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Abstract. Technological advances in industry have made it possible to install many connected sensors, generating a great amount
of observations at high rate. The advent of Industry 4.0 requires analysis capabilities of heterogeneous data in form of related
multivariate time series. However, missing data can degrade processing and lead to bias and misunderstandings or even wrong
decision-making. In this paper, a recurrent neural network-based denoising autoencoder is proposed for gap imputation in related
multivariate time series, i.e., series that exhibit spatio-temporal correlations. The denoising autoencoder (DAE) is able to reproduce
input missing data by learning to remove intentionally added gaps, while the recurrent neural network (RNN) captures temporal
patterns and relationships among variables. For that reason, different unidirectional (simple RNN, GRU, LSTM) and bidirectional
(BiSRNN, BiGRU, BiLSTM) architectures are compared with each other and to state-of-the-art methods using three different
datasets in the experiments. The implementation with BiGRU layers outperforms the others, effectively filling gaps with a low
reconstruction error. The use of this approach is appropriate for complex scenarios where several variables contain long gaps.
However, extreme scenarios with very short gaps in one variable or no available data should be avoided.

Keywords: Sensor observations, missing data, gap imputation, multivariate time series, denoising autoencoder, recurrent neural
network

1. Introduction

In the novel paradigm proposed by Industry 4.0, an-
alyzing heterogeneous data from industrial processes
has become crucial for achieving differentiation and
innovation, providing added value for companies [1].
The increasing number of connected sensors in the in-
dustry has made it possible to have massive amounts
of data, which are generated at high rate from multiple
and diverse sources [2]. These data contain valuable
information about industrial processes, so modern com-
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panies try to exploit and analyze it. Therefore, storing,
processing and monitoring data have become key tasks
to provide added value to the companies [1].

A first need is high-quality data, free of noise, out-
liers or gaps, which can degrade their quality and lead
to bias and misunderstandings or even wrong decision
making. Therefore, reliable and accurate observations
from sensors are required. However, multiple sources
of errors can be found in the measurement process [3].
Some examples of these sources of errors are inade-
quate sensor precision and accuracy, power cuts, envi-
ronmental conditions or electrostatic and electromag-
netic interferences. There can also be errors caused by
data acquisition systems and communication networks,
due to packet drops or unsuccessful connections [4].
As a result, different types of errors are found in sen-
sor data, including outliers, missing data, bias, drift,
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noise, constant values, uncertainties and stuck-at-zero
faults [3]. Missing data or gaps are among the most
common problems in industrial applications. Gener-
ally, a preprocessing step is required to cope with this
kind of error by filling gaps in data to guarantee more
explainable and consistent results.

It must be noted that data from multiple industrial
sensors often constitute a related multivariate time se-
ries, where time is a shared dimension for sensor data
with a common structure [5]. Relations among sensors
can appear since these sensors usually measure vari-
ables in the same process. Therefore, there likely exist
close dependencies among some of them, in addition to
the temporal relations among sequential observations.
As a result, spatio-temporal correlations are usually ex-
hibited by multivariate time series and diverse patterns
can be discovered according to trend, periodicity and
seasonality [6].

Patterns of missing data in multivariate time se-
ries can be grouped into several classes: random miss-
ing, temporally correlated missing, spatially correlated
missing and block missing data [7,8]. Thus, the problem
of filling gaps in multivariate time series is not trivial.
Indeed, filling gaps in related multivariate time series is
an arduous challenge, since gaps could appear in many
or all variables at almost the same time. In this sense,
numerous consecutive samples (varying gap lengths)
in several variables (varying number of variables with
gaps) might have to be filled. It then requires to recon-
struct the whole variable structure, instead of dealing
with each variable independently.

Different approaches have been proposed to address
the missing data problem in multivariate time series,
ranging from simple methods based on linear combi-
nations of the neighbor contemporary observations [9]
to state-of-the-art machine learning and deep learn-
ing methods [10–12], which are able to extract further
information from data to gain insights about the pro-
cess. Missing data in multivariate time series has been
tackled in diverse domains, but, due to the criticality
of process monitoring, it has attracted the attention of
many researchers in the industry, specially in the field
of energy systems and electricity consumption [5,13].
Related works will be reviewed in depth in Section 2.

In this paper, an approach with the aim of gap im-
putation in related multivariate time series is proposed,
based on a denoising autoencoder (DAE) architecture
that uses recurrent neural networks (both unidirectional
and bidirectional RNNs) in the hidden layers. A multi-
feature implementation, processing all variables as a
whole, instead of independently, will be deployed. The

proposed approach is able to reconstruct input missing
data, considering both temporal patterns and relations
among variables. This paper extends the approach first
presented in [14] and introduces novelties in several
directions:

– An extended study of the related work, referring
to reconstruction of time series in the industry but
also in other domains.

– The analysis of different state-of-the-art recur-
rent neural networks, such as a simple RNN or a
LSTM, as an alternative to GRU that could provide
lower reconstruction errors with shorter training
and inference times.

– The introduction of bidirectional recurrent layers
in order to consider information from past and
future states simultaneously.

– The comparison and discussion of the results ob-
tained using different recurrent neural networks
(both unidirectional and bidirectional) in the hid-
den layers of the proposed approach, and other
state-of-the-art methods.

– The use of two public datasets, together with the
own dataset, in order to allow scientific commu-
nity to access to data, reproduce the results and
exchange ideas and findings, increasing the effi-
ciency in the research.

– The assessment of the proposed approach in sev-
eral real scenarios, considering both shorter and
longer gaps, and from one to even all the variables
of the related multivariate time series.

This paper is structured as follows: Section 2 reviews
the state of the art. Section 3 explains the methodology.
Section 4 describes the experiments and presents the re-
sults. Section 5 discusses the results. Finally, Section 6
exposes the conclusions and future work.

2. Related work

The large amount of data available has encour-
aged active research on analysis techniques that extract
knowledge in different settings [15,16]. These tech-
niques are able to perform different tasks in diverse
fields such as the estimation of variables like the strain
of a structural member in buildings [17] or the evapora-
tion in cooling towers [18]. Regarding energy systems,
there are general surveys in the literature [19,20] as well
as more focused reviews on specific aspects, e.g., ma-
chine learning techniques for power systems [21], clus-
tering methods for electrical load pattern grouping [22],



S. Alonso et al. / Gap imputation in related multivariate time series through RNN-DAE 159

network state estimation [10,23] or load classification
in smart grids environments [24].

Other works [4] have reviewed methods for non-
technical losses (NTL) in power distribution systems
due to external actions. Challenges and methodolo-
gies to address them were also identified and suggested
in [25]. Whereas smart metering can help recognize
losses, it also implies additional costs and a reduction
of the reliability. Recent machine learning techniques
for the energy systems reliability management are re-
viewed in [26]. However, although they show a great
potential, there are still open challenges in terms of in-
terpretability and practical application to systems that
are continuously changing.

Understanding the structure of energy systems can
help obtain knowledge and plan better strategies. Sub-
metering systems have become popular, since they pro-
vide detailed information, not only as a whole but also
at the intermediate and appliance level. In this context,
prediction of the electricity load based on support vec-
tor machine with submetering devices was proposed
in [27]. Another cooling load prediction model was
developed for commercial buildings, using a thermal
network model and a submetering system [28]. A study
of relevant features based on deep learning was pre-
sented in [29] using data from a submetering system
in a hospital facility. Furthermore, energy disaggrega-
tion techniques, such as non-intrusive load monitoring
(NILM), were applied [30,31] to recognize individual
measurements from aggregated data [32–34].

The understanding of energy dynamics is also deci-
sive for modeling. In this sense, energy consumption
forecasting can be addressed using time series tech-
niques, and accurate models have provided advances
in real-time monitoring and optimization [5]. In addi-
tion, deep learning architectures have been used for de-
veloping time series prediction models [35]. A perfor-
mance comparison of different networks was evaluated
in [36], showing the best accuracy with bidirectional
and encoder-decoder long short-term memory (LSTM)
networks. A method for big data forecasting was also
developed for electricity consumption, with scalability
as its purpose [37].

Deep recurrent neural networks (RNN) were assessed
for short-term building energy predictions [38], and a
LSTM-based framework was proposed for residential
load forecasting [39]. Furthermore, a RNN-based ar-
chitecture using Gated Recurrent Units (GRUs) was
explored in [40], as online monitor for predicting insta-
bility of a power system. An anomaly detection method
was also developed in a smart metering system using

a bidirectional LSTM-based autoencoder [41]. Addi-
tionally, a structural response prediction model of large
structures is proposed in [42], using a NARX-based
RNN method.

Autoencoder (AE) neural networks have been used
as an alternative to perform missing data imputation and
compared to other methods [43]. They have also been
applied to pattern discovery [44], structural condition
diagnosis [45] and time series reconstruction of indoor
conditions [46,47]. Their results have shown signifi-
cant reconstruction (up to 80% of missing daily val-
ues) of temperature measurements for different build-
ings and, therefore, a potential use in real-time building
control. A denoising autoencoder (DAE) also showed
good results in missing smart meter imputation [13]
filling in multiple values of daily load profile at once.
The proposed framework is compared to linear inter-
polation, historical average method, and two genera-
tive methods: denoising variational autoencoder and
denoising Wasserstein autoencoder. Another method
based on stacked denoising autoencoders was proposed
in [48] showing low errors compared to well-known
methods such as multiple imputation technique (MICE)
and random forest imputation (RF) model. A modifica-
tion that enhances cross-correlations was introduced in
the tracking-removed autoencoder [49] with the pres-
ence of missing values in network training. Further-
more, bidirectional RNNs were used for reconstructing
missing gaps in time series [12,50]. A DAE with GRU
layers was proposed to reconstruct electricity profiles
with missing values in a submetering system [14]. This
paper extends the study of these methods for effective
signal reconstruction in large submetering systems.

Finally, it should be noted that signal reconstruction
approaches have also been applied to other domains.
For instance, missing frames in 3D human motion data
were filled with natural transitions using a convolu-
tional autoencoder [51]. A deep-learning model, called
BiLSTM-I, was proposed to fill long interval gaps in
meteorological data [11]. An LSTM convolutional au-
toencoder was studied for filling gaps in satellite re-
trieval [52]. Various autoencoders-based models, in-
cluding convolutional and Bi-LSTM, were also evalu-
ated to generate missing traffic flow data [53].

3. Methodology

Different gap patterns can appear in multivariate time
series, such as time-correlated gaps, variable-correlated
gaps, completely random gaps, etc. [8]. Therefore, the
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problem of filling gaps in multivariate time series is
not trivial. The reconstructed data should match the
input missing data for each variable. This requires the
reconstruction of numerous consecutive samples (vary-
ing gap lengths), in one or several variables (varying
number of variables with gaps). On the one hand, con-
secutive samples are likely to depend on each other, i.e.,
there are temporal relations among sequential samples.
Furthermore, missing samples could appear at differ-
ent positions of the time series. Thus, it is necessary
to consider temporal information both before and af-
ter the gap. On the other hand, some variables are also
usually related to each other, i.e., there are dependen-
cies between them, such as aggregation, correlation, or
association.

With these requirements in mind, a recurrent neural
network-based denoising autoencoder (RNN-DAE) is
proposed for gap imputation in related multivariate time
series. The denoising autoencoder (DAE) attempts to
reproduce input missing data, matching it to the output
filled data. It is trained by corrupting the original input
data by randomly zeroing some samples to create the
gaps [54].

As a result, DAE learns the input features, preserves
the input encoding, and tries to remove the noise (miss-
ing samples) added to the input data, resulting in an
overall improved extraction of latent information.

Additionally, a recurrent neural network (RNN) is
used for capturing temporal dependencies. As dis-
cussed in section 2, different RNNs can be found in
the literature, such as a Simple RNN [55], GRU [56],
and LSTM [57]. Basic RNNs are simpler but suffer
from vanishing/exploding gradient problems, especially
when handling long-term dependencies. Furthermore,
they become difficult to train as the number of pa-
rameters increase, leading to convergence problems.
In contrast, GRU and LSTM can handle the vanish-
ing/exploding gradient problem. GRU, being simpler,
trains faster and performs better with fewer training
data than LSTM [58].

Unidirectional RNNs learn temporal patterns by con-
sidering only past samples, whereas bidirectional RNN
learn temporal dependencies by considering both past
and future samples. Bidirectional RNNs introduce an
additional hidden layer, allowing connections to flow in
the opposite temporal direction. Both forward and back-
ward temporal directions are traversed. In this work,
three bidirectional RNNs (BiSRNN, BiGRU, and BiL-
STM) and three unidirectional RNNs (SRNN, GRU,
and LSTM) are evaluated to determine the optimal
choice for capturing temporal dependencies and vari-
able relationships.

Joining the previous ideas, the proposed approach
consists of a denoising autoencoder (DAE) architecture
with the incorporation of different RNN layers in the
hidden layers. While both multi-head and multi-feature
implementations are possible, we focus on the multi-
feature implementation in this work, due to its lower
training and inference times with a high number of
variables [14]. The architecture of the recurrent neural
network-based denoising autoencoder (RNN-DAE) can
be seen in Fig. 1.

In the multi-feature implementation, each variable
corresponds to a feature of the input. The time series
is characterized by N independent variables and M
related variables, and a window size T (typically one
day) is employed to define the time series dimension.
The encoder comprises a unidirectional/bidirectional
RNN with G neurons applied to all features, generating
a G-dimensional encoded vector that captures temporal
patterns and variable relations. The decoder is fed with
the encoded vector (repeated T times) and consists of
a unidirectional/bidirectional RNN with G neurons to
produce the output. A time-distributed layer applies the
same dense layer to every time step during RNN cell un-
rolling. Note that only one RNN in the encoder/decoder
with several features (as many features as variables) is
used to process each time series together.

Two widely used missing imputation methods, k-
Nearest Neighbor Imputation (k-NN) [59] and Mul-
tiple Imputation by Chained Equation (MICE) [60],
are used for comparing with the proposed RNN-DAE
architecture. k-NN imputation method uses k-Nearest
Neighbors algorithm for completing missing values in
the dataset, which are imputed using the mean value
from k nearest neighbors found in the training subset.
MICE is a missing imputation technique which imputes
missing values in a dataset by predicting them using
other features from the dataset following an iterative
process until reaching the convergence.

The model validation can be divided into several
steps. Data from three datasets are used. First, data pre-
processing, which includes resampling and scaling of
data, is then carried out. Then, a train-test split is per-
formed. Additionally, input data is corrupted by intro-
ducing gaps in one or more variables, covering all pos-
sible combinations. Next, the models are trained and a
cross-validation stage is performed to set the hyperpa-
rameters.

Then, the trained models are applied to the test data,
which contains known missing data. The quality of re-
constructed data is assessed using reconstruction error
metrics, which provide insights into how well the mod-
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Fig. 1. Architecture of the recurrent neural network-based denoising autoencoder.
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Fig. 2. Electricity supply and submetering system (Module 10) at the
Hospital of León.

els have captured the missing data. The performance is
analyzed in different scenarios considering mean values
of these errors, as well as the fitting and inference times.
Last, scalability and efficiency are studied for specific
situations, varying the corruption rate (gap length) and
the number of variables with gaps, to determine the fea-
sibility of deploying the best models in a real scenario.
More detailed information about model validation and
evaluation can be found in Section 4.

4. Experiments and results

4.1. Experimental setup

Three datasets have been used in the experiments.
The first one, Hospital (Module 10) electricity con-
sumption dataset, contains 508 daily load curves
(electricity consumption for 24 hours) from 7 meters
located at Module 10 of the submetering system at the
Hospital of León. A schema is shown in Fig. 2, includ-
ing the electricity supply and the submetering system.
Module 10 serves as the electricity provider for the
north buildings at the hospital, which include a main
and an auxiliary building A transformer reduces volt-
age (13.2KV/400V) to supply electricity to 6 different
zones in the north buildings. A main meter measures
the overall electricity consumption of these north build-
ings. In addition, four submeters measure the electric-
ity consumption of each floor in the auxiliary building.
Other two submeters are installed in the main building
to measure the electricity consumption of the elevators
and other facilities in that building. All these meters
measure electricity loads each 1 minute, but data are

Table 1
Consumption variables corresponding to meters located in
the north buildings at the Hospital of León (Module 10)

Id Variable Building
#0 Overall consumption North buildings
#1 Consumption of floor −1 Auxiliary
#2 Consumption of floor 0 Auxiliary
#3 Consumption of floor 1 Auxiliary
#4 Consumption of floor 2 Auxiliary
#5 Consumption of the elevators Main
#6 Consumption of the rest Main

resampled to 1 hour to obtain the daily load curves. The
values in the dataset range from 11 to 599 kilowatts.
In Table 1, consumption variables corresponding to the
mentioned 7 meters in the north buildings (Module 10)
are listed.

In order to perform the experiments, the dataset was
standardized in the [−1, 1] range and split into training
and test subsets. The training subset is used for train-
ing and validation. It comprises 356 daily load curves
(approximately 70%). On the other hand, the test sub-
set consists of 152 daily load curves (approximately
30%) and it is used for assessing the performance of
the models under different scenarios.

The recurrent neural network-based denoising au-
toencoder requires noisy data as input, so empty values
are intentionally introduced into the training subset. For
that purpose, gaps are generated randomly by setting
to −1 some values in the daily load curves. Both the
starting point and length of the gaps are, therefore, com-
pletely unplanned. Moreover, gaps can be present in any
variable, so all possible combinations corresponding
to 7 variables of the dataset (gaps in one, two, three,
four, five, six or seven variables) are considered. Thus,
the original training subset has been augmented, adding
a total of 127 different combinations containing gaps.
As a result, 45568 daily load curves (with original and
missing data) are fed to the model. On the contrary,
the output only contains complete data without any
gaps. Note that the dimensions of both input and output
tensors are 45568× 24× 7.

Gaps are also introduced into the test subset ran-
domly, again by setting some values in the daily load
curves to −1. In this case, the starting positions of the
gaps are completely unplanned but the length of the
gaps depends on the corruption rate, which is a pa-
rameter used to control the number of missing samples
in the complete load curve of 24 values. Furthermore,
the number of variables containing gaps is another pa-
rameter, controlling if the missing samples correspond
to one, two or even all of the variables. These two pa-
rameters will be used to assess the performance of the



S. Alonso et al. / Gap imputation in related multivariate time series through RNN-DAE 163

Fig. 3. A pattern of gaps used in the test subset (Hospital dataset).

method under several scenarios. It might be argued that
those scenarios cover most real-world cases of data loss,
such as the losses caused by sensor faults and network-
related problems. As an example, Fig. 3 displays a pat-
tern of the gaps used in the test subset, showing 12-hour
gaps in 7 (all), 2 (#2, #4), 6 (all, except #0) and 4 (#1,
#3, #5, #6) variables, simultaneously.

Additionally, to assess the range of applicability of
the proposed approach, two public datasets are used
in the experiments. UCI individual household elec-
tric power consumption dataset [61] contains mea-
surements of electric power consumption in one house-
hold during a period of almost 4 years. The following
variables were selected: Global active power and Sub-
metering 1, 2 and 3. Data have been preprocessed and
resampled at 1 hour intervals. Values range from 0 to
109 watts. On the other hand, REFIT electrical load
measurements dataset [62] consists of cleaned elec-
trical consumption data for 20 households at the aggre-
gate level plus the consumption of 9 appliances (fridge,
washing machine, dishwasher, microwave, television,
etc.). For this study, data from house 18 (H18) during 1
year (starting in May 2014) were selected, preprocessed

Table 2
Description of the datasets

Datasets
UCI REFIT Hospital
[61] (H18) [62] (M10)

Samples (24-long) 1440 366 508
Variables 4 10 7
Minimum value 0.0 0.0 10.67
Maximum value 109.34 4960.54 599.46
Units Watts Watts Kilowatts

and resampled at 1 hour intervals. The values, in this
case, range from 0 to 4960 watts.

Both the UCI and REFIT datasets were also stan-
dardized in the [−1, 1] range and split into training
and validation (70%) and test subsets (30%). Similar to
the Hospital dataset, gaps were generated randomly by
setting to -1 some values in any variable. All possible
combinations of gaps in up to 4 variables for the UCI
dataset and up to 10 variables for the REFIT dataset
were considered. As a result, the training subsets were
augmented, resulting in 16128 and 262144 input sam-
ples, respectively. Moreover, gaps were again intro-
duced randomly in the test subset, according to the
parameters mentioned before, i.e., corruption rate and
number of variables with gaps.

Table 2 summarizes the main characteristics of the
three datasets used in this work.

A 10-fold cross-validation is carried out to tune the
hyperparameters of the proposed method. The results
from the cross-validation process determine the opti-
mal number of neurons of each type of RNN (unidirec-
tional and bidirectional ones). Considering that elec-
tricity consumption is generally periodic, the possible
number of neurons ranges from 24 hours (1 day) to 168
hours (7 days). Test experiments are performed using
the hyperparameters that yielded the best results in the
validation step for each method and dataset.

The size of the training subsets (batch size) is set
to 32 and input data are shuffled. The learning curves
show that increasing the number of epochs produces
overfitted models, so this parameter has been set to 8.

In the case of the k-NN, the number of neighbors is
chosen to be k =

√
samples. MICE relies on a Bayesian

ridge model as estimator and the missing values of each
feature are estimated using all the other features. The
number of iterations in each imputation varies from
5 to 20. The same procedure is followed to tune the
aforementioned hyperparameters for UCI and REFIT
datasets.

The experiments have been executed on a PC
equipped with an Intel Core i7-6700 3.40GHz CPU
and 16GB RAM. No GPU memory is used. The imple-



164 S. Alonso et al. / Gap imputation in related multivariate time series through RNN-DAE

Table 3
Reconstruction errors (mean value) using state-of-the-art methods and datasets

Methods Datasets
UCI [61] REFIT (H18) Hospital (M10)

[62]

RMSE MAE RMSE MAE RMSE MAE MAPE
k-NN 6.94 4.91 63.51 32.10 9.63 7.55 9.46
MICE 5.67 4.00 61.14 30.83 8.64 6.88 8.56
SRNN-DAE 5.63 3.63 59.07 25.32 6.77 4.99 6.28
GRU-DAE 5.61 3.61 58.20 26.08 5.41 4.22 5.47
LSTM-DAE 5.55 3.62 62.82 26.25 5.45 4.17 5.43
BiSRNN-DAE 5.57 3.68 60.69 25.82 5.38 4.09 5.60
BiGRU-DAE 5.33 3.34 61.40 26.51 5.07 3.82 5.21
BiLSTM-DAE 5.42 3.35 61.94 26.56 5.47 4.12 5.47

Table 4
Fitting and inference times

Methods Datasets
UCI [61] REFIT (H18) [62] Hospital (M10)

Fitting [s] Inference [s] Fitting [s] Inference [s] Fitting [s] Inference [s]
k-NN 0.01 2249.86 0.09 1316039 0.04 26065.34
MICE 1.63 0.12 144.12 7.92 11.94 0.72
SRNN-DAE 44.64 1.40 706.11 19.27 122.19 3.42
GRU-DAE 77.24 2.15 1235.34 35.41 215.32 5.44
LSTM-DAE 122.44 3.21 2018.51 66.68 341.15 8.22
BiSRNN-DAE 55.29 1.88 856.20 28.28 148.68 4.63
BiGRU-DAE 199.60 3.74 3209.82 87.12 556.24 9.44
BiLSTM-DAE 248.77 4.68 3659.56 95.43 669.07 12.07

mentation was done using Python 3.6.7 programming
language and the following libraries Keras 2.2.2 [63],
Tensorflow 1.12 [64] and scikit-learn 0.20.1 [65].

Reconstruction errors are computed only based on
missing samples. Root Mean Square Error (RMSE),
Mean Absolute Error (MAE) and Mean Absolute Per-
centage Error (MAPE) have been chosen as evaluation
metrics. Note that both UCI and REFIT datasets contain
many zero values (35% and 31%, respectively), so that
MAPE error would be undefined and, therefore, will
not be computed.

4.2. Results

The first experiment compares the mean reconstruc-
tion errors of the state-of-the-art and proposed ap-
proaches as a global metric for the overall submeter-
ing system in the three datasets. Table 3 shows the re-
sults obtained in each case. Additionally, computational
times for both training and test subsets are presented in
Table 4 as a secondary measure for the comparison.

The proposed method with BiGRU layers (BiGRU-
DAE) achieved the lowest errors (highlighted in bold)
using two datasets (UCI and Hospital). According to
the mean values shown in Table 3, BiGRU-DAE pro-
vides a RMSE of 5.33 and a MAE of 3.34 for the UCI

dataset, and it gives the following errors when using
the Hospital dataset: 5.07 (RMSE), 3.82 (MAE), and
5.21 (MAPE). On the contrary, the proposed method
with GRU and SRNN layers obtained the best values
for the REFIT dataset. GRU-DAE provides the lowest
RMSE (58.20), whereas SRNN-DAE gives the lowest
MAE (25.32). In order to choose one of these two re-
current layers for the proposed method using the REFIT
dataset, fitting and inference times could also be consid-
ered. As you can see in Table 4, SRNN is slightly faster
than GRU in both the fitting and inference phases (1.75
and 1.84 times faster, respectively). It is worth noting
that bidirectional RNNs generally take more time due
to the need to process input data in both the forward
and backward directions. Therefore, BiGRU-DAE and
SRNN-DAE will be used in a further analysis of the
results. However, GRU-DAE has also proven to give
outstanding reconstruction errors.

These results reveal two findings: first, bidirectional
RNNs provide similar or slightly lower errors than uni-
directional RNNs for the extraction of temporal infor-
mation and relations among variables in this data recon-
struction problem; second, considering data both before
and after the gap and introducing GRU (unidirectional
or bidirectional) in the hidden layers of a denoising
autoencoder (DAE) results in a useful architecture for
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Table 5
Reconstruction errors for each variable of the best-performing method in each dataset

Methods Errors Variable Id
#0 #1 #2 #3 #4 #5 #6 #7 #8 #9

UCI dataset [61]
BiGRU-DAE RMSE 8.93 3.17 3.74 5.50 – – – – – –

MAE 6.26 1.62 1.60 3.88 – – – – – –
REFIT (H18) dataset [62]
SRNN-DAE RMSE 252.57 22.76 31.81 19.40 30.56 44.86 122.57 18.72 17.98 29.42

MAE 136.17 12.47 17.97 13.42 8.18 13.56 26.53 9.36 10.37 5.17
Hospital (M10) dataset
BiGRU-DAE RMSE 14.79 6.55 1.82 1.88 3.33 1.73 5.39 – – –

MAE 10.79 4.96 1.43 1.39 2.63 1.35 4.19 – – –
MAPE 2.85 8.28 4.19 5.71 6.61 4.02 4.81 – – –

missing data imputation in related multivariate time
series.

Comparing the state-of-the-art methods (kNN and
MICE) with the proposed approach, it can be seen that
k-NN yields the worst performance (RMSE, MAE and
MAPE) using the three datasets. It also has a very high
computational cost in the inference phase whenever the
dataset is large (e.g., k-NN required several days for
the REFIT dataset). On the other hand, MICE provides
slightly higher errors (except for the RMSE in the RE-
FIT dataset) but, in turn, is the fastest data imputation
method.

In order to analyze the performance reported in Ta-
ble 3 in further detail, Table 5 presents the reconstruc-
tion errors for each variable of the best-performing
methods in the three datasets, i.e., BiGRU-DAE and
SRNN-DAE. For all datasets, variable id. #0 corre-
sponds to the aggregated power consumption value,
and the remaining ones (#1–#9) are the variables of the
lower metering level.

For the UCI dataset, BiGRU-DAE yields the lowest
errors in variables id. #1 and #2, corresponding to the
consumption at the kitchen and the laundry room. On
the contrary, aggregated consumption (#0), together
with the consumption of the water-heater and the air-
conditioner (#3), presents the highest errors.

For the REFIT dataset, variables id. #0 (Aggregated)
and #6 (Dishwasher) have the highest RMSE (252.57
and 122.57, respectively) and MAE (136.17 and 26.53,
respectively) errors when using SRNN-DAE, whereas
the remaining variables are reconstructed by SRNN-
DAE with low errors. RMSE ranges from 17.98 (#8-
TV) to 44.86 (#5-Washing machine) and MAE varies
from 5.17 (#9-Microwave) to 17.97 (#2-Freezer).

For the Hospital (M10) dataset, BiGRU-DAE yields
the highest RMSE and MAE errors in four variables
(#0, #1, #4, #6). RMSE fluctuates from 14.79 (#0-
Aggregated) to 3.33 (#4-Floor 2) and MAE ranges from

10.79 (#0-Aggregated) to 2.63 (#4-Floor 2). On the
contrary, BiGRU-DAE provides low values in three
variables (#2, #3, #5), ranging the RMSE from 1.88
(#3-Floor 1) to 1.73 (#5-Elevators) and MAE from 1.43
(#2-Floor 0) to 1.35 (#5-Elevators). Variable #0 (Aggre-
gated) can be reconstructed by the BiGRU-DAE with
a MAPE of 2.85 while variables #1 (Floor −1) and #4
(Floor 2) are filled with errors of 8.28 and 6.61, re-
spectively, due to their irregular nature and fluctuating
behaviour.

Finally, in order to understand the behavior of the
proposed approach under different scenarios, we have
conducted experiments where the corruption rate and
the number of variables containing gaps are controlled
parameters. Figures 4–6 show the results obtained from
the best performing methods, BiGRU-DAE and SRNN-
DAE, using the UCI, REFIT and Hospital datasets, un-
der different scenarios. Using the corresponding test
subsets, mean errors for the overall submetering system
are computed considering four specific corruption rates
(25%-6 hours, 50%-12 hours, 75%-18 hours, 100%-24
hours) and a varying number of variables with gaps
(from 1 to all variables which contain each dataset), re-
gardless of which variables are included. This approach
allows for the examination of multiple data loss scenar-
ios and a better understanding of the performance of
the proposed method.

For the UCI dataset, a total of 16 different scenar-
ios are studied, corresponding to four gap lengths (6,
12, 18 and 24 hours) and the number of variables with
gaps (from 1 to 4 variables). Figure 4 shows the recon-
struction errors (RMSE and MAE), using bidirectional
GRUs in the hidden layers of DAE (BiGRU-DAE). At
a glance, similar errors (RMSE and MAE) are obtained
for the four different gap lengths. However, as expected,
both RMSE and MAE are higher for corruption rates
of 75% and 100%, regardless of the number of vari-
ables with missing samples. Furthermore, it should be
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Fig. 4. Reconstruction errors (mean value) using BiGRU-DAE in the UCI dataset.

pointed out that RMSE and MAE errors for a corruption
rate of 25% (a gap length of 6 hours) are slightly higher
than errors for a corruption rate of 50% (a gap length of
12 hours). Although counter-intuitive, it is likely due to
the great number of zeros this dataset has in the subme-
tering variables, because longer gaps with more zeros
will be easier to impute. It can be seen that the more
variables contain missing samples, the higher RMSE
and MAE errors are. Nevertheless, BiGRU-DAE is able
to impute gaps successfully (being RMSE and MAE
errors lower than 8 and 5, respectively) if all variables
comprise missing samples, even for a corruption rate of
100%.

For the REFIT dataset, a total of 1024 different sce-
narios are studied, corresponding to four gap lengths

(6, 12, 18 and 24 hours) and the varying number of
variables with gaps (from 1 to 10 variables). Figure 5
shows the reconstruction errors (RMSE and MAE) us-
ing unidirectional simple RNNs in the hidden layers
of DAE (SRNN-DAE). As expected, RMSE error in-
creases for the four different gap lengths, regardless of
the number of variables with missing samples. On the
contrary, the MAE error for a corruption rate of 25%
(a gap length of 6 hours) is higher or equal than the
one for a corruption rate of 50% (a gap length of 12
hours). This dataset also comprises a great number of
zeros related to the consumption of appliances, so that
shorter gaps with few zeros will be harder to impute.
It should be highlighted that RMSE and MAE errors
provided by SRNN-DAE are stable when the corruption
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Fig. 5. Reconstruction errors (mean value) using SRNN-DAE in the REFIT (H18) dataset.

rate is 50% and 75%, independently of the number of
variables with missing samples. Moreover, errors are
even lower when the 10 variables comprise missing
samples (a gap length of 12 hours). On the contrary,
when the corruption rate is 100%, both errors increase
exponentially with the number of variables comprising
missing samples. SRNN-DAE performs successfully
the gap imputation (being RMSE and MAE errors lower
than 70 and 30, respectively), except if all or many vari-
ables comprise missing samples for a corruption rate of
100%.

For the Hospital dataset, a total of 28 different sce-
narios are studied, corresponding to four gap lengths
(6, 12, 18 and 24 hours) and the number of variables
with gaps (from 1 to 7 variables). Figure 6 shows the
reconstruction errors (RMSE, MAE and MAPE) us-

ing bidirectional GRUs in the hidden layers of DAE
(BiGRU-DAE). It can be seen that the lowest errors
(RMSE, MAE and MAPE) are achieved with a gap
length of 6 hours (corruption rate of 25%) regardless
of the number of variables containing missing samples.
In this case, data can be reconstructed with certain of
accuracy, as the errors are limited. As expected, the
longer the gap length is, the higher reconstruction errors
are, especially if many variables include gaps simulta-
neously. However, errors are reasonably stable for gap
lengths of 12 and 18 hours (corruption rates of 50%
and 75%), except in the case where all variables contain
gaps (in this case, the errors increase notably). Even
for a gap length of 24 hours (corruption rate of 100%),
BiGRU-DAE is able to fill gaps with errors lower or
equal than 10, but it requires that at least one variable
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Fig. 6. Reconstruction errors (mean value) using BiGRU-DAE in the Hospital (M10) dataset.



S. Alonso et al. / Gap imputation in related multivariate time series through RNN-DAE 169

contains complete data. However, if all variables have
gaps, the errors rise sharply, revealing BiGRU-DAE is
not able to reconstruct data in this adverse scenario.

5. Discussion

Summarizing the results, denoising autoencoders
(DAEs) are able to recreate satisfactorily input missing
data, filling the gaps deliberately added to the input
data. Indeed, the use of recurrent layers outperforms
previous methods such as K-NN and MICE. Further-
more, GRUs are found to be interesting recurrent neural
networks for capturing temporal patterns in time se-
ries. Compared to other RNNs, GRUs are simpler, have
shorter training and inference times, require fewer pa-
rameters adjustments, and provide better results. Only
simple RNNs could achieve comparable results with
shorter times for a specific dataset. The introduction
of bidirectional GRUs improves the results by lever-
aging data both before and after the gap. However, it
increases the computational cost and times compared
to unidirectional GRU.

In the adverse scenario where most or all variables
contain long gaps, the proposed approach is not able
to reconstruct data with accuracy due to the absence of
past or future information and the limited possibility of
establishing connection among variables. In scenarios
where no data are available, the reconstruction problem
should then be reformulated as a prediction problem,
considering regressor variables and periodicity. On the
other extreme, applying the proposed approach in a
friendlier, much simpler scenario, e.g., with a gap length
of 1 hour in one or a few variables, is not advisable,
since simpler methods such as a linear interpolation
would competently solve this straightforward problem.

Thus, the proposed approach based on a denoising
autoencoder (DAE) with unidirectional GRU (GRU-
DAE), simple RNN (SRNN-DAE) or bidirectional GRU
layers (BiGRU-DAE) is promising for imputing miss-
ing samples and reconstructing related multivariate time
series in a wide range of scenarios. In this work, three
varied datasets comprising electricity consumption vari-
ables have been used. Electricity consumption in house-
holds is mainly due to appliances which are controlled
using an on-off switching mode. Therefore, these con-
sumption profiles are irregular with two defined states
and contain zeros. On the contrary, consumption vari-
ables in large buildings present gradual changes (in-
creases or decreases) with minimum values greater than
zero and the relationships among variables are closer,

so missing samples are easier to impute. The proposed
method could also be applied to fill gaps in multiple
domains.

The multi-feature implementation, comprising an
uni- or bidirectional GRU encoding the features (vari-
ables) and another uni- or bidirectional GRU decoding
the encoded vector, and thus providing complete out-
put data, possesses a bounded computational cost when
the number of variables is high. On the other hand, the
drawbacks of the proposed approach are, in short: that
it requires complete data for training; its acceptable, but
still not negligible, computational cost when bidirec-
tional RNNs are used; and that it is not recommended
in extreme scenarios, in which other approaches could
perform better.

Considering related works, missing imputation per-
formance was evaluated in [13] for daily load profiles
of residential data, where a DAE model showed bet-
ter results than other models such as linear interpola-
tion, historical average or variational and Wasserstein
autoencoders. Feedforward, convolutional and LSTM
autoencoders were also analyzed for the reconstruction
of indoor environment [46]. They outperformed poly-
nomial interpolation and the best results were shown
by the LSTM architecture for non-corrupted and fore-
casting data, but the convolutional configuration was
the best one for reconstructing sub-daily data gaps. In
our case, the comparison is performed using DAE with
different recurrent layers including bidirectional net-
works that help to capture temporal relationships by
considering both forward and backward information.

Bidirectional RNN as generative models were pro-
posed [50] for time series with probabilistic approaches
using text data, showing their effectiveness in cases
where Bayesian inference of a unidirectional RNN was
impracticable. The robustness of simple, convolutional
and Bi-LSTM autoencoders was also considered, with
Bi-LSTM showing the best performance even with a
high missing rate, despite its higher computational cost.
A long interval gap-filling model, BiLSTM-I [11], was
applied to meteorological temperature observation data
reaching high accuracy for half-hourly temperature ob-
servations including imputation error into the model
convergence. It uses a bidirectional LSTM in the en-
coder and a unidirectional LSTM in the decoder. These
works demonstrated the suitability of bidirectional ar-
chitectures in other domains, especially in challenging
cases with high rates of missing data or irregular values
of the variables.
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6. Conclusions

In this paper, an approach (RNN-DAE) is proposed
for gap imputation in related multivariate time series,
specifically in the context of energy submetering. The
approach uses a denoising autoencoder (DAE) archi-
tecture with recurrent neural networks (RNNs) in the
hidden layers. The DAE is in charge of filling input
missing data, removing the gaps added intentionally
to the input data as noise. The RNN aims to capture
temporal patterns and relationships among variables in
the time series. Various recurrent neural networks have
been assessed in the experiments, including unidirec-
tional models such as Simple RNN, GRU, and LSTM,
as well as bidirectional models like BiSRNN, BiGRU,
and BiLSTM. The use of bidirectional RNNs allows for
the consideration of data both before and after the gap,
unlike unidirectional models.

The experiments used three different datasets, a real
dataset comprising 7 related electricity consumption
variables from the Hospital of León, as well as two
public datasets comprising consumption variables. For
that purpose, daily load curves (24 samples long) have
been built. A multi-feature implementation of the pro-
posed approach with unidirectional GRUs (GRU-DAE)
or simple RNNs (SRNN-DAE) has proven to be an
outstanding method for filling potential gaps in the
daily load curves. The implementation with bidirec-
tional GRU layers (BiGRU-DAE) has also provided
excellent results, albeit with increased computational
cost.

The proposed approach with bidirectional GRU lay-
ers (BiGRU-DAE) is able to fill gaps efficiently with
low reconstruction errors in a wide range of scenarios.
It is able to reconstruct related multivariate time series
with high corruption rates (up to 75%), as long as at
least one of the variables contains complete data. The
performance of the proposed approach is consistently
better than the ones obtained by MICE and k-NN.

The use of this approach is appropriate in complex
scenarios, in which there are several variables contain-
ing long gaps, because its application in straightforward
scenarios (very short gaps in one variable) is unneces-
sary. Additionally, the approach should not be applied
in extremely adverse scenarios where no data from any
variable are available, as it lacks prediction capabilities.

As future work, the introduction of nonlinear activa-
tion functions and additional stacked layers could be
explored in order to consider latent relations among
variables. One-dimensional CNNs are promising alter-
natives, especially separable CNNs that align with the

structure of related multivariate time series. Further-
more, the impact of the gap position in the time series
(at the beginning, in the middle or at the end) should
be studied in detail. The performance of the proposed
approach should also be analyzed with long sequences
of input data, longer than 24 hours or sampled at higher
rates. Finally, the consideration of alternative machine
learning techniques, including ensemble learning or
self-supervised learning, can be interesting to address
the problem.
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