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Abstract. In the application areas of streaming, social networks, and video-sharing platforms such as YouTube and Facebook,
along with traditional television systems, programs’ classification stands as a pivotal effort in multimedia content management.
Despite recent advancements, it remains a scientific challenge for researchers. This paper proposes a novel approach for television
monitoring systems and the classification of extended video content. In particular, it presents two distinct techniques for program
classification. The first one leverages a framework integrating Structural Similarity Index Measurement and Convolutional Neural
Network, which pipelines on stacked frames to classify program initiation, conclusion, and contents. Noteworthy, this versatile
method can be seamlessly adapted across various systems. The second analyzed framework implies directly processing optical
flow. Building upon a shot-boundary detection technique, it incorporates background subtraction to adaptively discern frame
alterations. These alterations are subsequently categorized through the integration of a Transformers network, showcasing a
potential advancement in program classification methodology. A comprehensive overview of the promising experimental results
yielded by the two techniques is reported. The first technique achieved an accuracy of 95%, while the second one surpassed it
with an even higher accuracy of 87% on multiclass classification. These results underscore the effectiveness and reliability of the
proposed frameworks, and pave the way for a more efficient and precise content management in the ever-evolving landscape of
multimedia platforms and streaming services.
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1. Introduction1

In the realm of TV program recognition and con-2

tent analysis, which includes acronyms, program types,3

and various data points, identifying relevant informa-4

tion is crucial, particularly when working with large5

datasets that require classification. This challenge be-6

comes even more complex when optimizing network7

training in a supervised manner, especially with the in-8

troduction of new programs, TV program acronyms, or9
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advertisements. Furthermore, it is essential to recognize 10

that each channel has its unique characteristics and pro- 11

gramming lineup. An examination of Italian television 12

programs reveals that they can be broadly classified 13

into two principal genres: fiction and non-fiction. Fic- 14

tion encompasses TV films, series, miniseries, cartoons, 15

soap operas, and telenovelas. Non-fiction, in contrast, 16

includes pro-grams addressing real-life issues such as 17

news, weather, talk shows, current affairs, popular sci- 18

ence, cultural segments, variety and game shows, reality 19

series, advertising, and teleshopping. The Communi- 20

cations Guarantee Authority acts as the regulatory and 21

supervisory body within the audiovisual communica- 22

tions sector, delegating certain responsibilities to the 23

Regional Communications Committees (Co.Re.Com.). 24
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These bodies oversee local audiovisual broadcasts and25

address any irregularities, such as exceeding program26

durations, airing unauthorized commercials, broadcast-27

ing con-tent inappropriate for all audiences, catego-28

rizing de-bates (political, historical, etc.), recognizing29

program credits or acronyms, and classifying program30

types according to nationally regulated criteria [1]. Re-31

cent researches made significant advances in this area.32

This paper aims to contribute to this field, in order to33

aid communication agencies, especially through the de-34

ployment of two innovative and comparative method-35

ologies. The first methodology implements a frame-36

work that integrates Structural Similarity Index Mea-37

sure (SSIM) and ResNet50, as proposed in [2]. It ana-38

lyzes stacked frames to classify the beginning and the39

end times of programs, along with their content. While40

versatile, it is limited by the predetermined image size41

required for SSIM comparison. The second method-42

ology, which is an evolution of the first, is considers43

the processing of optical flow. This approach relies on44

a shot-boundary detection technique with background45

subtraction to pinpoint changes in frames, which are46

then categorized using a Transformers network. The47

rest of this document is organized as follows: Section 248

lays out the fundamental theories behind the techniques49

employed in our frameworks. Sections 3 and 4 evaluate50

the frameworks and discuss the results, respectively.51

Finally, Section 5 summarizes the conclusions from our52

research.53

2. State of the art54

Some of the most advanced video classification meth-55

ods are founded on CNNs, which have evolved to in-56

clude a variety of new methodologies. For instance,57

the 3D Convolutional Neural Networks (3D CNN) in-58

troduced by Tran et al. [3] utilize a three-dimensional59

kernel to extract features across multiple frames. Karen60

et al. [4] proposed the Two-Stream CNN, a model com-61

prising two neural networks: one assessing the video’s62

appearance and the other its motion. The appearance63

stream employs a standard CNN to analyze frames,64

while the motion stream leverages a 3D CNN to assess65

optical flow between frames. Wang et al. [5] introduced66

the Temporal Segment Network, which uses a 2D CNN67

for spatial analysis of video frames paired with a 1D68

CNN for temporal sequence analysis. Carreira et al. [6]69

adapted a 3D CNN, pre-trained on ImageNet, for video70

analysis by extracting features from frames and their71

temporal progression. Feichtenhofer et al. [7] combined72

a ‘slow’ 3D CNN for spatial analysis with a ‘fast’ 3D 73

CNN for temporal sequence analysis. The ongoing ad- 74

vancement of these techniques has led to the develop- 75

ment of attention-based networks, which concentrate 76

on specific video segments for classification, often used 77

in tandem with architectures like 3D CNNs or LSTMs. 78

Pioneered by Bahdanau et al. [8], attention mechanisms 79

have been applied in video classification by researchers 80

such as Sharma et al. [9] in “Action Recognition Using 81

Visual Attention.” A fundamental initial step in video 82

classification is video segmentation, which aims to par- 83

tition the video stream into manageable segments for 84

indexing [10]. 85

In the domain of TV program recognition and con- 86

tent analysis, recent studies indicate that substantial 87

strides have been achieved, highlighting the signifi- 88

cant progress in this field. Yi Cao et al. [11] proposed 89

a model that uses a CNN network to encapsulate the 90

information extracted from video scenes, incorporat- 91

ing a visual attention technique via a separate convolu- 92

tional neural network. This network generates a visual 93

attention map. However, the model demands significant 94

computational resources, notably for creating the visual 95

attention map, which involves numerous convolutions 96

and scalar products between large tensors. This could 97

render the model computationally inefficient on less 98

robust hardware. Additionally, the reliance on a visual 99

attention map may reduce interpretability, as the cri- 100

teria for selecting the most relevant video sections for 101

classification aren’t explicit. It might necessitate the ap- 102

plication of model interpretation methods for a clearer 103

understanding of its operation. 104

Fangzhao Wu et al. [12] applied a CNN for image 105

analysis and an RNN for text analysis. They also em- 106

ployed multi-task learning to handle various tasks si- 107

multaneously and embedding techniques to numeri- 108

cally translate textual TV program descriptions for deep 109

learning application. Nonetheless, potential enhance- 110

ments could include the adoption of sophisticated data 111

pre-processing, such as natural language processing 112

(NLP), to capture more nuanced information from TV 113

program descriptions, thereby im-proving the analysis 114

quality. Moreover, the images in the study were down- 115

scaled to 64x64 pixels, potentially limiting the model’s 116

capacity to discern intricate visual details. 117

The dataset used in their research was sourced ex- 118

clusively from the Chinese streaming platform Youku, 119

which may affect the model’s applicability to other re- 120

gions and cultural contexts. In ‘Automatic TV Pro-gram 121

Genre Classification Using Deep Convolutional Neu- 122

ral Networks’ [13], Hieu Khac et al. utilized a lim- 123
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ited dataset of images from diverse origins, which con-124

strained the model’s generalizability across different125

genres. They implemented a VGG16 neural network to126

extract image visual features. Despite this, the model’s127

ability to represent the semantic content of TV pro-128

grams, such as dialogue or storylines, remains a limita-129

tion. They later used a Support Vector Machine (SVM)130

classifier to categorize each image by genre. However,131

the study did not benchmark the model against other132

genre classification methods, leaving its comparative133

efficacy undetermined.134

3. Methodology135

3.1. Materials136

In this section, we’re going to introduce the two137

methods we have developed for classifying television138

broadcasts and extended videos. Our goal is to pro-vide139

an in-depth explanation of the methodologies we’ve uti-140

lized throughout the classification process. We’ll delve141

into the specifics of each method, spot-lighting their142

distinctive features and the fundamental principles upon143

which they’re based. This thorough analysis will clarify144

the two separate strategies, set ting the stage for an ex-145

haustive evaluation of their efficiency and their ability146

to adapt to different scenarios. This level of detailed147

scrutiny is essential to pinpoint the most appropriate and148

effective approach for categorizing television content149

and longer video formats.150

We created an initial dataset for the SSIM-CNN151

framework. We used a first dataset comprising test im-152

ages to evaluate the SSIM [14]. Originally, the im-153

ages in our dataset captured the opening and closing154

acronymous of a sports news program. We have since155

expanded this dataset to include content from addi-156

tional programs beyond sports, incorporating various157

categories from a second dataset created for CNN. To158

train CNN network, we assembled datasets using im-159

age annotations sourced from web search engines and160

video frame captures from the specified channels. The161

project’s initial phase concentrated on identifying con-162

tent from sports news. We later expanded our dataset163

to include a wider range of categories. The training164

dataset now covers diverse genres: Geo documentaries165

(826 images), Religious events (769 images), Game166

shows (525 images), Talk shows (685 images), Sales167

promotions (470 images).168

For our second initiative, the Shot Boundary Detec-169

tion with Transformers framework, we have developed170

an enriched dataset of mini videos. These were gen- 171

erated utilizing Shot Boundary Detection techniques 172

and were systematically classified into diverse cate- 173

gories following the A.g.Com program classification 174

guidelines. This comprehensive dataset includes the 175

following segments: Cartoons (559); Cooking (313); 176

Culture (244); Debates (164); Religious (309); Geog- 177

raphy (439); Interviews (476); Weather (337); Politics 178

(100); Commercials (604); News Summaries (570); 179

Sports(122); also integrating videos from UCF-101 [15] 180

from specific categories due to data scarcity, particularly 181

Basketball(15), Soccer(8), Tennis(15), Swimming(26), 182

Golf(12), chosen based on the monitoring of the chan- 183

nels and the creation of the dataset itself, Teleshopping 184

(450), and News bulletins (191). 185

3.2. Similarity structure index measure with 186

convolutional neural network 187

The proposed architecture utilizes an image com- 188

parison system based on SSIM, augmented with a 189

ResNet50 [16]. This novel method focuses on analyz- 190

ing stacked frames from the target video. Each frame 191

undergoes a detailed comparison against standardized 192

test images obtained from the broadcasting channels of 193

the TV shows in question. 194

The Structural Similarity Index Measure (SSIM) [17] 195

works as a perceptual tool quantifying image qual- 196

ity degradation by measuring changes in structural in- 197

formation. Unlike most image quality metrics, which 198

typically calculate discrepancies based on pixel value 199

differences like mean squared error, the SSIM index re- 200

flects the human visual system’s ability to detect struc- 201

tural information within a scene. It excels at discerning 202

the details between a reference image and a comparison 203

image. A metric that mimics this capability generally 204

excels in tasks that require this level of discrimination. 205

The SSIM index evaluates three essential characteristics 206

of an image: Luminance, Contrast, and Structure, as 207

shown in Fig. 1. 208

Consider a collection of test images; every image is 209

represented as a Matrix I that capture specific moments 210

of detection, such as the beginning or the end of a TV 211

show’s acronym. Each image has size N· N, and we 212

define with n the n-th image {I1, I2, I3, . . . , In}. 213

A video is essentially a temporal sequence of im- 214

ages, each always represented as a matrix Mi where 215

i indicates the frame number over time. If the video 216

consists of n frames, then we have a set of matrices 217

{M1,M2, . . . ,Mn}. 218

The goal is to precisely identify these distinct mo- 219

ments, like the commencement or conclusion of a TV 220
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Fig. 1. Comparative visualization of the SSIM metrics: Original,
Luminance, Contrast, and Structure.

show acronym. Under the assumption of discrete sig-221

nals, Luminance is determinate by computing the aver-222

age of all pixel values:223

µx =
1

N

N∑
i=1

xi;µy =
1

N

N∑
i=1

yi; (1)

The luminance comparison function, denoted as224

l (x, y), relies on µx and µy. In this context, xi repre-225

sents i-th pixel value of image x, while yi denotes the226

i-th pixel value of image y. The variable227

N represents the total number of pixel values. Re-228

garding contrast, it is determined by calculating the229

standard deviation, i.e. the square root of the variance,230

across all pixel values:231

σx =

(
1

N − 1

N∑
i=1

(xi − µx)2
) 1

2

; (2)

232

σy =

(
1

N − 1

N∑
i=1

(yi − µy)2
) 1

2

; (3)

The contrast denoted as c(x, y), involves comparing233

σx and σy.234

In this case, x and y represent the two images under235

comparison, and µ is the average of the pixel values.236

The structural comparison is conducted by dividing the237

input signal by its standard deviation, which normalizes238

the result to a standard deviation of one, facilitating a239

more reliable comparison:240

Nx =
x− µx
σx

;Ny =
y − µy
σy

; (4)

We define functions that compare two specified im-241

ages based on these parameters. We refer to the lumi-242

nance comparison function as follows:243

l (x, y) =
2µxµy

+ C1

µ2
x + µ2

y + C1
; (5)

where C1 serves as a constant to ensure stability when 244

the denominator drops to zero. C1 is given by: 245

C1 = (K,L)2; (6)

where K is a constant and L represents the dynamic 246

range of the pixel values, which is set to 255 because 247

we are analyzing 8-bit images. The contrast comparison 248

function is defined as follows: 249

c (x, y) =
2σxσy + C2

σ2
x + σ2

y + C3
; (7)

C2 shares the same structure as C1. The structure com- 250

parison function is defined as follows: 251

s (x, y) =
σxy + C3

σx + σy + C3
; (8)

where σx represent the standard deviation of a given 252

image, and σxy pertains to the covariance of images be- 253

ing compared. Now, we can define the similarity index 254

using: 255

SSIM (x, y) = [l(x, y)α · c(x, y)β · s (x, y)γ ] ; (9)

The parameters γ > 0, β > 0, and α > 0 are uti- 256

lized to adjust the relative prominence of the three com- 257

ponents. By setting α = β = γ = 1, and assigning 258

C3 = C2/2, we obtain the following expression: 259

SSIM (x, y) =

(2µxµy + C1)
(
2σxy + C2

)(
µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) ; (10)

It is advantageous to use the SSIM index locally 260

rather than globally for assessing the image quality. 261

Instead of applying the metrics globally, it is more ef- 262

fective to apply them regionally for higher accuracy. 263

Facing the challenge of comparing images extracted 264

from videos, referred to as Mn, with test images, labeled 265

In. It’s crucial to note that while the Mn video frames 266

include specific date and time information at the time 267

of their recording, displayed on the edges of the image, 268

the In test images have been saved with fixed date and 269

time stamps, corresponding to the original video from 270

which they were extracted. This temporal discrepancy 271

between the test images and the video frames can vary, 272

especially if the video frames are from recordings made 273

on different days. This difference in date and time infor- 274

mation can lead to errors in comparisons based on the 275

SSIM index, a metric used to assess image similarity. 276

To address this issue, we have developed and applied a 277

mask ofH×L dimensions to both the Mn video frames 278

and the In test images. The use of this mask allows 279

us to exclude the date and time information from the 280
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comparison process, thereby improving the accuracy281

in evaluating the similarity between the images. This282

leads to a further reduction in image size. Regarding283

classification, we feed the video’s SSIM index between284

an old and a new scene change duration, resulting in285

a floating-point value SSIM (x, y) = fn, where the in-286

dex n represents the n-th comparison between the Test287

image In, and the n-th frame in the Mn video.288

Using a standard parameter threshold t:289

fn > t; (11)

By setting t to a high value, we can accurately iden-290

tify when an image of interest represents a TV theme291

acronym. Once the image of interest is identified, CNN292

with ResNet50 initiates the classification of general293

content, including sports, human activities, sales, prod-294

ucts, talk shows, debates, and others. For training the295

network, we converted the images to grayscale and296

employed the technique of transfer learning [18]. This297

involved pre-training the network on ImageNet [19].298

Splitting the model into a head and body, training only299

the head while freezing the body. In our training data,300

we incorporate random rotations, zooms, shifts, shears,301

and flips to augment the dataset. We employed a stacked302

frame recognition technique: to achieve temporal clas-303

sifications of scenes, we implemented a moving average304

prediction, by considering the frames per second of the305

video.306

As we have represented the frames in a video as an307

M matrix, we define:308

Y =

n∑
i=1

Mi; (12)

The ResNet50 makes predictions on each frame, as-309

signing a classification percentage to every nth frame.310

Mn, we write the prediction function as:311

P (Mn) = pn; (13)

here pn represents the probability assigned to the nth312

frame. We only consider the highest probabilities and313

can define a subset of these probabilities. Let’s as-314

sume we want to consider the top k probabilities, where315

k 6 N and N is the total number of frames being316

considered. We order the probabilities in descending317

order and take the first k: {p(1), p(2), . . . , p(k)} where318

p(1) > p(2) > . . . > p(k). Let p(j) denote the jth-319

highest probability, after ordering all probabilities in320

descending order.321

We now calculate the average of the top k probabili-322

ties as follows:323

Fig. 2. Architecture of SSIM with CNN.

mean =
1

k

k∑
j=1

p (j) ; (14)

This value represents the overall mean probability based 324

on the frames with the highest classification confidence 325

of the neural network. This approach is used to evaluate 326

the performance of the network on video segments. 327

3.3. Shot boundary detection with transformer 328

The proposed framework operates based on optical 329

flow. In this scenario, the video to be analyzed is divided 330

into subsequences. 331

Given a video as Y , let us define Y as a sequence 332

of frames Y = {M1,M2, . . . ,Mn} where Mn repre- 333

sents the i-th frame of the video. With the shot bound- 334

ary detection technique, we divide the video Y into 335

n sub videos, y1, y2, . . . , yn, where each yk repre- 336

sents a video segment with a distinct semantic event. 337

This subdivision can be expressed as: Y =
⋃k
j=1 yj, 338

where yj = {Maj,Maj+1, . . . ,Mb} defining aj e bj 339

as variables that represent the indices of the frames 340

defining the start and end of each sub video yj with 341

1 6 aj 6 bj 6 n e aj + 1 = bi + 1 for every i from 1 342

to k − 1. This ensures that each frame of Y belongs to 343

exactly one sub video yj. Each subsequence will be the 344

input for the Transformers Network [20]. 345

The video segmentation is realized with a shot 346

boundary detection [21], that generates a binary mask 347

My(i, l), where i represents the vertical coordinate of 348

the pixel. Then, l denotes the horizontal coordinate of 349

the pixel. Representing the area of the image occupied 350

by the foreground object. This mask is produced by 351

applying an adaptive threshold to the difference map 352

between the current frame Iy(i, l) and the background 353

model By(i, l). The adaptive threshold is determined 354

as the mean plus a constant multiplied by the standard 355
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deviation. It is specifically dependent on the standard356

deviation of the difference map My(i, l) = 1 if:357

|ly (i, l)−By (i, l)| > µ+ kσ; (15)

and 0 otherwise, where µ represents the mean of the358

difference map, highlighting the disparity between the359

current frame and the background model. σ denotes the360

standard deviation of the difference map, while k is a361

multiplicative constant used to compute the adaptive362

threshold for generating the binary mask.363

In this study, we introduce a novel video classifica-364

tion model that harnesses the capabilities of Transform-365

ers, a category of neural networks renowned for their366

proficiency in handling sequential data. The structure367

of our model consists of several critical components.368

Initially, video subsequences yj, are pre-processed by369

segmenting them into frames, then sub-sampled to cre-370

ate sequences. These sequences are subsequently pro-371

cessed by a DenseNet121 [22], a pre-trained convolu-372

tional neural network, to extract prominent features.373

The top layers of the DenseNet are excluded to maintain374

its expertise in capturing detailed spatial information.375

Features of each frame (X ∈ RNxD) are arranged into376

a sequence (S ∈ RTxNxD), like the patch-based method377

used in Vision Transformers. This sequence, enhanced378

with positional embeddings (PE ∈ RTxD), is processed379

by a single layer of the Transformer. The output of the380

Transformer, Z, is provided by:381

Z = Transformer (S + PE) ; (16)

where S represents the sequence of features extracted382

from each frame of the video, organized to reflect the383

spatial and temporal structure of the original sequence384

of frames.385

Each element of S is a feature vector describing a386

frame or frame segment of the video. PE represents po-387

sitional embeddings, which are added to the S sequence388

to provide the Transformer with information about the389

temporal position of each frame within the sequence.390

This layer is designed to learn spatial and temporal de-391

pendencies among the features, providing a proficient392

solution for the analysis of video data. Moreover, the393

model makes use of a GlobalMaxPooling1D operation394

to effectively refine spatial information:395

(Zpooled = GlobalMaxPooling1D(Z)); (17)

and this is complemented by a dropout layer to reduce396

the risk of overfitting.397

The Transformer features a single attention head, and398

projects the embeddings through a dense layer with a399

dimensionality of 4 (F ∈ RTx4), thereby enhancing the400

model’s learning capabilities: 401

F = Dense (Zpooled) ; (18)
in essence, F represents the final processing of the in- 402

put data through the Transformer model, where, after 403

leveraging the spatial and temporal learning capabilities 404

of the single attention head, the features are synthe- 405

sized into a four-dimensional vector for each timestep. 406

This condensed output, F , embodies the understanding 407

gleaned by the model and is poised for deployment in 408

decision-making stages, such as classification or ad- 409

vanced interpretation of patterns in video data. 410

4. Experimental verification 411

In this Section, we examine the experiments con- 412

ducted on the two proposed frameworks. The experi- 413

ments were executed on a dedicated system with the 414

following specifications: an Intel(R) Xeon(R) Gold 415

6126 CPU at 2.6 GHz, 64 KiB of BIOS, 64 GiB DIMM 416

DDR4 system memory, and 2×GV100GL [Tesla V100 417

PCIe 32 GB]. The frameworks were developed using 418

Python and the Keras library with TensorFlow back- 419

end. Video classification tests were performed for both 420

frameworks on the same datasets. Specifically, we con- 421

sidered LaC as a local channel, and we considered addi- 422

tional channels such as RTV, TeleSpazio, TenTv while 423

also analyzing two 24-hour video recordings. 424

4.1. Performance of the proposed system 425

To evaluate how well the system operates, we use P 426

to represent a favorable outcome, and N to symbolize 427

an unfavorable one. Here’s how we classify the results: 428

TP refers to the count of scenes accurately recognized 429

in a video, FP is used for the count of scenes recognized 430

in a video but labeled incorrectly, TN is the count for 431

scenes that were misidentified in a video, and FN stands 432

for the scenes in a video that went undetected or for 433

any irregularities found. We paid more attention to the 434

2 transformer and shot boundary methodology. 435

The framework’s performance was carefully assessed 436

by utilizing: 437

Precision =
TP

TP + FP
; (19)

438

Recall =
TP

TP + FN
; (20)

439

F score = 2 ∗ Precision* Recall
Precision + Recall

; (21)
440

Accuracy =
TP + TN

TP + TN + FP + FN
; (22)

Accurately describing the results obtained. 441
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Fig. 3. Architecture of the shot boundary detection with transformer.

Table 1
Processed classification SSIM and CNN-ResNet50 output

Time Label Probability
00:00:11 LAC_SPORT_TV_THEME 98.28%
00:00:24 Football 99.94%
00:00:34 TV news 97.33%
00:00:55 Football 98.60%
00:00:57 Football 98.76%
00:00:59 TV news 99.00%
00:01:06 Football 99.48%

4.2. Evaluation of similarity structure index measure442

with ResNet50443

The results of the classification are shown in Table 1,444

which serves as an example of the results derived from445

the framework classification process. In this table, we446

can examine the first row that details the performance of447

SSIM, then the classification done on each framework448

by ResNet50. We divided the dataset, allocating 80%449

for training and 20% for validation. Figure 4 illustrates450

the training loss and accuracy of the network, employ-451

ing cross-entropy to measure the difference between the452

model’s predictions and the actual labels throughout the453

training period. The network underwent training over454

20, 50, 100, and 120 epochs.455

Graph (a) – 20 epochs: The training loss decreases456

rapidly, indicating that the model is learning from the457

dataset effectively. Both the training and validation ac-458

curacy improve quickly, and appear to stabilize by the459

20th epoch. There’s a small gap between training and460

validation loss, suggesting minor overfitting.461

Graph (b) – 50 epochs: This graph extends to462

50 epochs and shows a continued decrease in training463

loss. The training and validation accuracy both rise and464

then plateau, indicating that the model may not be gain-465

ing significant improvements from additional epochs. 466

There’s a consistent gap between training and validation 467

loss, but it does not appear to be widening significantly, 468

which is positive. 469

Graph (c) – 100 epochs: Here, over 100 epochs, 470

the training loss continues to decrease but at a much 471

slower rate. The accuracy seems to have plateaued. The 472

gap between the training and validation loss appears 473

slightly larger compared to the 50 epochs graph, which 474

may indicate overfitting as the model continues to learn 475

specifics about the training data that do not generalize 476

to the validation data. 477

Graph (d) – 120 epochs: Extending the training to 478

120 epochs, the loss and accuracy trends seem consis- 479

tent with the 100 epochs graph. There’s a noticeable 480

gap between the training and validation loss, which may 481

suggest that the model isn’t likely to benefit from fur- 482

ther training on the same data without adjustments or 483

regularization to reduce overfitting. 484

The best results obtained for 120 epochs shown in 485

Table 2 are discussing the results, Geo and Religious 486

categories have high precision, recall, and F1 scores, all 487

around 0.94 to 0.98, indicating that the model performs 488

very well in these categories, with a balanced ability 489

to identify relevant cases (precision) and to identify all 490

actual cases (recall). 491

Game show, Talk show, and Sales promotion cate- 492

gories have slightly lower but still robust performance 493

metrics, ranging from 0.92 to 0.95, which implies that 494

the model is generally reliable in these classifications 495

as well. 496

The accuracy of 0.95 suggests that the model cor- 497

rectly classifies 95% of the overall data, which is quite 498

high for most applications. 499
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Table 2
Performance of the Network CNN-ResNet50

Class Precision (%) Recall (%) F1_Score (%) Support (%)
Geo 0.98 0.98 0.98 206
Religious 0.95 0.94 0.94 192
Game_show 0.94 0.95 0.93 137
Talk_show 0.93 0.95 0.94 190
Sales_promotion 0.94 0.92 0.94 118
Accuracy 0.95 843
macroavg 0.94 0.94 0.94 843
Weighted avg 0.95 0.95 0.95 843

Fig. 4. Comparison of learning curves for training and validation loss and accuracy on a dataset, with incremental epochs of 20, 50, 100, and 120.

Both the macro average and weighted average scores500

across precision, recall, and F1 are consistent at 0.94501

and 0.95 respectively. The macro average treats all502

classes equally, while the weighted average takes the503

support (the number of true instances for each label)504

into account. High values in both suggest that the505

model’s performance is uniformly strong across all506

classes and that the model is not biased towards more507

frequently occurring classes.508

The support for each class varies, with ‘Geo’ having509

the highest number of instances (206) and ‘Sales pro-510

motion’ the least (118). Despite these differences, the511

model’s performance is steady across classes.512

In conclusion, the model demonstrates excellent and513

consistent performance across different categories with514

no significant signs of bias towards frequent categories.515

4.3. Evaluation of shot boundary detection with 516

transformers 517

In our work, we pay special attention to the classifi- 518

cation results obtained with this technique. 519

We allocated 80% of the dataset for training and the 520

remaining 20% for testing. We conducted experiments 521

across the different numbers of epochs at 50, 100, 150, 522

and 200 epochs, as reported in Table 3. The best results 523

were achieved after 100 epochs, especially when ana- 524

lyzing the different categories, in conjunction with the 525

corresponding confusion matrix as illustrated in Fig. 5. 526

Our classification model demonstrates good results, 527

particularly in the Cartoons and Weather categories, 528

achieving accuracies of 0.95 and 0.92, respectively. The 529

model’s precision in classified cartoons is confirmed by 530
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Table 3
Performance of the network shot boundary detection with transformer

Class Precision (%) Recall (%) F1_Score (%) Support (%)
50EPOCHS

Cartoons 0.99 0.83 0.91 168
Cooking 0.92 0.71 0.80 93
Culture 0.71 0.58 0.64 76
Debates 0.75 0.90 0.81 49
Religious 0.72 0.80 0.76 93
Geography 0.81 0.95 0.88 133
Interviews 0.74 0.81 0.77 142
Weather 0.97 0.94 0.96 102

Politics 1.00 0.43 0.60 30
Commercials 0.81 0.89 0.85 185
News summaries 0.87 0.98 0.92 156
Sports 1.00 0.94 0.97 36
Teleshopping 0.81 0.88 0.84 57
News bulletins 0.90 0.77 0.83 110
Accuracy – – 0.84 1430
Macro avg 0.86 0.82 0.82 1430
Weighted avg 0.85 0.84 0.84 1430

100EPOCHS
Cartoons 0.95 0.93 0.94 168
Cooking 0.89 0.78 0.83 93
Culture 0.58 0.75 0.65 76
Debates 0.81 0.90 0.85 49
Religious 0.77 0.80 0.78 93
Geography 0.85 0.91 0.88 133
Interviews 0.83 0.83 0.83 142
Weather 0.92 0.98 0.95 102
Politics 0.93 0.83 0.88 30
Commercials 0.95 0.85 0.90 185
News summaries 0.89 0.95 0.92 156
Sports 0.97 0.81 0.88 36
Teleshopping 0.98 0.88 0.93 57
News bulletins 0.94 0.87 0.91 110
Accuracy – – 0.87 1430
Macro avg 0.88 0.86 0.87 1430
Weighted avg 0.88 0.87 0.88 1430

150EPOCHS
Cartoons 0.94 0.97 0.95 168
Cooking 0.90 0.74 0.81 93
Culture 0.71 0.54 0.61 76
Debates 0.60 0.92 0.73 49
Religious 0.77 0.84 0.80 93
Geography 0.93 0.81 0.87 133
Interviews 0.77 0.89 0.83 142
Weather 0.92 0.97 0.94 102
Politics 0.92 0.80 0.86 30
Commercials 0.91 0.87 0.89 185
News summaries 0.94 0.96 0.95 156
Sports 0.97 0.83 0.90 36
Teleshopping 0.83 0.91 0.87 57
News bulletins 0.91 0.85 0.88 110
Accuracy – – 0.87 1430
Macro avg 0.86 0.85 0.85 1430
Weighted avg 0.87 0.87 0.87 1430

200EPOCHS
Cartoons 0.99 0.89 0.94 168
Cooking 0.84 0.69 0.76 93
Culture 0.80 0.58 0.67 76
Debates 0.88 0.90 0.89 49
Religious 0.88 0.66 0.75 93
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Table 3, continued

Class Precision (%) Recall (%) F1_Score (%) Support (%)
Geography 0.70 0.97 0.82 133
Interviews 0.76 0.89 0.82 142
Weather 0.82 0.98 0.89 102
Politics 1.00 0.53 0.70 30
Commercials 0.91 0.84 0.87 185
News summaries 0.98 0.92 0.95 156
Sports 0.97 0.86 0.91 36
Teleshopping 0.84 0.93 0.88 57
News bulletins 0.78 0.91 0.84 110
Accuracy – – 0.85 1430
Macro avg 0.87 0.83 0.84 1430
Weighted avg 0.86 0.85 0.85 1430

Fig. 5. Confusion matrix on 100 epochs.

the confusion matrix, which shows 156 correct classifi-531

cations out of 168 items, with very few false positives532

and negatives. Similarly, in the Weather category, the533

model correctly classified 100 out of 102 items.534

For Commercials and News Summaries, the model535

showed high accuracy, with 158 and 148 correct clas-536

sifications out of 185 and 156 items, respectively. In537

Sports, despite a very high accuracy of 0.97, the preci-538

sion is lower at 0.81, suggesting some confusion with539

other categories; however, the confusion matrix reveals540

29 correct classifications out of 36. Teleshopping ex-541

hibits the best performance with near-perfect accuracy542

of 0.98 and 50 correct classifications out of 57, despite 543

a moderate amount of misclassification indicated by the 544

confusion matrix. 545

The model’s overall performance is robust with an 546

accuracy of 0.87 across 1430 items. The macro aver- 547

ages for accuracy and precision, which calculate the 548

average performance of the model for each category 549

separately and then average these results, are 0.87 and 550

0.88, respectively. This indicates balanced performance 551

across categories, ensuring that each category is given 552

equal importance regardless of its size. Meanwhile, the 553

weighted average, considering the number of items per 554
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Fig. 6. ROC graphics on 100 epochs.

Table 4
Comparison of shot boundary detection
and transformer with other methodologies

Methodologies Accuracy
3dCNN [23] 90.2%
CNN+RNN [24] 80.2%
PAC+CNN [25] 89.3%
CNN+MLP [26] 93.7%
DNN [27] 53%
LogRegression [28] 82%
SSIM+CNN 95%
S.B.+Transf. 96%

category, confirms good overall performance. These555

results underscore the effectiveness of the model as a556

classification tool across a broad spectrum of categories.557

Figure 6 shows the ROC (Receiver Operating Char-558

acteristic) curves over 100 epochs. These curves chart559

the model’s classification efficacy across 13 distinct560

classes by plotting the true positive rate (TPR) against561

the false positive rate (FPR) for various threshold set-562

tings.563

The key observations from the ROC curves include:564

– Perfect Classification (AUC = 1.00): Classes 0, 7,565

8, 10, and 11 achieved an AUC (Area Under the566

Curve) of 1.00, signifying flawless classification567

with an absence of both false positives and nega-568

tives. The ROC curves for these classes perfectly569

align with the ROC space’s left and top edges,570

denoting 100% sensitivity and specificity.571

– Near-Perfect Classification (AUC > 0.98): 572

Classes 1, 2, 3, 4, 5, 6, 9, 12, and 13 are charac- 573

terized by near-perfect classification, with AUC 574

values between 0.98 and 0.99. Positioned close to 575

the top left corner, these curves reflect the model’s 576

high true positive rate alongside a minimal false 577

positive rate for the classes. 578

– Consistency Across Classes: The high AUC val- 579

ues’ uniformity across all classes indicates a robust 580

model with consistent performance, reliably pin- 581

pointing true positives while concurrently keeping 582

false positives to a minimum. 583

– Distinct Classes with No Overlapping Curves: The 584

absence of overlapping curves implies clear dis- 585

tinction between classes, highlighting the model’s 586

effective differentiation capabilities. 587

The dashed line represents the baseline of random 588

guessing (AUC = 0.50), with all class curves signif- 589

icantly outperforming this benchmark. This demon- 590

strates that the model’s predictions are substantially 591

superior to those made by the chance. 592

4.4. Experimental results discussion 593

In this section, we provide a comparative analysis 594

against existing research. The initial SSIM framework, 595

when combined with a CNN, excels at quickly iden- 596

tifying specific TV program opening (or closing) se- 597
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Fig. 7. GPU consumer during training of the CNN and Transformer.

quence. Notably, it obviates the need for additional598

training when a channel updates its opening sequence; a599

simple test image input suffices. ResNet50 consistently600

shows proficiency in recognizing broader categories.601

However, it does come with a caveat: the alignment of602

the test image’s dimensions with the video’s frames per603

second (fps) is crucial. Conversely, the second frame-604

work, which utilizes the Transformers network for Shot605

Boundary Detection, adopts a more general approach606

to opening (or closing) sequence. Rather than focusing607

on individual opening sequence, it includes ‘spots’ that608

cover advertisements, aiming to universalize the model,609

thereby eliminating the need for retraining. While SSIM610

with ResNet50 sometimes struggles with accurately611

marking the beginning of TV News specifically when a612

journalist introduces a new report the results are gen-613

erally reliable. Additionally, Fig. 7 details the GPU’s614

usage during training. The accompanying graph reveals615

that the ResNet50 network requires more power than616

the Transformers network. Nonetheless, it achieved re-617

markable results in the 120-epoch training phase, boast-618

ing an impressive 95% accuracy rate.619

4.5. Comparative analysis620

For comparison with existing technologies, it is es-621

sential to highlight that our frameworks show promis-622

ing results when benchmarked against ongoing research623

efforts. This underscores the potential and effectiveness624

of our approach amidst the current technological ad-625

vancements in the field. In Table 4, we juxtapose our626

findings with those from recent studies in this area.627

For instance, in [23], the authors leverage the UCF101628

dataset to classify a variety of human actions or activi- 629

ties in videos. Notably, their study reveals that our pro- 630

posed methodologies forego the need for optical flow 631

extraction, enhancing efficiency in terms of execution 632

speed. Our approach utilizes a dual-stream data setup, 633

one stream for visual inputs and another for motion, 634

ensuring a robust representation of spatiotemporal data. 635

It should be noted, though, that training deep neural 636

networks like three-dimensional CNNs demands exten- 637

sive data and computational power, culminating in a top 638

accuracy of 90.2% for our Two-stream 3D network. 639

In [24], the researchers introduce a hybrid model that 640

combines a Convolutional Neural Network (CNN) with 641

a Recurrent Neural Network (RNN) to discern video 642

content types, classifying them into categories such as 643

‘Animation,’ ‘Gaming,’ ‘Natural Content,’ ‘Flat Con- 644

tent,’ and so on. They propose a novel technique for 645

classifying only key frames, thus curtailing process- 646

ing time without significantly affecting performance. 647

Using specific classes from the COIN dataset, they se- 648

lected 1,000 images for training and testing, yielding 649

an accuracy of 80.27%. The model’s efficacy was as- 650

sessed on low-power hardware, which imposed limita- 651

tions on processing capacity and necessitated the use of 652

a smaller dataset sample. 653

In [25], the focus is on scene change detection within 654

videos, using PCA in the context of identifying scene 655

transitions. This involves extracting frames from videos 656

and compiling them into a dataset categorized by types 657

of content, such as journalistic reports and sports, with 658

an accuracy of 89.3%. ResNet50 was deployed for clas- 659

sifying transition and non-transition frames within the 660

training classes. 661



Galley Proof 7/05/2024; 8:53 File: ica–1-ica240740.tex; BOKCTP/llx p. 13

F. Candela et al. / Effectiveness of deep learning techniques in TV programs classification: A comparative analysis 13

Lastly [26], presents a framework detailing the use of662

audio features to differentiate between types of televi-663

sion programming like news, sports, and entertainment.664

Audio data is converted into spectrograms, visual rep-665

resentations of frequency and time within the audio sig-666

nal, which then serve as inputs for a Convolutional Neu-667

ral Network (CNN) trained on Audio Set and tested on668

a tailored BBC dataset, coupled with a Multilayer Per-669

ceptron classifier on the backend. The CNN assesses the670

likelihood of specific sound events within the recording,671

achieving a commendable accuracy of approximately672

93.7%. However, the spectrogram representation might673

not capture the entire spectrum of relevant audio infor-674

mation in television programs. Despite the inclusion675

of broadcasts from various genre categories, there’s a676

possibility that some genres are overrepresented relative677

to others. In [27], the focus is on classifying violent678

content in videos using deep neural networks (DNNs)679

trained on the VSD2014 benchmark, which differenti-680

ates between violence and non-violence. The highest681

accuracy achieved was 53% with a network consisting682

of 21 hidden layers, implemented on a MacBook Pro.683

The experimental findings suggest that all the various684

architectures of hidden layers and nodes explored did685

not surpass 57% accuracy, warranting further research.686

In [28], the authors explore and compare different687

methodologies for the challenging task of classifying688

television programs. Logistic Regression emerged as689

the most effective, boasting an 82% accuracy for newly690

classified content. This method has proven its merit,691

particularly in scenarios involving brief documents and692

a limited number of training samples. The principal lim-693

itation identified in the study is that despite certain en-694

hancements, incorporating semantic information from695

Wikipedia did not significantly improve the accuracy696

of television program classification. In [29] contribute697

to the ongoing research discourse, as presented at the698

the European Conference on Advances in Databases699

and Information Systems in 2023. It introduces vari-700

ous methodologies for the classification of television701

programming.702

5. Conclusion703

In conclusion, this article underscores the pivotal704

importance of program classification within the ever-705

evolving landscape of multimedia content. It acknowl-706

edges the persistent challenges faced by researchers in707

this field. Two methods of classification are proposed.708

The first method integrates the Structural Similarity709

Index (SSIM) with a custom-designed Convolutional 710

Neural Network (CNN) specifically for overlapping 711

frames while this method is versatile across different 712

systems; it does come with the constraint of needing 713

a predefined sample image size for SSIM comparison. 714

In contrast, the second approach proposes the use of 715

the optical flow to achieve remarkable precision and 716

wide range applicability for various program types. A 717

thoughtful examination of the limitations and the poten- 718

tial future developments of these techniques is carried 719

out. It suggests the adoption of more sophisticated deep 720

learning strategies and the inclusion of additional data 721

sources to increase classification accuracy. Moreover, 722

it proposes that investigating the integration of seman- 723

tic comprehension could be a compelling direction for 724

future research. 725

Overall, these promising results indicate opportuni- 726

ties for further enhancement in program classification, 727

a process particularly relevant for television monitoring 728

systems and the sorting of substantial video archives. 729

The manuscript offers a detailed presentation of the 730

proposed methods and their empirical results. It also 731

highlights the complexities of program classification, 732

considering the variety of formats, genres, and produc- 733

tion styles, and the ever-growing volume of daily con- 734

tent production. This underscores the urgent need for 735

developing sophisticated and flexible automated classi- 736

fication techniques to improve the efficiency of televi- 737

sion monitoring systems. 738

Future work should focus on ensuring these meth- 739

ods are seamlessly integrated into the dynamic media 740

environment. A critical goal is to expand the dataset 741

significantly, particularly for national broadcasters. 742

Additionally, the second proposed method opens an 743

exciting path for specialization. This involves investi- 744

gating binary classification training with varied weights, 745

an approach that could fine-tune the precision of spe- 746

cific categories during further assessments. A future 747

prospect worth considering is the integration of a Neu- 748

ral Dynamic Classification (NDC) algorithm [30]. This 749

algorithm could be useful for classifying for television 750

programs. With content continuously being updated, 751

program features may vary considerably, whereas the 752

broader categories generally stay more stable. Thus, ap- 753

plying an algorithm like NDC might offer an effective 754

means to manage this variability. The dynamic classi- 755

fication enabled by the NDC algorithm goes beyond 756

just static features. It also considers how these charac- 757

teristics may change over time or in reaction to certain 758

changes. This is especially relevant when the associa- 759

tions between features and classes are subject to shifts 760
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or dynamic influences, as often seen with the evolving761

nature of television content.762

Moreover, it would be wise to evaluate the efficacy of763

an NDC algorithm specifically for television program764

classification. Such an approach could provide a flexible765

and robust solution to the unique challenges posed by766

the fluid nature of television content and its inherent767

properties.768

Replace “TV” with “television” in the sentence dis-769

cussing the unique challenges posed by the fluid nature770

of TV content. (Page 5, Line 768)771

Methods like those described in [31] utilize a com-772

bination of techniques, including the strategic addition773

and subtraction of neurons, to optimize the neural net-774

work architecture. The aim is to develop a suite of high-775

performing neural networks that can dynamically and776

adaptively process complex data. This could be advan-777

tageous, particularly with large datasets, such as those778

encountering in television program classification.779
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