the differences of the class prior πM . Though the difference between our three PUCs are not very
significant, EL-PUCcv provides the top average accuracy in many cases.

Figure 4c indicates the computation times to train the five PUCs using Concrete Compressive Strength
data set. Because the size of the data set is small, the computation times of their overhead processes
became dominant. Nevertheless, NL-PUC having lower complexity in essence was faster than NB-E&N,
because the load of the kernel density based estimation was not significant for the small data set. We
observed similar behaviors for the other two data sets.

6. Discussion

All results in Section 5 indicate that EL-PUCcv, which tunes r by using the pseudo F-measure: F̃ ,
achieves the highest or comparable accuracy and robustness among our three PUCs. This reflects Lemma 4
that we can appropriately tune the parameters of the classifiers by using F̃ . The traditional F-measure: F
and F̃ of EL-PUCdf depicted in Fig, 8 more directly represents their consistency. Note that F̃ can be
larger than unity according to its definition in Lemma 4. Though the standard deviations and the intervals
between the minimum and the maximum of F̃ are larger than those of F , i.e., F̃ is less robust to the
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Fig. 7. Performance for UCI steel plates faults data having various πD (|DU | = 400, |DP | ∈ {20, 60, 180, 540} and πM ∈ [0.1,
0.5, 0.9]).

Fig. 8. Comparison between F-measure: F and pseudo F-measure: F̃ of EL-PUCdf and NB-E&N for various data (|DP | = 10,
|DU | = 1000 and πD, πM = {0.1, 0.5, 0.9} for artificial data, and the conditions of Fig. 5–7 for UCI data).

deviations of πM from πD under various conditions, the means of F and F̃ show consistent behaviors
over the four data sets. This supports the use of F̃ to evaluate the accuracy of our likelihood based PUCs.
Figure 8 also shows the comparisons of F and F̃ for NB-E&N which uses the aforementioned one sample
setting. Although this setting does not match with the assumptions required to the consistency of F̃ , F
and F̃ of NB-E&N indicates their consistency comparable to those of EL-PUCcv. This may be because
the probability to correctly classify a positive sample as positive by the Gaussian Naïve Bayes classifier
used in NB-E&N is moderatly affected by the variation of the class priors π. This shows that the pseudo
F-measure F̃ is widely applicable to qualitatively assess the performance of the PUCs.

According to the dependency of EL-PUC’s accuracy on the parameter r as indicated by the lemmas
and the theorems in Subsection 4.3, we proposed EL-PUCcv which selects an optimal r using the cross
validation to achieve the highest accuracy. Meanwhile, Fig. 9 shows F-measure of EL-PUC over various r
for the artificial data having three πD = 0.1, 0.5 and 0.9 where all other conditions were marginalized. In
the marginalized view, the accuracy of EL-PUC does not have any clear dependency on r. This supports
the experimental results in Section 5 indicating the small differences of the accuracy and the robustness
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Fig. 9. Dependency of EL-PUC on parameter r for artificial data having various πD (|DP | ∈ {15, 45, 135, 405}, |DU | ∈ {100,
1000, 10000} and πD ∈ [0.1, 0.5, 0.9]).

between EL-PUCdf and EL-PUCcv in most cases. On the other hand, EL-PUCcv requires extremely
large computation times for the parameter tuning as shown in Section 5. These facts suggest the limited
applicability of EL-PUCcv to practical measurement tasks particularly when the available time for training
is limited.

Besides, EL-PUCdf shows higher accuracy and robustness than NL-PUC under large πD and small
|DP | while the computation time of EL-PUCdf is larger than that of NL-PUC. Therefore, we need to
consider the trade-off between the classification performance and the computation time for the selection
of the two approaches.

7. Real-world application

We applied our PUCs to noise reduction in a real-world single molecule measurement [25]. Figure 10
depicts the core part of the sensor called a “nano-gap.” The passage of an object between two nanoscopic
electrodes is observed as an electric pulse induced by the quantum tunneling effect. Our task is to classify
each pulse into a target molecule and a contaminant in the solvent based on the pulse outline in real time.
A technical difficulty here is that the solvent containing no contaminants is hardly produced. Therefore,
we always obtain a data set containing the target molecule’s pulses with the contaminant’s noise pulses,
whereas we can get a data set containing the noise pulses of the contaminants only by observing the
solvent without the target molecules. Moreover, the nano-gap sensor is disposable in every measurement
task. Because characters of the nano-gaps are mutually different depending on the fluctuations of their
manufacturing processes while a nano-gap is stable during a measurement task, we need to train the
classifier in a short on-line period for the quick start at the beginning of every measurement task.
Accordingly, the time for acquiring the noise pulses is very limited, while the target pulses with the noise
pulses are acquired for a long period in their measurement. These required specifications meet with the
conditions addressed by our proposed PUCs.

In our application, a pulse signal time series between the start and the end of the pulse is partitioned
into 10 equi-width time intervals, and the signal points in each interval are averaged. The pulse outline
is a 10 dimensional vector consisting of the 10 averages. We acquired DP consisting of the noise pulse
outlines, which were labeled as positive, in a short initial on-line period for the quick start. Successively,
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Table 1
Performance comparison of noise reduction

Time for F̃

Method Training πD ' πM πD < πM πD � πM

NB-E&N 1.47 msec 0.572 0.582 0.592
KD-E&N 4.90 msec 0.318 0.322 0.282
NL-PUC 7.29 msec 0.715 0.671 0.652
EL-PUCdf 736.19 msec 0.726 0.695 0.672

Fig. 10. A Single molecule sensor.

the unlabeled pulse outlines of the target molecules with the contaminants are acquired for a certain
limited period to create DU where their labels are estimated by a PUC during its training and the pulses
classified into the target molecules become the initial part of the measurement output. After the PUC is
trained by using DP and DU , the on-line noise reduction of new incoming pulses starts. The ratio of the
targets and the contaminants in the solvent, i.e., the class prior, rapidly varies in the on-line measurement.

We used the pseudo F-measure F̃ to evaluate the performance of the noise reduction, because the
ground truth of the classification was unknown. We acquired an extra labeled positive test setMP together
with DP in the initial short period, and further acquired some unlabeled test sets MU for computing F̃ of
the five PUCs after the on-line measurement started. Their sizes were defined as |DP | = |MP | = 20,
|DU | = 800 and |MU | = 100 by following the aforementioned specifications and the convenience to
compute F̃ .

Table 1 shows the performances of the four PUCs applied to three MU . We excluded EL-PUCcv
because its large computation time is not suitable for on-line processing. The same codes and the same
PC with Section 5 were used. The class prior πM of the first MU acquired immediately after the start of
the on-line measurement is almost same with πD. Then, contaminants in the solvent rapidly increased
over the periods acquiring the second and third MU which made the second MU as πD < πM and the
third MU as πD � πM . Note that F̃ is not normalized into [0,1], and its value does not represent the
absolute accuracy, while the larger F̃ show a better performance. The best numbers are underlined in
each column. Particularly, EL-PUCdf showed the best F̃ , while it takes relatively large computation time
for its training. NL-PUC is better for the instant start of the on-line measurement, and EL-PUCdf is better
if the dead time for nearly 1sec is allowed. The entire performance of NB-E&N and KD-E&N were
significantly worse than those of NL-PUC and EL-PUCdf becuase of the small |DP | = 20 available for
the training. This is consistent with the result for the artificial data depicted in Fig. 2.

8. Conclusion

Our proposed PUCs show high accuracy and robustness under wide conditions. They are particularly
advantageous when the numbers of the labeled positive samples and the unlabeled samples are imbalanced
and when the positive class prior probability is dominant. Moreover, our proposed EL-PUC provides
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better accuracy than our proposed simple NL-PUC when the number of the labeled positive samples is
limited and when the positive class prior probability is dominant, while EL-PUC needs more computation
time.

In various practical problems, the labeled positive dataset DP may be contaminated by the falsely
labeled negative instances. Some instances in DP and DU may have missing values. The PUCs including
our proposed approaches and the past approaches are not applicable to such incomplete datasets. These
issues remain for future work. Moreover, we proposed our PUCs using the nonparametric estimation. The
idea may be extended to discriminative frameworks.
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