Intelligent Data Analysis 12 (2008) 321-338 321
10S Press

Index-CloseMiner: An improved algorithm
for mining frequent closed itemset

Wei Song*, Bingru Yang and Zhangyan Xu

aCollege of Information Engineering, North China University of Technology, Beijing, 100144, China
bSchool of Information Engineering, University of Science and Technology Beijing, Beijing, 100083,
China

“Department of Computer, Guangxi Normal University, Guilin, 541004, China

Abstract. The set of frequent closed itemsets determines exactly the complete set of all frequent itemsets and is usually much
smaller than the latter. This paper proposes an improved algorithm for mining frequent closed itemsets. Firstly, the index
array is proposed, which is used for discovering those items that always appear together. Then, by using bitmap, an algorithm
for computing index array is presented. Thirdly, based on the heuristic information provided by index array, frequent items,
which co-occur together and share the same support, are merged together. Thus, initial generators are calculated. Finally, based
on index array, reduced pre-set and reduced post-set are proposed. It is proved that the reduced pre-set and reduced post-set
not only retain the function of pre-set and post-set, but also have smaller sizes. Therefore, the redundant items in pre-set and
post-set are deleted, thus making it possible to save a lot of work related to inclusion check. The experimental results show that
the proposed algorithm is efficient especially on dense dataset.

Keywords: Data mining, association rule, frequent closed itemset, index array, subsume index

1. Introduction
1.1. Motivation

Frequent Itemset Mining (FIM) is one of the major problems in many data mining applications. It
started as a phase in the discovery of association rules [1], but has been generalized independent of these
to many other patterns. For example, frequent sequences [2], episodes [3], and frequent subgraphs [4].

The problem of FIM can be stated as follows: Let{iy, io, ..., i5/} be a finite set of items and
be a dataset containing transactions, where each transacticeD is a list of distinct itemsg ={i1, i,
i iy €A J < [E]). Let X be ak-itemsetwhereX ={iy, iz, ..., ix } is a set ofk distinct items.

Given ak-itemsetX, let supgX) be itssupport defined as the number of transaction®ithat include

X. Mining all the frequent itemsets fro® requires discovering all the itemsets having a support higher
than (or equal to) a given threshattin_supp This requires browsing the huge search space given by
the power set of.

The FIM problem has been extensively studied in the last years. Several variations to the original
Apriori algorithm [5], as well as completely different approaches, have been proposed [6—9]. Most of the

*Corresponding author. E-mail: sgyzfr@yahoo.com.cn.

1088-467X/08/$17.0@ 2008 — I0S Press and the authors. All rights reserved

322 W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset

well-studied frequent pattern mining algorithms, including Apriori [5], ECLAT [8], and FP-Growth [9],
mine the complete set of frequent itemsets. These algorithms may have good performance when the
support threshold is high and the pattern space is sparse. However, when the support threshold drops low,
the number of frequent itemsets goes up dramatically, the performance of these algorithms deteriorates
quickly because of the generation of a huge number of itemsets. Moreover, the effectiveness of the
mining of the complete set degrades because it generates numerous redundant itemsets.

There are mainly two current solutions to address this problem. The first one is to mine only the
maximal frequent itemsets [10], which are typically orders of magnitude fewer than all frequent itemsets.
While mining maximal sets help understand the long itemsets in dense domains, they lead to a loss of
information; since subset frequency is not available. Thus, maximal sets are not suitable for generating
rules.

The second is to mine only the Frequent Closed Itemsets (FCI) [11]. Closed s&issiessn the
sense that they uniquely determine the set of all frequent itemsets and their exact frequency. At the same
time closed sets can themselves be orders of magnitude smaller than all frequent sets, especially on dense
databases. More importantly, association rules extracted from closed itemsets have been proven to be
more meaningful for analysts, because all redundancies are discarded [12,13]. In this paper, we study
efficient algorithm for mining frequent closed itemsets.

1.2. Related work

In 1999, Pasquier et al. proposed to mine only closed set of frequent itemsets instead of complete
set [11]. They developed an Apriori-based algorithm A-Close that employs breadth-first search to find
FCI. A-Close constructs a generator set to integrate the pruning step to limit the search space. But
A-Close still suffers from redundant scans of datasets and high costs of itemset matching inherent to
breadth-first search. Other “generate-and-test” algorithms include Close [14] and Titanic [15].

Pei et al. proposed the algorithm CLOSET [16] based on FP-Growth. Using a depth-first traversal of
the search space, CLOSET tries to split the extraction context, stored in a global FP-tree, into smaller sub-
contexts and to recursively applies the FCI mining process on these sub-contexts. The mining process
also heavily relies on the search space pruning. This pruning is also based on statistical metrics in
conjunction with introduced heuristics. CLOSET suffers from inefficiency caused by recursive building
of “conditional FP-trees” that consume lots of CPU time and memory. Some improvements or alternatives
of this algorithm were proposed, mainly CLOSET17], Afopt-Close [18] and FP-Close [19], while
respecting its driving idea.

Unlike methods which exploit only the (closed) itemset search space, ChARM [20] uses a vertical
format, and simultaneously explores both the closed itemsets search space and that of transactions thanks
to an introduced data structure called IT-tree (Itemset-Tidset tree). Each node in the IT-tree contains
an FCI candidate and the list of the transactions to which it belongs, i.e., tidset. ChARM explores the
search space in a depth-first manner, without splitting the extraction context into smaller sub-contexts.
However, it generates each time a single candidate. Then, it tries to test whether it is an FCI or not,
using tidset intersections and subsumption checking. In additiomljffisettechnique is used to reduce
the size of the row id lists and the computational complexity. Since different paths can lead to the same
closed itemset, ChARM exploits a hash table to quickly individuate all the already mined closed itemsets
Y that subsumes a given frequent item&et CloseMiner [21] is a variant of ChARM. The main idea
of CloseMiner is to group the complete set of itemsets into non-overlapping clusters and each cluster is
uniquely identified by a closed tidset.

W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset 323

Both LCM [22] and DCI-Closed [23,24] algorithms inherit the use of tidsets adopted in ChARM.
They traverse the search space in a depth-first manner. After discovering ah) @} generate a new
generatoigenby extendingZ with a frequent item), i ¢ Z. Using a total order relation on frequent
items, LCM and DCI-Closed verify ifeninfringes this order by performing tests using only the tidset
of Z and those of the frequent items. dénis not discardedgenis an order-preserving generator of a
new FCI. Then, its closure is computed using the previously mentioned tidsets. These algorithms do not
need to store, in main memory, the set containing the previously mined FCls. The differences between
LCM and DCI-Closed are the strategies for taking closure and the adopted data structures for storing the
extraction context in main memory.

1.3. Our contributions

By introducing the order-preserving property of generators, DCI-Closed [23,24] devises a general and
memory-efficient technique to avoid duplicate generation. It is proved that, for each closed itemset, it is
possible to devise one and only one sequence of order-preserving generators. In order to check whether a
given generator is order-preserving or not, DCI-Closed introduces the definitions of pre-set and post-set.
The sequences of order-preserving generators are obtained by checking whether the tidset of candidate
generators are subsumed by the tidsets of items in pre-set and post-set. However, there are redundant
elements in both pre-set and post-set, especially when the datasets contain a large number of items. Thus,
these checking operations are time-consuming sometimes.

To solve the above problems, we propose an improved algorithm Index-CloseMiner for frequent closed
itemset mining. The contributions of this paper are listed as follows:

1. Theindex arrayis proposed, which is used for discovering those itemsets that always co-occur
together. Then, by using bitmap, an algorithm for computing index array is presented.

2. Based on index array, we can identify some closed itemsets directly. These closed itemsets are
used as initial order-preserving generators in our Index-ClosedMiner algorithm.

3. Based on index array, reduced pre-set and reduced post-set are proposed. It is proved that the
reduced pre-set and reduced post-set retain the function of original ones used in DCI-Closed. Thus,
the redundant operations on duplication checks are avoided greatly.

The experimental results show that the proposed algorithm is efficient especially on dense dataset.

The remaining of the paper is organized as follows. In Section 2, we briefly revisit the problem
definition of frequent closed itemset mining. In Section 3, we present the definition of index array
and the corresponding algorithm for generating index array. In Section 4, we devise algorithm Index-
CloseMiner by exploiting the heuristic information provided by index array. A thorough performance
study of Index-CloseMiner in comparison with several recently developed efficient algorithms is reported
in Section 5. We conclude this study in Section 6.

2. Problem statement

LetT andX,T C DandX CI, be subsets of all the transactions and items appeardgéspectively.
The concept of closed itemset is based on the two following functipasdg:

f()y={ieINteT,ict}
g(X)={te DVie X,i et}

324 W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset

TID Items
LEBCDEF
LEG
BCEF
EBCDF
BCEF

L N S

Fig. 1. The example database.

Function f associates witl’ the items common to all objectse T and g associates withX the
objects related to all itemise X.

Definition 1. An itemsetX is said to be closed if and only if

o(X) = f(9(X)) = fog(X) =X

where the composite function= f o g is called the Galois operator or closure operator. A closed
itemsetX is frequent if its support is lager or equal to the given support threshwdupp

The closure operator defines a set of equivalence classes over the lattice of frequent itemsets: Two
itemsets belong to the same equivalence class if and only if they have the same closure, i.e., they are
supported by the same set of transactions. We can also show that an ibénsselosed if and only
if no supersets oX with the same support exist. Therefore, mining the maximal elements of all the
equivalence classes corresponds to mine all the closed itemsets.

An example database is given in Fig. 1. For convenience, we write an it¢rhsBt C'} asABC and a
set of transaction identifie2,4,5} as245. In the example databasg14) = f(1)N f(4) =ABCDEmM
ABCDF=ABCDF, andg(BCF)=¢(B) N g(C) N g(F) = 13451134511345=1345. Since:(BCF)=f o
g(BCF)=f(1345=BCF, BCFis a closed itemset.

3. Generation of index array

To reduce the search space as well as the sizes of pre-set and post-set, we introduce the definition of
index array.

Definition 2. Anindex arrayis an array with size:1, wherem1 is the number of frequent 1-itemset. Each
element of the array corresponds to a tuilenf subsumg whereitemis an item subsumétem)={; <

l|7 #itemAg(itemC ¢(j)}. For each element of index array, we dédim the representative itefrand
subsum@tem) the subsume index

Thesubsume indeaf itemis an itemset, whose meaning igjiEsubsumégitem), the tidset oftemis
the subset of the tidset gf For example, in the example dataset (shown in Fig. 1), the subsume index
of D is ABCF. By using subsume index, those itemsets co-occur together and share the same support,
can be merged together.

The pseudocode for generating index array is shown in Algorithm 1.

In Algorithm 1, the databasP is first scanned once to determine the frequent single items (Step
1). In Step 2, frequent items are sorted in certain order (for example, lexicographic order), and the
sorted frequent items are assigned to the elements of index array as representative items one by one
(Steps 3—4). In Step 5, the bitmap representation of datdbaseéuilt. That is, for a transactiof, if

W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset 325

Algorithm 1 Generating mndes array

Inpat: dataser £, siie_supg

Dwipui: mdex array

|: %can dsinhase O once, [Delete infrequent iems;

2 R00 I'hw.r.'llt hil'ly & cing in certain onder as [Y O
3: for each element index]y] of index array do

4 Indey [/ dtem=ag;

5 Represent the database I with bitimap

fe: for each element index]y] anindex amay dio

T it [seafreiremis e

& cand iy ﬂ P

G Stare the item corresponding o the ™ position in eandidate o dndex)], sefame (exchading
foicex []. iren), i the value of the ™ Bt in candidate is set;

10 Tor each item § in dncdex]f|sabcrme do

11: il s inedey [F).feeme sl () then

12: dedete fmader K] with drclex [, iremwm=i;

13: emd for

1< Wribe Ohut the index arrmy;

1-frequent itemsetis contained by’, then the bit corresponding ion T" will be set. The index array is
calculated by the main loop (Steps 6—13). New candidate of subsume index is formed by intersecting all
transactions containing itemdeX j].item (Steps 7-8). Then the subsume index is obtained according

to Definition 2 (Step 9). Next, the heuristic information, provided by supports of a frequent @ewh

items insubsumg), is used for pruning (Steps 10-12). This operation can avoid the generation of
duplicate initial generators (See Section 4.1). The correctness of this pruning strategy is confirmed by
the following Theorem 1.

Theorem 1. If item j esubsum@) andsupf:)=supgj), theniUsubsum@) = jUsubsumej).

Proof. Sincej esubsumg), according to Definition 2, we know thati) C g(j). Furthermore, since
suppti)=suppj), we havelg(i)| = |g(j)|. Thus,g(i) = g(j).

ForVz € iUsubsum@), there are two cases:

1. if x = i, we haveg(z) = g(i) = g(j), sog(j) C g(x). Thatis to sayr esubsumg) C
jUsubsume).

2. if z esubsume), according to Definition 2, we know thag{i) C g(z). Sinceg(i) = g(j), we
haveg(j) C g(x). Thatis to sayr esubsumgj) C jUsubsumgj).

According to the discussions of 1) and 2), we haveubsumg@) C jUusubsumg).
Similarly, we can also prove that/'subsumgj) C iUsubsumeg).
Thus, we havéUusubsum@) = jusubsumé)).

Example 1. We use the example database in Fig. 1 to illustrate the basic idea of Algorithm 1.
Suppose the support threshatdn_suppis 2, after the first scan of database, infrequent itgéns
deleted. Then the scanned database is represented by bitmap (shown in Fig. 2).

326 W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset

A B C D E F
1 1 1 1 1 1 1
2 1 0 0 0 1 0
3 0 1 1 0 1 1
4 1 1 1 1 0 1
5 0 1 1 0 1 1

Fig. 2. Bitmap representation of example database.

Then the subsume indices of each frequent 1l-itemset are computed one by one. Takedtem

examplecandidate= (| t=1N4=11111111110%111101, where 1 and 4 are tids. There are five 1
teg(D)

in candidate since the fourth bit correspondsfoitself, the items, corresponds the first, the second, the
third and the sixth bit, constitute the subsume indeXotthat iSABCF. This means that transactions,
which support itemD, also support itemsl, B, C', andF'. We can iterate this process similarly, and
finally the index array is4, 0), (B, CF), (D, ABCP, (E, #). Note that, since item&' esubsumgB),
F esubsum@B), andsupf B)=supgC)=supgF'), we delete elements of index array withand F' as
representative items.

4, Thelndex-CloseMiner algorithm

The goal of an effective browsing strategy should be to identify exactly a single itemset for each
equivalence class. We could in fact mine all the closed itemsets by computing the closure of just
this single representative itemset for each equivalence class, without generating any duplicate. The
representative itemsets are usually calledexrserators

The advantages of DCI-Closed algorithminclude: 1) It does not need to mine closed itemsets according
to a “strict” lexicographic order and to keep previously mined closed itemsets in the main memory to
perform duplicate checks. 2) It permits subdividing the search space and produce completely independent
sub-problems, which can be solved in whatever order and, thus, also in parallel. These benefits are
achieved according to the following definitions and theorems.

Definition 3. [23,24]. A generator of the forrX = Y U i, whereY is a closed itemset and¢ Y, is
said to be order-preserving if and only if eith€X') = X ori < (¢(X)\X).

Given any total order relatioR defined among items, hereinafter we will always consider an itemset
as arnordered setand denote with symbol” the order between two ordered itemsets.

Theorem 2 [23,24]. For each closed itemsgt # c({)), there exists a sequencemftemsiy < i; <
... <ip_1,n > 1, such that

<gemy, gen,...,gen,_1 >=<YygUig, Y1 Ui1,..., Y1 Utp_1 >

where the variouglen are order-preserving generators, with = ¢(0),Vj € [0,n — 1],Y;11 =
c(Y; Uij), andY,, =Y.

Note that the closed itemsef()) contains, if any, the items that occur in all the transactions of the
databas®. If no such items exist, ther{(()) = 0.

Corollary 1[23,24]. For each closed itemsBt=# c({)), the sequence of order-preserving generators of
Theorem 2 is unique.

W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset 327

In order to exploit the results of Theorem 2, DCI-Closed introduce the definitions pre-set and post-set
to check whether a given generator is order-preserving or not.

Definition 4. [23,24]. Given a generator of the forgen=Y Ui, whereY” is a closed itemset and? Y,
pre-set(gen is defined as follows:

pre — set(gen) = {j € I|j ¢ gen N j < i}

Theorem 3. [23,24]. Letgen=Y U ¢ be a generator, wher¥ is a closed itemset and ¢ Y. If
35 epre-setgen) such thay(genC ¢(j), thengenis not order-preserving.

Definition 5. [23,24]. Given a generator of the forgersY U i, whereY is a closed itemset andY’,
post-set(gen is defined as follows:??

post — set(gen) ={j € I|j ¢ gen Ni < j}

As we can see from the above definitions and theorems, the sequences of order-preserving generators
are obtained by checking whether the tidsets of candidate generators are subsumed by the tidsets of
items in pre-set and post-set. However, there are a lot of redundant elements in both pre-set and post-set
especially when the datasets contain a large number of items. Therefore these checking operations are
time-consuming sometimes. The aim of our algorithm is to reduce these redundant operations as greatly
as possible.

4.1. Initial generators

In DCI-Closed algorithm, every order-preserving sequence starts (fm In most cases of real-
world datasetsg(()) = (), thus every frequent 1-itemset will be used as candidate generator. By using
the following Theorem 4, Index-CloseMiner reduced the number of initial generators greatly. That is
because only closed itemsets are used as the initial generators.

Theorem 4. Let X be an itemsetX UsubsumgX) is a closed itemset, arstipg X UsubsumgéX))=supp
(X).

Proof. According to Definition 2, forVi esubsumgX), we haveg(X) C g(i). Thus,
g(XUsubsumeX))=¢g(X) N g(subsumeX))=¢g(X). So supgXusubsumeX))=supgX). Assume
that XUsubsumgX) is not a closed itemset, according to the Definition 1, there at least exists
an itemsetY, such thatXUsubsumgX) C Y and supgXUsubsumeX))=supp(Y’), so we have
g(XUsubsumg€X))=¢(Y). Thus, there at least exists a 1-itemset Y A i ¢ XUsubsumgX), such
thatg(X) = g(XUsubsume€X))=¢(Y) C g(i). According to Definition 2; esubsumgX). This is in
contradiction with the former hypothesis. Thu§,subsumgX) is a closed itemset.

Note that, in Algorithm 1, we use Theorem 1 to prune elements in index array. The reason is this
operation can avoid the generation of duplicate initial generators.

328 W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset
4.2. The reduced pre-set and reduced post-set

In DCI-Closed algorithm, the sequences of order-preserving generators are obtained by checking
whether the tidset of candidate generators are subsumed by the tidsets of items in pre-set and post-set.
However, there are a lot of redundant elements in both pre-set and post-set especially when the datasets
contain a large number of items. Therefore these checking operations are time-consuming sometimes.
To reduce the sizes of pre-set and post-set, avoid redundant operations on checking tidset inclusion, we
propose the following reduced pre-set and reduced post-set.

Definition 5. Given a generator of the forgen= Y U i, whereY is a closed itemset and¢ Y, the
reduced pre-set is defined as followse-sek(gen={i|i cpre-setgenA # j cpre-setgen), such that
j €subsume@)}.

Definition 6. Given a generator of the forgen= Y U i, whereY is a closed itemset and¢ Y, the
reduced post-set is defined as follovpmist-sef,(gen={i|i cpost-sefgen A A j cpre-sek(ger), such
thatj esubsumé)}.

We can replace the pre-set and post-set of DCI-Closed algorithm with proposed reduced pre-set and
reduced post-set, because we have the following theorems.

Theorem 5. Under the framework of Index-CloseMiner, for a generagen its reduced pre-sepfe-
setz(gen) retains the function of its original pre-seiré-sefgen)).
Proof. Under the framework of Index-CloseMiner, for ahypre-sefgen), it is only used to check
whether the candidate generagienis order-preserving or not, i.e., whethggenC ¢(i) holds or not.
1) if 3i epre-sefgen), such thay(gen< g(), then

1. if i epre-sek(gen), according to Definition Spre-setz(gen Cpre-sefgen, soi € pre-sefgen. In
this casepre-sez(gen retains the function gbre-sefgen.

2. if i epre-sefgen)\ pre-sek(gern), according to Definition 5,35 €pre-sefger), such that
j €subsume), i.e., g(genC g(i) C g(y). If j epre-sek(gen, thenpre-sek(gen retains the
function of pre-sefgen); else;j cpre-sefgen)\ pre-seiz(gen, according to Definition 535, €pre-
se(gen), such thay; esubsumég), i.e.,g(genN< g(i) C g(j) < g(j1). We can iterate the process
until j, epre-sek(gen is found. In this casgyre-seiz(gen retains the function gbre-sefgen).

2) If there exists na cpre-sefgen), such thaty(genC g¢(i), then sincere-setz(genCpre-sefgen),
there also exists no such iteirin pre-sez(gen. In this casepre-sek(gen retains the function of

pre-sefgen.

Theorem 6. Under the framework of Index-CloseMiner, for ageneragen its reduced post-sepst-
setz(gen) retains the function of its original post-s@iost-sefgen)).

Proof. Under the framework of Index-CloseMiner, for angpost-sefgen), it is mainly used to check
whethergerui is an order-preserving generator that can be used to calculate FCI.

1. For anyi epost-sefgen), such thagerui is an order-preserving generator. It means that we can
at least get a closed itemset by expandjegui. According to Theorem 3 j cpre-setz(gerui),
suchthay(gerui) C g(j). Based on Definition 5 and Definition 6, we know thatpost-sek(gen.
Thatis order-preserving generagmrJ: can also be obtained by usipgst-sek(gen. In this case,
post-sek(gen retains the function gbost-se(gen.

W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset 329

2. For anyi €post-sefgen), such thagenJi is not an order-preserving generator. It means that we
can not get any closed itemset by expandiegui. According to Theorem 3, there at least exits
an itemyj epre-sek(gen), such thaty(genJi) C g(j). Based on Definition 5 and Definition 6,
we know that such item ¢post-sek(ger). Thus, the redundant operation on expanajagby 1,
as well as the check on whethglgenJi) is included in tidsets of items ipre-setz(genJi), are
avoided. In this casgost-sek(gen retains the function gbost-se{gen.

From the above definitions and theorems, it can be found that the reduced pre-set and post-set not only
retain the functions of original pre-set and post-set, but also have smaller sizes. Thus, the redundant
subset checks of tidsets between candidate generators and items in pre-set and post-set are reduced to
great extents, especially for datasets with lots of items.

4.3. The Index-CloseMiner algorithm

After the above processing, we give the following Index-CloseMiner algorithm.

In Algorithm 2, if order-preserving, closed itemsets, composed of representative item and its subsume
index, are output one by one (Steps 2—4). According to Definition 6, reduced post-set is calculated in
Step 5. lteration call is only executed when the support of closed itemset is higher than the support
thresholdmin.supp (Steps 6-7). This is because we have the following Theorem 7. According to
Definition 5, reduced pre-set is calculated in Step 8. For procediosed according to certain order,
the “minimal” item in reduced post-set, as well as its subsume index, are merged with the current closed
itemset to form new generator (Steps 12-14). If the new generator is frequent and order-preserving, it
is used as candidate closed itemset (Steps 15-16). The new reduced post-set is initialized in Step 17.
Then, items in reduced post-set are processed one by one (Steps 18-22). For certaiin ieaced
post-set, there are two possible cases: 1)addew closed itemset (Steps 19-20); 2) determine whether
add+ to reduced post-set or not (Steps 21-22). In Step 23, new closed itemset as well as its support
are output. Similar to Step 5 and Step 6, iteration call is only executed when the support of closed
itemset is higher than the support thresholid_supp(Steps 24—-25). According to Definition 5, reduced
pre-set is calculated in Step 26. Functismlupis used to check whether the candidate new generator is
order-preserving or not (Steps 29-33).

Theorem 7. Let X be a closed itemset wittupg X)=min_supp then there exists no iteing X A i €1,
such thatX Ui is frequent closed itemset.

Proof. We prove the theorem by contradiction. Sinces monotonous decreasing, akdc X U 4,
we haveg(X Ui) C g(X), i.e.,supX U) <supfX). AssumesupgX U i)= supd X), this means
there exits a superset &f with the same support. It is in contradiction with the hypothesis #hid a
closed itemset. ThusupgX U i) <supgX)= min_supp.ThenX U i is not frequent.

Theorem 8 (Soundness). Index-CloseMiner enumerates all frequent closed itemsets.

Proof. Index-CloseMiner correctly identifies all and only the closed itemsets, since it improves
DCI-Closed algorithm in the following three aspects:

Firstly, by exploiting the heuristic information provided by subsume index, only closed itemsets are
used as initial order-preserving generators, thus, the number of initial generators are reduced greatly,
especially when the datasets contain alarge number of items. The new generators, obtained by using index
array, will not change the function of DCI-Closed, because of the proof of Theorem 1 and Theorem 4.

Secondly, only reduced pre-set and reduced post-set are used in Index-CloseMiner rather than original
ones used in DCI-Closed. Not only the sizes of reduced pre-set and reduced post-set are smaller than

330 W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset

Aldgorithm 2 In.:l.::-:-ll_'l-::n.-.-,:h.-1i11-e.:r;l'IEnrilhrn
Imput: Index armay after the processing of Algorithm |

Crutpat: All the frequent closed itemsels

for all imalex]y] in énaexd | do

I:
2 new olosure = dnced{] vesr dmded] safrume
3

: il = is dupinew closume, pre-sei) themn
4 Wirine Ul new_chosane and 108 support;
5 Lalculme poct-5ely
L W sppinew clesurel=ni s thien
T Closedinew ¢losure, pre-sely, posi-setg
& Calculate pre-sety;
9 end far

1k procedune Closediclosed s, pre-selg, posi=sely)
11: whille postssetg 207 do

127 = mim_ | pOsi=5Eip);

13: posl-selg +— past-selg

14: new_pers—closed sep @ tsmbsmmea{i];

15: Wiappinew gempzmin supp) and —is dupinew gen, pre-ssig) thien
16 chosed set e, new_pgen;

17 TS i i —]

18: for cach item § in posi=sely do

1% IF pimew gen) o) then

20k closed _set . i=closed sef .05

21: s

22 deperining wisdher adkd F 10 podl-Stpsye, 8e00rdimg 1o Dicfimitien 62
23 Wirbte Dt closed set ., and s suppo;

24 IF spreclosed sef p,) = maim supp then

23: Closed (closed sety.., pre-selg, posi-5eipuee b

M Calculate pre-setg;

27 emdif

28 end whille

2% Mametction 13_dup (new_pen, pre-selp) Muplicale check

bk For each ieem o pre-sety da

31 if ginew penhc gif) them

32 retuwrn TRUE;

33 meturm FALSE

the counter ones, but also they retain the function of original pre-set and post-set used in DCI-Closed,
which is confirmed by Theorem 5 and Theorem 6.

Thirdly, the iteration call is only executed when the support of closed itemset is higher than the support
thresholdmin_supp The correctness of this operation is confirmed by Theorem 7.

According to the above discussions, it can be found that Index-CloseMiner retains the function of

W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset 331

[Input: Dataset, min_supp J

v

Delete infrequent items; build bitmap

representation

v

Calculate index array; use Theorem 1 to

prune redundant elements

Is index array empty

Select an element i from index array

Is itisubsume(i) order-preserving

FCI < it isubsume(i)

v

Calculate reduced post-set

v

Call procedure Closed recursively

v

Calculate reduced pre-set

Output FCI

Fig. 3. The flow of information during the entire Index-CloseMiner process.

DCI-Closed. Since DCI-Closed is correct for mining FCI, Index-CloseMiner correctly identifies all and

only the closed itemsets.
The flow of information during the entire process is shown in Fig. 3.

4.4, Comparison between Index-CloseMiner and DCI-Closed

Compared with DCI-Closed algorithm in [23,24], the advantages of Index-CloseMiner are listed as
follows:

332 W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset

1. By using the heuristic information provided by subsume index, only closed itemsets are used as
initial generators. Thus, the number of initial generators is reduced greatly especially for dense
datasets. However, for DCI-Closed algorithm whéf) = (), every item will be used as initial
candidate generator. Thus, the search space is reduced greatly.

2. Only reduced pre-set and reduced post-set are used in Index-CloseMiner rather than original ones
used in DCI-Closed. The sizes of reduced pre-set and post-set are smaller than original ones. It is
also proved that the reduced pre-set and reduced post-set retain the function of original pre-set and
original post-set. Thus, the redundant subset checks of tidsets between candidate generators and
items in pre-set and post-set are reduced to great extent.

3. For Index-CloseMiner algorithm, the iteration call is only executed when the support of closed
itemset is higher than the support threshwiici_supp So the times of iterations are reduced also.

Definition 7. Suppose there are totally post-sets throughout the execution of Index-CloseMiner, we
defineSizeSum), |post — set;|.

SizeSunis the sum of cardinality of all the post-sets generated during the execution of Index-
CloseMiner. To validate there are redundant elements in post-set, we will comp&sezd&unof
post-set withSizeSunof reduced post-set in Section 5.3.

Example 2. We illustrate the basic idea of Index-CloseMiner via example database shown in Fig. 1.

FCI A is output at first. Call procedui€losed pre-sef;, = (), post-set = {B, D, E}, SizeSum3.
Then A is expanded by3 andC', F' in subsum@&3). Since generatoABCF is order-preserving and
frequent, it is examined that(ABCRHC ¢(D), andg(ABCHC ¢(E). Soc¢(ABCH=ABCFD, output
ABCFD and its support. The iteration will not be called sirmgpE{ABCFD= 2=minsupp Then
post-set={ £'}, SizeSum 3 + 1 = 4. GeneratoAE is order-preserving, meanwhile the postssét
empty, so output FCAE and its support.

Return to the main procedure from proced@msed Merge initial generatol3 and C, F' in
subsum@B). pre-set, ={ A}, post-set ={ E'}, SizeSum4+1=5. According to Definition 6 will not
be included in post-sgt Since the tidset dCFis not included in that oF in reduced post-set, output
FCI BCF and its support. Call procedu€dosed GeneratoBCFE s order-preserving, meanwhile the
reduced post-set is empty, so output BGFEand its support.

Return to the main procedure from procedGitesed SinceA is in pre-sef, andg(D) C g(A), D is
ignored.

Return to the main procedure from procedGtesed Output FCIE and its support. Call procedure
Closed pre-sei; ={ A, B}, post-set = (). Since there is not any item in reduced post-set, this iteration
ends the algorithm.

Figure 4 shows comparisons between Index-CloseMiner and DCI-Closed over the example database
shown in Fig. 1. Note that the FCI @fcan be dealt separately by Index-CloseMiner.

5. Performanceevaluation

5.1. Test environment and datasets

We chose several real and synthetic datasets for testing the performance of Index-CloseMiner. All
datasets are taken from the FIMI repository page http:/fimi.cs.helsinki.fi. The Chess and Connect

W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset 333

Table 1
Characteristics of datasets used for experiment evaluations
Datasets #Items #Records Avg. length
Chess 75 3,196 37
Connect 129 65,557 43
Mushroom 119 8,124 23
Pumsb 2113 49,046 74
Pumsb* 2088 49,046 50.5
T1014D100K 870 100,000 11
T40110D100K 942 100,000 40.5
.ful'\-l1|-l'l‘ 1
TR
I
ABCLF
| T e
o - ‘
2
AT AE & | o G | por
I| I =1
VA =
) 1 |
KFE?) & B =] ol E" Ei

ﬂ'-|':_' .

A ' P~ E

(a) Index-CloseMiner (b) DCI-Closed

Fig. 4. Index-CloseMiner verses DCI-Closed over the example database.

datasets are derived from their respective game steps. The Mushroom dataset contains characteristics of
various species of mushrooms. While the Pumsb dataset contain census data. Pumsb* is the same as
Pumsb without items with 80% or more support. Typically, these real datasets are very dense, i.e., they
produce many long frequent itemsets even for very high values of support. We also chose a few synthetic
datasets, which have been used as benchmarks for testing previous association mining algorithms. These
datasets mimic the transactions in a retailing environment. Usually the synthetic datasets are sparse when
compared to the real sets. Table 1 shows the characteristics of these datasets. The experiments were
conducted on a Windows XP PC equipped with a 2.8 GHz Pentium IV and 512MB of RAM memory.

5.2. Performance comparisons

We compared the performances of Index-CloseMiner with DCI-Closed [23,24] and other two well-
known state-of-the-art algorithms Afopt-Close [18] and FP-Close [19]. DCI-Closed, Afopt-Close and
FP-Close are publicly available from the FIMI repository page http://fimi.cs.helsinki.fi. In this sets of
experiments we confirmed the conclusion made at the FIMI 2003 workshop [25], that there are no clear
winners with all databases. Indeed, algorithms that were shown to be winners with some databases were

334 W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset

T1HEL100R TA0iHOD1C0K
(] -""L'I.:II'J'..I&E] B - Afopbacloss ' 3
i FP_I_L;E: " { X - FR-diose .
LCH _..n? i i - [e
a - Inces-Lnsehine L # 4 |- 8 - Indes=Clesahiinen i
1 | | |
10 & [&
& - -
i . . i
i ! = Fi
L -
2 ! S Gl e
= - &= i
S om =
|]
H
e L]
B —— -8 =
Y &
i
T T 1 L 1 - 1 ' Bl ' - ' 1
L% 0Lk R 0 { JrH] e 14 a3 16 o4 1B
Supp % SUpD %
(a) T1014D 100K (b) T40110D100K

Fig. 5. Execution times on sparse datasets.

not the winners with others. Some algorithms quickly lose their lead once the support level becomes
smaller. The recent survey on frequent closed itemsets algorithms also validates this claim [26].

All of the figures use total running time as the performance metric. Because all of the datasets are
relatively small (the largest dataset is only 20MB), the time to load and prepare the data is negligible
and, therefore, the total running time reflects the algorithmic performance only.

Figure 5 shows the results of comparing Index-CloseMiner with Afopt-Close, FP-Close and DCI-
Closed on sparse data.

On T10I14D100K, Index-CloseMiner demonstrates the best performance of the four algorithms for
higher supports. However, when support is lower than 0.06%, FP-Close passes Index-CloseMiner in
performance to become the fastest algorithm. This is due to FP-Close profits from using an array-based
technique to avoid traversing previously built FP-trees to construct the respective header tables of the
new entries. And itis also interest to see that DCI-Closed always a bit faster than Index-CloseMiner. The
main reason is that DCI-Closed uses a heuristic allowing to assess whether the dataset is dense or sparse.
Using this information — the nature of the dataset — DCI-Closed launches a slightly modified version
of the level-wise sweeping kDCI algorithm [27] in the case of a sparse dataset. Although it does not
always work [26], this heuristic does always improve the performance of DCI-Closed on sparse datasets.
Meanwhile, on this sparse dataset, of the highly increased number of frequent itemsets, few items appear
together. Thus, the effect of using index array is not evident. The cost of generating index array leads to
this lower speed of Index-CloseMiner. On T40110D100K, Index-CloseMiner always demonstrates the
best performance when support is lower than 1%.

The dense datasets in Fig. 6 support the idea that Index-CloseMiner runs the fastest on longer itemsets.
For most supports on the dense datasets, Index-CloseMiner has the best performance. Index-CloseMiner
runs around five to eight times faster than Afopt-Close on Connect, Pumsb, and Pumsb* and over five to
10 times faster on Chess. Index-CloseMiner outperforms FP-Close and DCI-Closed in most cases, but
not all cases. In fact, as mentioned in [26], there is no outstanding algorithm to be qualified as the best

W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset 335
L
o]
o J| - @ - Afopdacioss a3 —
I - » - FP-dloss wa - . :lFi'l:J'-f-t-*ﬁ
W = & - Db ES -l g
W - & - el oss W e i L
| — i i = @ - Indas-Closehine) M
1o n 1040
" a -
> . =
194 - [- =
-
| = i - —
L ; ; ; ; ; feiep——" ; ; i :
' . 1) . m 18 ™ < 1y L] 3 H i]
Eapp %1 Supp s
(a) Chess (b) Connect
P
Purmsh®
1R 1 & - djophdose it o [-1 e
1 |- & - FP-close a - FPochoss
& - OCkolosad Lol B o
O - I -Chosai ind] a - e = o ey - P
&
1 n 100 N
. i '] &
a - & -
@ 5 &
E ' £ #
= " (S -
L] & &
nd i i
'Y
'Ir\- hI." r\.: 1 'll'l 'lll Jl'l JII] 1. 1I|_ |I_' m [] :. :. :
Eamp %) Eupp (%
(c) Pumsb (d) Pumsb*

Fig. 6. Execution times on dense datasets.

for all datasets or at least for a given dataset type, i.e., dense or sparse. Moreover, in general, for a given
dataset, there is no best algorithm forraih_suppvalues. Indeed, algorithm performances closely rely
onmin_suppvalues. A change in thmin_suppvalue can lead to different information to be treated by

the algorithm and so, an optimization or a heuristic that performs better for amivesuppvalue can

slow down performances due to this change.

5.3. The effect of reduced pre-set and reduced post-set

To validate there are redundant elements in both pre-set and post-set, we compare the number of
elements in pre-set and post-set with the number of elements in counter reduced ones. From Algorithm
2, we can seethat elements in pre-set are added gradually, and can be used throughout the whole execution
process, so we can compare the cardinality of pre-set and that of reduced pre-set directly. While elements

336 W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset

(a) Chess (b) Connect (c) Mushroom

Fig. 7. Comparisons of thBizeSunof post-set with th&izeSunef reduced post-set.

in post-set change dynamically with different closed itemsets, hence we add the size of post-set when a
new post-set is constructed, thaSigeSundefined in Definition 7.

Figure 7 shows the results of comparing 8ireSunof post-set with th&izeSunof reduced post-set
on Chess, Connect and Mushroom datasets. We can see from Fig. 7 tBeetBanof reduced post-set
can be much smaller than tBé&zeSunof post-set. For the support values we look at here, approximately
we can get reductions in the cardinality with a factor of 2. That is nearly half of the elements in post-sets
are redundant. And these redundant elements can be avoided in the proposed reduced post-set.

Figure 8 shows the results of comparing the size of pre-set with the size of reduced pre-set on Chess,
Connect and Mushroom datasets. For Chess dataset, the reduced pre-set represents a reduction by a
factor of 2 approximately of the items. On Connect dataset, reduced pre-set reduces the number of items
by a factor varying from 2.8 to 4.5. On Mushroom dataset, we can get reductions ratio in the cardinality
upto a factor of 110. It is interesting to see that there is only one element in the reduced pre-set. This
is because the item occurs in all the transactions of Mushroom dataset. Thus, according to Definition 5,
only this single item is enough for consisting the reduced pre-set.

6. Conclusion

In this paper, we have investigated the problem of efficiency in mining frequent closed itemsets from
transactional datasets, and proposed an improved algorithm based on DCI-Closed. Index array, which
is used for discovering those itemsets that always appear together, is introduced. Then, frequent items,
which co-occur and share the same support, are merged together. Only closed itemsets are used as
initial generators according to heuristic information provided by index array. Thus, the search space is
reduced greatly. Based on index array, reduced pre-set and reduced post-set are proposed. It is proved
that the reduced pre-set and reduced post-set retain the function of original pre-set and original post-set.

W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset 337

[Beai =] ¥-Frad i ¥ -Prass
. Feduoat prasse . {10 - PR p " £ - Pt pe-sd ="
] — = W "
’ 1]]]
i ' .| L]
i = i g B
: Al | []
i | ! :
_E ; = = =" ' E +
3 - .; N] E
g M L I =
= L] | "
3 . ¥ ad Ig
i . K|
3 W A |
LS [
(a) Chess (b) Connect (c) Mushroom

Fig. 8. Comparisons of the size of pre-set with the size of reduced pre-set.

Thus, the redundant tidset-inclusion checks are avoided greatly. The experimental results show that the
proposed algorithm is efficient especially on dense dataset.

Acknowledgements

The authors are indebted to the anonymous reviewers for their helpful comments and suggestions. This
work is supported by the National Natural Science Foundation of China (60675030), by Funding Project
for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction
of Beijing Municipality, and by Key Youth Research Project of North China University of Technology.

References

[1] R.Agrawal, T. Imielinski and A. Swami, Mining associations between sets of items in massive databBseseéudings
of the 1993 ACM SIGMOD International Conference on Management of (38@&MOD’93, 1993.

[2] P.A.Laur, J.E. Symphor, R. Nock and P. Poncelet, Statistical supports for mining sequential patterns and improving the
incremental update process on data stredmtslligent Data Analysid1 (2007), 29-47.

[3] H. Mannila, H. Toivonen and A.l. Verkamo, Discovery of frequent episodes in event sequ@etasMining and
Knowledge Discover§ (1997), 259—-289.

[4] A.Inokuchi, T. Washio and H. Motoda, Complete mining of frequent patterns from graphs: mining grapMdettine
Learning50 (2003), 321-354.

[5] R. Agrawal and R. Srikant, Fast algorithms for mining association rulesPhoceedings of the 20th International
Conference on Very Large Data Bag®4.DB’94), 1994.

[6] F.Bodon, I.N. Kouris, C.H. Makris and A.K. Tsakalidis, Automatic discovery of locally frequent itemsets in the presence
of highly frequent itemsetdntelligent Data Analysi® (2005), 83-104.

[7] Y.Liand M. Kubat, Searching for high-support itemsets in itemset tieésligent Data Analysid0 (2006), 105-120.

[8] M.J. zaki, Scalable algorithms for association minilBEE Transactions on Knowledge and Data Engineerii2y
(2000), 372-390.

338

(9]
[10]
[11]

[12]
[13]

[14]
[15]
[16]

[17]

[18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]

[27]

W. Song et al. / Index-CloseMiner: An improved algorithm for mining frequent closed itemset

J.Han, J. Pei, Y. Yinand R. Mao, Mining frequent patterns without candidate generation: afrequent-pattern tree approach,
Data Mining and Knowledge Discove8/(2004), 53-87.

K. Srikumar and B. Bhasker, Efficiently mining maximal frequent sets in dense databases for discovering association
rules,Intelligent Data Analysi8 (2004), 171-182.

N. Pasquier, Y. Bastide, R. Taouil and L. Lakhal, Discovering frequent closed itemsets for association rBles.dad-

ings of the 7th International Conference on Database Th¢@pT'99), 1999.

M. J. Zaki, Mining non-redundant association rulBsta Mining and Knowledge Discove8/(2004), 223-248.

N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and Lotfi Lakhal, Generating a condensed representation for association
rules,Journal of Intelligent Information Systerfi (2005), 29—60.

N. Pasquier, Y. Bastide, R. Taouil and L. Lakhal, Efficient mining of association rules using closed itemset lattices,
Information System®4 (1999), 25—-46.

G. Stumme, R. Taouil, Y. Bastide, N. Pasquier and L. Lakhal, Computing iceberg concept lattices with TIDdC,

& Knowledge Engineering2 (2002), 189-222.

J. Pei, J. Han and R. Mao, CLOSET: An efficient algorithm for mining frequent closed itemsd®spaeedings of 2000

ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Dis¢bMKD’00), 2000.

J. Y. Wang, J. Han and J. Pei, CLOSET+: searching for the best strategies for mining frequent closed itemsets, In
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data (WDID®3),

2003.

G.M. Liu, H.J. Lu, W.W. Lou, Y.B. Xu and J.X. Yu, Efficient mining of frequent patterns using ascending frequency
ordered prefix-treeData Mining and Knowledge Discove®(2004), 249-274.

G. Grahne and J. Zhu, Efficiently using prefix-trees in mining frequent itemset&rateedings of the ICDM 2003
Workshop on Frequent Itemset Mining Implementati@is’'03), 2003.

M.J. Zaki and C.J. Hsiao, CHARM: an efficient algorithm for closed itemset miningioceedings of the Second SIAM
International Conference on Data MinilGDM’02), 2002.

N.G. Singh, S.R. Singh, A.K. Mahanta and B. Prasad, An algorithm for discovering the frequent closed itemsets in a
large databasdpurnal of Experimental and Theoretical Artificial Intelligent®(2006), 481-499.

T. Uno, T. Asai, Y. Uchida and H. Arimura, An efficient algorithm for enumerating closed patterns in transaction
databases, inProceedings of the 7th International Conference on Discovery Sci@®2004, 2004.

C. Lucchese, S. Orlando and R. Perego, Msed: a fast and memory efficient algorithm to mine frequent closed
itemsets, IrProceedings of the ICDM 2004 Workshop on Frequent Itemset Mining Implementgidigd4), 2004.

C. Lucchese, S. Orlando and R. Perego, Fast and memory efficient mining of frequent closed itEEEelsansaction

on Knowledge and Data Engineeridg (2006), 21-36.

B. Goethals and M.J. Zaki, Advances in Frequent Itemset Mining Implementations Introduction to FIMPA8¢cérdings

of the ICDM 2003 Workshop on Frequent Itemset Mining Implementafiihi’03), 2003.

S.B. Yahia, T. Hamrouni and E.M. Nguifo, Frequent closed itemset based algorithms: a thorough structural and analytical
survey,SIGKDD Explorations3 (2006), 93—-104.

S. Orlando, C. Lucchese, P. Palmerini, R. Perego and F. Silvestri, KDCI: a multi-strategy algorithm for mining frequent
sets, InProceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementé&idfizd3), 2003.

