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Enhancing smart home appliance recognition
with wavelet and scalogram analysis using
data augmentation
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Abstract. The development of smart homes, equipped with devices connected to the Internet of Things (IoT), has opened up new
possibilities to monitor and control energy consumption. In this context, non-intrusive load monitoring (NILM) techniques have
emerged as a promising solution for the disaggregation of total energy consumption into the consumption of individual appliances.
The classification of electrical appliances in a smart home remains a challenging task for machine learning algorithms. In the
present study, we propose comparing and evaluating the performance of two different algorithms, namely Multi-Label K-Nearest
Neighbors (MLkNN) and Convolutional Neural Networks (CNN), for NILM in two different scenarios: without and with data
augmentation (DAUG). Our results show how the classification results can be better interpreted by generating a scalogram image
from the power consumption signal data and processing it with CNNs. The results indicate that the CNN model with the proposed
data augmentation performed significantly higher, obtaining a mean F1-score of 0.484 (an improvement of +0.234), better than
the other methods. Additionally, after performing the Friedman statistical test, it indicates that it is significantly different from the
other methods compared. Our proposed system can potentially reduce energy waste and promote more sustainable energy use in
homes and buildings by providing personalized feedback and energy savings tips.
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1. Introduction

In recent years, the increasing availability of smart
homes has led to an explosion of data related to the use
of household appliances. These data provide valuable
information for many applications, such as predicting
energy consumption, device fault detection, and user
behavior analysis. Furthermore, with rising energy costs
and growing concerns about climate change, there is a
growing need for innovative solutions to help reduce
energy waste and promote more sustainable energy use.

Accurate appliance recognition plays a crucial role in
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the realm of energy conservation [1]. Gaining a compre-
hensive understanding of the energy consumption pat-
terns exhibited by individual appliances enables build-
ing managers and consumers to identify energy-saving
opportunities and make informed decisions about their
energy use. An in-depth study of appliance consump-
tion patterns holds particular significance in this con-
text. By disaggregating the power consumption data
for each appliance, it becomes possible to identify the
energy usage patterns of individual appliances, as well
as the overall energy consumption of the household.
This information can be used to develop more sophis-
ticated energy management systems and provide per-
sonalized feedback to consumers, empowering them to
make well-informed choices about their energy use and
actively reduce their consumption. Emphasizing the im-
portance of accurate appliance recognition as an integral
part of energy conservation reinforces the importance
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of understanding and controlling energy consumption
in the home.

The development of smart homes, equipped with de-
vices connected to the Internet of Things (IoT) [2,3],
has opened up new possibilities for monitoring and
controlling energy use. In this context, non-intrusive
load monitoring (NILM) techniques have emerged as a
promising solution for the disaggregation of total energy
consumption into the consumption of individual appli-
ances. Some studies indicate that it can help households
save electricity [4,5,6,7,8]. For this reason, the analysis
of the consumption of electrical energy by households
has gradually become a research field that is attracting
attention.

One of the most challenging tasks in NILM is to
accurately identify the operation of each appliance.
This problem has traditionally been tackled with su-
pervised learning algorithms, such as k-Nearest Neigh-
bors (kNN) and Support Vector Machines (SVM),
among others [9,10,11,12]. More recently, deep learn-
ing techniques [13,14], such as Convolutional Neural
Networks (CNNs) [15], or Long Short-Term Memory
(LSTM), have shown promising results in NILM appli-
cations [16,17,18].

On the other hand, in the case of household appli-
ances, a refrigerator that works 24 hours a day does
not have the same use as a washing machine that is
used more occasionally, resulting in a lack of sufficient
labels for some appliances. When using classification
algorithms, it is essential that the models know the be-
havior of all appliances. For this, sufficient samples
are needed to represent the variability of the data in
different situations.

Therefore, a data augmentation algorithm is recom-
mendable, and, in our case, we compare the results with
and without data augmentation. This data augmentation
is based on generating new data by adding the con-
sumption of appliances with other disaggregated energy
consumption of household appliances in another time
window. In this way, the model is trained to identify the
appliance in other situations that would make it chal-
lenging to identify and allows one to obtain a model
with better generalization.

In this work, we propose comparing and evaluat-
ing the performance of two different multiclass clas-
sification algorithms, namely Multi-Label K-Nearest
Neighbors (MLkNN) and Convolutional Neural Net-
works (CNN), for NILM. This comparison will be car-
ried out on two datasets: one original from the REDD
dataset [19], and an augmented version of the same
dataset. The augmented dataset aims to increase the

variability of the original data and improve the gener-
alizability of the algorithms. In addition, we will use
the data in two different ways: on the one hand we
will use the CWT which is a mathematical technique
used to analyze signals or data in both the time and
frequency domains, and provides a way to examine the
time-varying frequency content of a signal at different
scales. And on the other hand, we use scalograms which
are a visual representation used in signal processing and
time-frequency analysis. It is derived from the CWT
and provides a way to analyze the frequency content of
a signal over time. The scalogram is typically presented
as a two-dimensional plot, where the vertical axis repre-
sents frequency and the horizontal axis represents time.
It helps in identifying the presence of specific frequen-
cies or patterns in a time-varying signal. Therefore, on
one side we will use CWTs for MLkNN, and on the
other side, scalograms to work with CNNs.

In summary, this paper presents three major con-
tributions to the classification of disaggregated power
consumption by appliance.

1. An innovative method for enhancing the inter-
pretability of classification results in energy con-
sumption data. By converting power consumption
signals into scalogram images and analyzing them
with Convolutional Neural Networks (CNNs), we
offer a novel approach that surpasses traditional
methods in both accuracy and interpretability.

2. The introduction of novel data augmentation tech-
niques, commonly utilized in machine learning,
to energy consumption data classification. This
approach not only expands the dataset size and
diversity but also demonstrates a significant im-
provement in classification performance, con-
tributing a novel methodology to the field.

3. A comprehensive comparative analysis of two
prevalent classification algorithms in energy con-
sumption data analysis: MLkNN and CNN. This
analysis goes beyond mere comparison, offering
valuable insights into the efficacy of these algo-
rithms in disaggregating electrical consumption
by appliances, thereby advancing the current state
of knowledge in this domain.

These three contributions represent a significant step
forward in developing techniques for classifying dis-
aggregated power consumption by appliance. A poten-
tial application of our research is to integrate an ap-
pliance containing the trained model with the smart
meter in a home. This device would provide real-time
appliance classification to the end user. By disaggregat-
ing the energy consumption of individual appliances,
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NILM enables users to gain insight into how each de-
vice contributes to their overall energy usage. With
real-time appliance classification and the availability of
appliance-level energy data, users can identify which
devices consume the most energy in their homes. This
detailed understanding allows them to make informed
decisions about how to optimize their energy use and
make adjustments to reduce consumption. Moreover,
by having appliance-specific energy consumption data
in real-time, users can identify inefficient or wasteful
usage patterns. This presents an opportunity for them
to modify their daily habits and routines to use energy
more efficiently. In addition, the system could provide
personalized feedback and energy-saving tips to users.
For example, it could alert users when a specific ap-
pliance is consuming more energy than usual or sug-
gest specific actions to reduce consumption, such as
using energy-efficient appliances or scheduling the use
of certain devices during periods of lower demand. In
summary, integrating NILM with the trained model and
the smart meter empowers users with detailed energy
information at the appliance level. This enables them to
make more informed decisions, optimize their energy
usage, and embrace sustainable practices. By promoting
energy-conscious behaviors and efficient energy utiliza-
tion, NILM contributes to a more sustainable approach
to energy consumption.

The remainder of the paper is organized as fol-
lows. Section 2 reviews the state-of-the-art with NILM-
related studies. Section 3 describes the data used and
the proposed methodology followed by the results in
Section 4. The last section concludes the study and
highlights future work.

2. Related work

Efficient energy management is an increasingly im-
portant issue in the current context of climate change
and growth in energy demand. With this in mind, non-
intrusive load monitoring (NILM) [20] has been pre-
sented as a valuable tool to identify the energy con-
sumption of different electrical devices in a home or
building without the need to install sensors on each de-
vice. Traditional NILM methods are based on voltage
and current measurement techniques. However, these
methods can be challenging to implement and may re-
quire costly installation. For this reason, the use of ma-
chine learning algorithms for non-intrusive load moni-
toring has been explored in recent years. Machine learn-
ing algorithms have been used to identify patterns in

energy consumption data, allowing us to distinguish the
different electrical appliances that consume energy in a
home or building.

The most common machine learning techniques used
in NILM are classification, regression, and clustering.
In the classification technique, machine learning models
are used to classify the power consumption of different
devices. In the regression technique, machine learning
models are used to predict the power consumption of
a specific device based on global power consumption
data. The clustering technique uses machine learning
models to cluster the power consumption of different
devices based on the patterns identified in the power
consumption data.

We can find numerous articles in the literature that
address this problem, done through different method-
ologies. Xie et al. [21] propose a solution that involves
identifying the different types of appliances in a power
load environment with a probabilistic clustering prin-
ciple to evaluate the characteristics of the load appli-
ance. On the other hand, we can find numerous articles
dealing with the problem by applying deep learning
techniques. For instance, Kelly and Knottenbelt [17]
studied in 2015 the effectiveness of deep learning meth-
ods in NILM for energy disaggregation. They enhanced
the state-of-the-art by introducing three approaches
(LSTM, denoising autoencoders, and regressive neural
network).

The process of disaggregating electricity consump-
tion can provide a high level of detail, but it may not
always be required for specific users or applications. In
such scenarios, classifying appliances as events could
prove to be a more appropriate approach. This method
can help identify high-energy-consuming devices or
monitor specific appliance usage patterns. In this re-
gard, several research studies have proposed different
classification approaches.

In 2018, Machlev et al. [22] proposed a novel algo-
rithm for classifying appliance state events by modi-
fying the cross-entropy (CE) method. Their main con-
tribution lies in presenting a formulation and solution
using the CE method as a constrained optimization
problem, which they term the modified CE method.
Their approach shows promising results in terms of ac-
curacy and computational efficiency, especially when
compared to traditional CE-based approaches.

Singh and Majumdar presented a different ap-
proach [23] in 2019, a modified sparse representation-
based classification (SRC) specifically tailored for
multi-label classification problems. The original SRC
technique was primarily developed for computer vision
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applications and has since been utilized across various
domains. One of the key advantages of the SRC method
is its ability to learn from limited samples, making it a
valuable addition to the field of NILM.

The authors Verma et al. [24], in 2021, have ac-
counted for the first time the dynamic modeling of the
system while posing it as a multi-label classification
problem. Their approach hinges on an LSTM autoen-
coder where the representation from the deepest layer of
the encoder maps directly to the appliance labels. This
method presents an innovative way of understanding
and tackling the complexity of the NILM problem con-
dition by recognizing the dynamic nature of appliance
usage patterns.

Hur et al. [25], in their study, optimize domain adap-
tation by employing various techniques such as ro-
bust knowledge distillation based on the teacher-student
structure, reduced complexity of feature distribution
based on gkMMD, TCN-based feature extraction, and
pseudo-labeling-based domain stabilization. They per-
form classification tasks for device usage detection in
NILM by incorporating powerful feature information
distillation based on the teacher-student structure and
pseudo-labeling into domain adaptation.

Recently, CNN has shown promising potential in the
field of NILM as indicated by new studies. Shahab et
al. [26] proposed a seq2-[3]-point CNN model to tackle
problems in both home and site-NILM. They built upon
the existing 2D-CNN models, like AlexNet, ResNet-18,
and DenseNet-121, by training them on two custom
datasets incorporating wavelets and STFT-based 2D
electrical signatures of appliances.

The CWT, which has gained significant attention in
the field, is widely recognized as an effective approach
to address this problem. Several studies have acknowl-
edged the efficacy of wavelet-based methods in var-
ious applications [27,28,29]. The CWT is one of the
trends in addressing this issue. Ferrandez et al. [30] pro-
pose a method based on the CWT to decompose energy
into a more straightforward time series, corresponding
to the consumption of household appliances. We can
also find a publication that works with two datasets,
GREEND [31] and REDD, to show a NILM system
that reads the data and then, using the wavelet, applies
an ensemble bagging tree classifier [32]. The results of
this work were correct for a set of 29 household appli-
ances, which confirms that they can be easily identi-
fied. A review of the techniques used for NILM can be
found in [33]. This review analyzed the state-of-the-art
learning algorithms and feature sets used to develop
classifiers. Supervised learning techniques are the most

widely used and typical features are based on the time
domain and the frequency domain (wavelet).

Tabatabaei et al. [9] used the CWT to classify
NILM in two houses from the REDD dataset. In this
case, the authors applied two multi-label classifica-
tion algorithms: Random sets of k-label (RAKEL)
and Multi-Label k-NearestNeighbor (MLkNN) and ob-
tained promising results; however, the algorithms did
not perform well for all the appliances studied. The
study pointed out that multilabel classifiers are more
practical, but less studied.

On the other hand, as mentioned in Section 1, nu-
merous studies have worked with the scalogram, but
in different domains than the one we are working on.
Copiaco et al. [34] carry out a study in which they show
that the use of scalograms as a feature of the data model
significantly improves the results in the classification
of, in this case, domestic acoustic sounds.

The use of scalograms has other applications in the
field of forecasting. We can see in [35] the proposal of a
deep learning framework to predict earthquakes in real
time. In this work, the authors propose to transform the
data to encode them in a time-frequency representation,
which results in the scalogram. The results of this work
are promising and proof of its performance. There is
work aimed at predicting epileptic seizures [36]. They
use the data generated by the electroencephalogram.
This is transformed by the CWT and then into scalo-
grams. After this transformation, they proposed a neural
network architecture that obtained excellent results with
the data used.

Several approaches [37,38,39] use the CWT and
scalograms applied to NILM to detect two new features
that help identify the appliance: Centroid and boundary
points of the CWT. The main difference from our ap-
proach is that they use the scalogram to detect a feature.
Still, we process the entire scalogram using CNNs to
detect and classify the operating appliances.

In summary, many studies address the problem of
detecting and classifying household appliances accord-
ing to their energy consumption. As mentioned above,
several machine learning techniques have been applied
to achieve this goal, including deep learning architec-
tures, and satisfactory results have been obtained. On
the other hand, numerous works on detection or classi-
fication use scalograms generated from the data. This
type of data transformation has been applied in other
domains, but to the best of our knowledge, it has not
been applied to the problem of home appliance detec-
tion. Another difference between our approach and the
state-of-the-art is the comparison of machine learning
techniques with and without data augmentation, which
shows the strong influence of data augmentation.
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Fig. 1. REDD sample of the power consumption of different household appliances and the aggregated consumption.

3. Materials and methods

In this section, we present the dataset and the method-
ology proposed for the experimental study. First, we
will analyze the content and characteristics of the
dataset we have been working on. Finally, the experi-
mental framework is described step by step along with
the procedure followed.

All experiments were carried out on a machine
equipped with a 4.35 GHz AMD Ryzen 7 3700x CPU,
32GB of DDR4 3200 RAM, and an NVIDIA GeForce
3080 graphics card with 10GB of GDDR6X memory.
Python 3.9 has been used to perform all the experi-
ments, and among the libraries used, we can find: scikit-
learn, for machine learning functions; scaleogram, for
the generation of the scalograms; and matplotlib, for
the creation of the graphs. The source code used in this
study is available in the GitHub repository [40]. The
repository contains implementations of the machine
learning models used as well as the datasets used in our
experiments.

3.1. REDD dataset

For this work, we have selected the Reference En-
ergy Disaggregation Data Set (REDD) [19]. The dataset
contains 24 hours power consumption data from six
residential buildings in the United States with a total
duration of 119 days. The dataset contains the house’s
total power consumption, that is, with the sum of the
appliances (aggregated consumption) and the consump-
tion of each appliance separately (disaggregated con-
sumption). The measurements consist of two types of
data sampling frequencies. The mains data are recorded
at a sampling period of 1 second, while the appliances’

measurements are taken at a sampling period of 3 sec-
onds. Additionally, high-frequency current and voltage
measurements are available, sampled at a frequency of
15 kHz. Figure 1 shows the sample data we will work
with. The graph represents the energy consumption (y-
axis) of different appliances over time (x-axis). As seen,
the “Mains” time series represents the aggregate en-
ergy. In contrast, multiple series shows the power con-
sumption of different appliances, such as the washing
machine, the dishwasher, or the microwave.

An approach to evaluating the performance of a
machine learning model on a dataset with a limited
number of observations is to use cross-validation. This
study used a six-fold cross-validation (one per house)
to consider each house as a test split and improve the
model’s generalizability. To perform cross-validation,
the dataset was divided into six equal folds. In each
cross-validation iteration, one of the six houses was
used as the test set, and the other five houses were used
as the training set.

The model was trained in the training set with five
houses and its performance in the test set was evaluated.
We repeated this process six times, each with a different
house held as the test set.

Using a 6-fold cross-validation, we obtained an esti-
mate of the model’s generalization performance on the
entire dataset. This approach allowed us to evaluate the
performance of the model in each individual house as
well as the overall performance in all six houses.

To carry out the experiments, different transforma-
tions were made to the dataset. These transformations
are detailed in the following section (Section 3.2).

3.2. Methodology

This section develops the methodology used to carry
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Fig. 2. Summary representation of the methodology followed. The arrows indicate the number of datasets passed to the next step. Two arrows
indicate when the step produces a result with and without data augmentation.

out the study. Starting from the dataset documented in
Section 3.1, in order to obtain the datasets on which to
work and thus apply machine learning techniques, some
transformations have been applied and are summarized
in Fig. 2.

As shown in Fig. 2, the methodology consists of the
following six steps: First, based on the REDD data set,
it is necessary to check and verify which devices are
working at any given time (1). Second, the data are
divided into sliding temporal windows to improve data
processing, with a window size of 600 samples and
a temporal shift of 200 samples. In this step, we also
apply a data augmentation algorithm to enhance the
dataset. From this step, we start working in parallel
with the original data and the data with data augmen-
tation (DAUG) (2); in the third place, the Continuous
Wavelet Transform (CWT) is computed for each time
window, and the wavelet dataset (WAV-DS) is built (3);
in the fourth place, the scalograms are extracted from
the CWT of the previous step, and with this set of im-
ages, the scalogram dataset (SCA-DS) is built (4). In
the fifth step, the machine learning method (MLkNN)
and the deep learning method (CNN) are applied to
the generated datasets (5 and 6). Finally, the results
are discussed, and a statistical analysis is performed.
It should be noted that when the methodology starts
working with the original data set and with those with
data augmentation, it is illustrated in Fig. 2 with two
arrows.

3.2.1. Data preprocessing
As mentioned above, the methodology starts with

REDD. The first step is to check which appliances are
working at any given time. Considering that REDD
has aggregated and disaggregated data, it is possible

to know at any moment in time which appliance is
working. Therefore, using the disaggregated datasets,
a threshold value is calculated by which we will know
whether the appliance is active or not. Therefore, a
threshold value was calculated for each household ap-
pliance to confirm that it is working at that moment and
therefore use this as a binary class. To achieve this, the
threshold was calculated based on the mean value of
the consumption peaks and adjusted for a bias error of
30%. In other words, the consumption peaks of these
appliances were calculated and if their value exceeded
the threshold, it was confirmed that this appliance was
activated. In Fig. 3 we can see an example of the calcu-
lation of this threshold for the refrigerator case. Here,
we can see an extract of the refrigerator’s consumption
and those consumption peaks derived from this appli-
ance marked in red. Furthermore, we can see a horizon-
tal line in the graph that represents the threshold calcu-
lated by which we will define whether the refrigerator is
working. In this way, the refrigerator operates when the
consumption of the refrigerator is above this threshold.

Once we have identified when each device operates
in the time series, we move on to the next step: generat-
ing the time series window. This study aims to identify
which devices are working within a time period, and in
this step we define the time-space window with which
we will work. After several tests focusing on the sys-
tem’s usability for the end user, it was concluded that a
time window of 600 seconds with a shift of 200 samples
would be optimal. By analyzing the data, we observed
that certain devices tended to operate in at specific time
intervals. For example, some appliances have recurring
patterns of activity every 10 minutes such as the re-
frigerator. Therefore, by setting a time window of 600
seconds (10 minutes) and a shift of 200 samples, we
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Fig. 3. Bias threshold calculation sample for the refrigerator.

could effectively capture the operating patterns of such
devices. A time window of 600 seconds allows us to
examine a sufficiently long duration to identify recur-
ring activity patterns and to extract meaningful insights
from the data. The shift of 200 samples ensures that
we capture overlapping segments within the time win-
dow, which allows us to detect the activity of devices in
adjacent intervals. Through iterative testing and anal-
ysis, we found that this configuration provided a good
balance between capturing device performance at the
desired interval. It allowed to effectively identify and
monitor devices operating at 10-minute intervals, which
is valuable information to understand energy consump-
tion patterns and making informed decisions. Next, we
divide our entire dataset into 10-minute intervals where
we know which devices are running at that time.

3.2.2. Data augmentation
In this step, the data augmentation algorithm is ap-

plied. As mentioned in Section 1, one of the key find-
ings of this study is the improvement of the models
by using data augmentation to identify applications by
power consumption. New windows, including new ap-
pliance uses, were added to the original time-series
window dataset to perform data augmentation. In other
words, new windows were created in which different
appliances were aggregated.

The idea is to increase the frequency of the appear-
ance of household appliances. To this end, new win-
dows have been created based on the disaggregated
consumption of each household appliance. For each
window of our training set, we disaggregate the con-
sumption of each appliance and select another random
window from that set as the target. Given the disaggre-
gated consumption and the window of another random

time, both energy consumptions are aggregated, thus
generating a new window with the same appliance but
in a new situation. In this way, the data of each appli-
ance is augmented, allowing the network to identify it
with other appliances that may hinder its detection. The
proposed data augmentation method is also detailed on
Pseudo-Code 1.

In this way, new windows are created, including sit-
uations where one or more appliances operate simulta-
neously. At the end of this step, we will work with two
sets of time series: one containing the original REDD
data and a second set of time series containing data
generated by the data augmentation algorithm (DAUG).

Table 1 shows the number of examples we have ob-
tained for each appliance. The number of samples in the
“# Samples” column indicates the number of samples
containing the data in which the appliance operates. The
column “After DAUG” shows the maximum number
of samples after applying the data augmentation. Since
data augmentation uses random windows in the training
set, some appliances have more presence than others.
However, since this selection of windows is random, the
number of samples per appliance in each run will vary.
Therefore, the maximum number obtained from each
appliance is shown. This is the maximum contemplated
and may be slightly lower due to some iterations due to
the random selection of windows during data augmen-
tation. The “DAUG Factor” column indicates the factor
of data augmentation. A factor of “1” indicates that a
new sample is created for each original sample.

As appliances may appear in windows of data aug-
mentation that contain other appliances, it is possible
that the data augmentation factor may not correspond
to the maximum number of samples generated. This
happens because when we increase an appliance, for ex-
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Algorithm 1: Pseudo-code of Energy-Based Data Augmentation.
Require: min_augmentations: minimum number of augmentations per label.
Require: max_occurrences: maximum number of occurrences per label not to apply data augmentation.
1: windows_per_label = get_windows_per_label (house_idx, label)
2: daug_factors = get_daug_factors (windows_per_label, min_augmentations, max_occurrences)
3: annotations = get_annotations (fold_idx, split = ‘train’)
4: new_annotations = []
5: for label, daug_factor in daug_factors do
6: for window, appliances, _, _ in annotations do
7: for appliance in appliances do
8: meter = get_disaggregated_meter (window, appliance)
9: for _ in range (daug_factor) do

10: new_window, new_appliances, new_labels = get_random (annotations)
11: new_window = new_window + roll_meter (meter)
12: new_appliances.add (appliance)
13: new_labels.add (label)
14: new_scalogram = create_scalogram (new_window)
15: new_annotations.add ((new_window, new_appliances, new_labels, new_scalogram))
16: end for
17: end for
18: end for
19: end for
20: annotations = concat ([annotations, new_annotations])
21: save_annotations (annotations, fold_idx)

Table 1
Number of samples used in the two different types of datasets. The
quantity of samples after DAUG corresponds to the maximum number
of augmented samples per house. The DAUG Factor column indicates
the factor of data augmentation applied to each appliance. In bold are
the labels that will be used to evaluate the models

Appliance # Samples After DAUG DAUG factor
air_conditioning 330 9,630 10
bathroom_gfi 216 4,479 14
dishwasher 169 4,284 18
disposal 57 3,260 53
electric_heat 44 6,116 69
electronics 220 4,401 14
furnace 577 7,321 6
kitchen_outlets 469 6,615 7
lighting 2,710 25,431 2
microwave 527 6,589 6
miscellaneous 6 3,006 500
none 1,894 1,894 0
outlets_unknown 529 7,917 6
oven 54 6,102 56
refrigerator 6,273 44,120 1
smoke_alarms 6 3,026 500
stove 98 3,518 31
subpanel 88 5,128 35
washer_dryer 258 6,643 12

ample, “microwave”, we have to add it to a new random
window containing other appliances, for example, a
window with the appliances “refrigerator” and “oven”.
Therefore, even if we do not want to increase the “re-
frigerator” anymore directly, it appears again through
the newly created window. Consequently, although the
refrigerator increase factor is “1” and this should corre-
spond to 12,546 instances, 44,120 samples have been
counted, with a difference of 31,574 samples resulting

from the occurrence of increases in other appliances.
This allows the model to learn from appliances such as
microwaves alongside more common appliances such
as refrigerators and less common appliances such as
ovens.

As can be seen, there is a large variability in the data
between appliances, where we can see that appliances
such as the smoke alarm have only 6 scalograms. On the
contrary, we have 6,273 samples from the refrigerator.
This situation occurs because we are using real data.
Therefore, we use appliances that are used 24 hours a
day and others that consume only energy when neces-
sary, such as the smoke detector. Considering that there
are certain appliances for which there are not enough
data available, data augmentation (DAUG) techniques
have been applied to work with a sufficient dataset.
Therefore, at this point, the study is carried out taking
into account these two different types of datasets: the
first one, in which deep learning techniques are applied
to the transformation calculated based on the initial
data; and a second type of dataset in which, in addi-
tion to the initial data, also includes the augmented data
from the DAUG algorithm. However, not all the appli-
ances listed will be used in the experiments because the
six houses used do not have all of them. Therefore, we
will keep only the appliances that have at least, for each
fold, five samples on test and also contain that label on
training. These appliances are in bold in Table 1.

The DAUG function combines disaggregated con-
sumption and the total consumption of other intervals,
thus generating new wavelets with different overlaps
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Table 2
Mean consumption per appliance in the different houses. The presented value corresponds to the
mean consumption in watts of the appliances when they are considered active. In bold are the
labels that will be used to evaluate the models

Appliance House 1 House 2 House 3 House 4 House 5 House 6
air_conditioning 974.39
bathroom_gfi 1,606.44 1,275.04 1,146.83 1,610.10 946.04
dishwaser 1,072.46 1,198.56 736.86 1,317.63 1,249.69
disposal 394.29 358.26
electric_heat 804.79 444.31
electronics 210.89 242.14 486.92
furance 679.45 594.26 652.96
kitchen_outlets 1,522.48 1,054.50 755.18 516.46
lighting 152.29 191.23 141.57 393.74 125.53
microwave 1,519.50 1,836.58 1,712.79
miscellaeneous 41.00
outlets_unknown 121.15 79.50 201.19
oven 2,051.95
refrigerator 201.07 171.52 128.82 173.47 148.93
smoke_alarms 44.00 29.00
stove 1,502.10 1,671.89
subpanel 265.32
washer_dryer 2,700.21 2,519.77 784.81

of appliances. In addition, to add more variety, random
time shifts are performed, adding more variety to the
augmented data. Table 1 in the column “After DAUG”
shows the total number of examples available after data
augmentation.

We established a minimum number of 3,000 in-
stances per appliance to perform data augmentation,
thus ensuring a minimum amount for a proper training
process. However, this number may increase due to the
accumulation of other appliances as they appear in other
windows during their generation.

As can be seen, much more data is now available.
We can see how we have gone from having 169 dish-
washer scalograms to having 4,479, or from having 57
examples where the disposal was used to having 3,260.
At this point, we could consider that we have enough
data for the Deep Learning algorithms in the second
scenario to obtain better results.

Table 2 presents the mean consumption obtained
in Watts for the different household appliances. It is
important to recognize that households may differ in
terms of the appliances they have. Among the avail-
able appliances, the most prevalent are “bathroom_gfi”,
“dishwaser”, “lighting” and “refrigerator”, which are
found in five out of six homes. Furthermore, it can
be observed that there are some appliances that have
a lower consumption compared to others, such as the
“refrigerator”, with a mean consumption of 164.76 W,
which has a much lower consumption than, for ex-
ample, “bathroom_gfi”, with a mean consumption of
1316.89 W.

In summary, we have two different scenarios. In each
scenario, we have two different types of dataset, that is,
first, we have a scenario in which we will work with
the wavelet transformed data (WAV-DS); and a second
scenario in which we will work with the scalograms
extracted from these wavelet transforms (SCA-DS).
In each of these scenarios, we have worked with two
datasets on each: one in which we work with the origi-
nal data, which is composed of 8,972 instances; and a
second dataset which includes the data augmentation in
which a maximum of 58,031 instances are used.

3.2.3. Wavelet and scalogram transformations
Once we have the sets of time intervals, we apply the

CWT [41] to the data. The CWT is a signal process-
ing technique that uses a wavelet function to analyze
signals in the time-frequency domain. This allows for
identifying features in the signal that change over time
and can provide valuable information about the signal’s
properties.

The wavelet is shifted and scaled to analyze the signal
at various positions and scales to compare the signal.
Scaling is accomplished by dilating or compressing the
wavelet, which is equivalent to modifying its width, and
shifting refers to moving the wavelet along the signal.
The CWT produces a function of two variables, known
as the wavelet coefficient function, by comparing the
signal to the wavelet at various scales and positions.
Figure 4 shows an example of the convolution under-
gone by an example interval of the time series with the
Morlet wavelet.

The wavelet coefficient function obtained from the
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Fig. 4. Example of consumption signal (a), wavelet with a width of 1 and frequency of 2 (b), and the convolution of the selected wavelet with the
signal (c).

CWT provides a detailed representation of the signal
frequency content at different scales and positions, mak-
ing it a powerful tool for signal analysis. It can be used
to identify and characterize different patterns or struc-
tures within the signal that are not easily observable
using other methods. The CWT is a valuable technique
for analyzing signals with complex frequency content
and temporal dynamics.

In the present work, it has been used to decompose
the power consumption signal from each house into
different time and frequency scales, which would help
identify specific patterns and trends in power consump-
tion over time. In this way, we will go from having time
series intervals to wavelet transforms. As mentioned
above, WAV-DS is built with a set of wavelet trans-
forms. It is worth recalling that after executing this step,
we will obtain WAV-DS without and with DAUG.

Finally, once we have our sets of wavelet trans-
forms (without and with DAUG), the fourth part of the
methodology is reached. In this case, the scalograms
are extracted for each wavelet transform by using py-
wavelets library [42]. A scalogram is a graphical repre-
sentation of the results of the continuous wavelet trans-
form. It is a two-dimensional graph that displays the
wavelet coefficient function, which provides informa-

tion about the signal’s frequency content at different
scales and positions. The x-axis of the scalogram rep-
resents the time and the y-axis represents the wavelet
scale used for the analysis. The intensity of the color
or shading of each point in the plot corresponds to the
amplitude of the wavelet coefficient function, which
provides information about the signal’s energy at a par-
ticular scale and time.

In this way, it is possible to build a dataset composed
of a set of images that are the WAV-DS scalograms. In
this work, the scalograms have been used to visualize
the patterns and trends in the power consumption data
for each time interval and to be able to use these im-
ages to apply Deep Learning techniques and perform
comparisons between the different techniques. Figure 5
shows different examples of scalograms in the same
window with total and disaggregated consumption of
appliances in house 1.

Therefore, we go from having a dataset composed of
time series of the aggregate power consumption to hav-
ing a set of wavelet transforms (WAV-DS) and scalo-
grams from those wavelets (SCA-DS) of 10-minute
time windows. It should be noted that, for each of these
datasets, we will work with the versions without and
with DAUG.
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Fig. 5. Scalograms generated from a window with a) the consumption of three appliances (bathroom-gfi, microwave, and refrigerator);
b) the disaggregated consumption of bathroom-gfi appliance; c) the disaggregated consumption of microwave appliance; d) the disaggregated
consumption of refrigerator appliance.

3.2.4. Classification models
The next step of the methodology (Step 5 in Fig. 2)

is given by applying two different classification algo-
rithms. On the one hand, we will use the MLkNN al-
gorithm. MLkNN is a classification algorithm used for
multi-label classification problems [43], which is nec-
essary for this problem, as more than one appliance
may appear in the same time window. The algorithm is
based on the K-Nearest Neighbor (KNN) method and
uses a supervised learning technique to assign labels

to new instances. The main goal is that for each data
instance, the K-Nearest Neighbors of it in the feature
space are searched, and their labels are used to assign
a label to the current instance. The labels are consid-
ered as binary vectors, where each label represents a
distinct class. The algorithm aims to find the k nearest
neighbors in the feature space and assign labels based
on the majority voting of the labels from the neighbors.
In addition, this algorithm has been chosen because it is
one of the most widely used in the literature [44,45,46].
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This algorithm works with numerical data, so, in our
study, we have used as input the WAV-DS composed of
the wavelets extracted from the data and discussed in
the previous Section.

On the other hand, we will use one of the most widely
used Deep Learning techniques, such as the classifica-
tion architecture based on Convolutional Neural Net-
works (CNN), and more specifically the ResNet-50 ar-
chitecture [47]. ResNet-50 is a deep convolutional neu-
ral network (CNN) architecture commonly used for im-
age recognition tasks. This architecture uses a tech-
nique called “residual connection” to allow the network
to learn deeper representations of images. A residual
connection is a way to allow information to flow di-
rectly through a layer without additional processing.
This helps avoid the problem of gradient fading, which
can make it challenging to train very deep neural net-
works. ResNet-50 consists of 50 layers including con-
volutional layers, pooling layers, and fully connected
layers. Specifically, the ResNet-50 architecture com-
prises five stages, each with a different number of resid-
ual blocks. The number of layers in each stage is as
follows:

– Stage 1: 1 convolutional layer + 1 pooling layer
– Stage 2: 3 residual blocks, each containing 3 con-

volutional layers
– Stage 3: 4 residual blocks, each containing 4 con-

volutional layers
– Stage 4: 6 residual blocks, each containing 6 con-

volutional layers
– Stage 5: 3 residual blocks, each containing 3 con-

volutional layers
In this study, ResNet-50 is used to classify multi-

ple categories of appliances from the sliding window
scalogram, detailed in Section 3.2.

The Binary Cross Entropy (BCE) loss with an ini-
tial sigmoid function was selected to implement this
multicategory problem on ResNet-50. BCE is a com-
monly used loss function in machine learning for binary
classification problems, such as the appearance or non-
appearance of a household appliance. This loss mea-
sures the difference between the predicted probability
distribution and the true probability distribution. Never-
theless, the BCE loss must be modified to handle one-
hot-encoded vectors when dealing with multicategory
classification problems, where the output has more than
two possible classes, such as the appearance of multi-
ple household appliances. The output of this network
consists of the probability distribution for each class as
a vector. To obtain a binary classification for each class,
an activation threshold of 0.5 was established, as this

presents a correct detection ratio. However, this value
could be modified to reduce false positives at the cost
of losing true positives if necessary.

The experiment was carried out following the cross-
validation method, where the selected folds correspond
to the six houses of the REDD dataset. Hence, six ex-
periments were carried out for each model with the
combination of use and non-use of augmentations. Each
fold uses as training the rest of the houses available for
training and the one selected as validation.

The results shown in this study correspond to the
mean and standard deviation obtained over all the folds,
considering only labels with at least five samples in
their test set. The labels that meet this support are bath-
room_gfi, dishwasher, disposal, electronics, furnace,
kitchen_outlets, lighting, microwave, outlets_unknown,
refrigerator, and washer_dryer.

Therefore, the MLkNN algorithm will work with
WAV-DS; on the other hand, CNN will process SCA-
DS. It should be noted that each algorithm will use its
corresponding dataset with the original data and an-
other with the data after applying the data augmentation
algorithm.

As a last step, comparative tables will be shown and
the results will be discussed in Section 4.

3.2.5. Statistical tests
To verify the performance of the different algorithms

proposed, a statistical framework has been applied in
two steps: Friedman’s statistical test and Holm post-hoc
procedure. The Friedman test is a non-parametric test
used to compare the effects of several conditions or
treatments on an ordinal dependent variable. The pur-
pose of the test is to determine whether there are sig-
nificant differences between the treatments evaluated,
such as the methods in our study [48] i.e., if at least
one of them has a different effect than the others. If the
null hypothesis is rejected, it can be concluded that at
least one treatment is different from the others. Once
the Friedman test is performed and the null hypothesis
is rejected, a post-hoc procedure is applied to determine
which treatments are significantly different from each
other. In this case, the Holm post-hoc procedure will be
used [49]. The Holm post-hoc procedure is a correction
for multiple comparisons that is used to adjust the p-
values obtained from the paired comparisons. This pro-
cedure is performed in several stages, where each stage
compares the smallest unadjusted p-value with its cor-
responding adjusted p-value. If the unadjusted p-value
is less than the adjusted p-value, the null hypothesis is
rejected for this comparison. If the unadjusted p-value
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Table 3
MLkNN results for WAV-DS regarding precision, recall, F1-score, and support for each appliance. The highest F1-score for each appliance is
in bold

Normal DAUG

Appliance Precision Recall F1-score Precision Recall F1-score Support
bathroom_gfi 0.19 ± 0.19 0.11 ± 0.08 0.13 ± 0.09 0.22 ± 0.12 0.22 ± 0.10 0.19 ± 0.07 53.250 ± 53.13
dishwasher 0.31 ± 0.23 0.51 ± 0.44 0.36 ± 0.27 0.43 ± 0.24 0.55 ± 0.28 0.480 ± 0.26 33.800 ± 27.81
disposal 0.05 ± 0.07 0.02 ± 0.03 0.03 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 28.500 ± 6.36
electronics 0.16 ± 0.00 0.03 ± 0.00 0.05 ± 0.00 0.37 ± 0.00 0.19 ± 0.00 0.25 ± 0.00 181.000 ± 0.00
furnace 0.42 ± 0.00 0.183 ± 0.00 0.26 ± 0.00 0.46 ± 0.00 0.50 ± 0.00 0.48 ± 0.00 120.000 ± 0.00
kitchen_outlets 0.12 ± 0.22 0.09 ± 0.05 0.16 ± 0.07 0.23 ± 0.15 0.16 ± 0.05 0.18 ± 0.08 74.667 ± 68.23
lighting 0.48 ± 0.31 0.68 ± 0.14 0.52 ± 0.26 0.42 ± 0.32 0.63 ± 0.06 0.45 ± 0.26 356.167 ± 290.60
microwave 0.48 ± 0.42 0.17 ± 0.24 0.22 ± 0.28 0.77 ± 0.17 0.38 ± 0.18 0.49 ± 0.18 175.667 ± 107.73
outlets_unknown 0.13 ± 0.00 0.33 ± 0.00 0.19 ± 0.00 0.07 ± 0.00 0.29 ± 0.00 0.10 ± 0.00 82.000 ± 0.00
refrigerator 0.94 ± 0.13 0.62 ± 0.32 0.72 ± 0.29 0.96 ± 0.08 0.63 ± 0.19 0.76 ± 0.17 1254.600 ± 588.16
washer_dryer 0.31 ± 0.38 0.09 ± 0.15 0.14 ± 0.21 0.64 ± 0.13 0.09 ± 0.08 0.16 ± 0.13 59.000 ± 43.31

is greater than the adjusted p-value, the null hypothesis
is accepted.

In summary, the Friedman test is going to be used to
determine if there are significant differences between
the evaluated algorithms, while the Holm post-hoc pro-
cedure is used to determine which methods are signifi-
cantly different from each other after the null hypothesis
has been rejected.

4. Results and discussion

This section details the results after applying the
methodology developed in the previous section. This
section is divided into two sections: first, the results of
applying the MLkNN algorithm to the original data and
the augmented data are presented (Section 4.1); and
second, the results of using ResNet-50 on both data sets
are shown (Section 4.2). Then, a statistical test will be
applied and the results obtained in both models will be
discussed.

4.1. MLkNN results

The results after applying MLkNN to the two data
sets are presented in this section. The same cross-
validation was applied for both datasets, with the re-
sults presented being the mean metric for all folds. In
addition, Grid Search CV has been used to optimize
the parameters, taking the number of neighbors (k) be-
tween 1 and 3. The parameter s which is the smoothing
parameter that controls the strength of uniform prior,
tested with 0.5, 0.7, and 1.0 and F1-Score was taken as
a metric. The F1-Score is a measure that combines the
precision and recall of the model. A higher F1-Score
indicates a better performance of the model in detect-
ing the corresponding appliance. Grid search indicates

that the best hyperparameters for the normal dataset
were k = 2 and s = 0.5, while for the data-augmented
dataset (DAUG) were k = 1 and s = 0.5.

Table 3 shows the MLkNN results regarding preci-
sion, recall, F1-Score, and support for each appliance,
for both the normal dataset and DAUG. The results are
the mean values of the validation for all the houses;
therefore, the mean is shown together with the stan-
dard deviation for each value. Additionally, the values
in bold indicate the highest F1-Score for each appli-
ance. Precision measures how many of the predicted
positive cases are actually true positives, while recall
is calculated as the ratio of true positives to the sum
of true positives and false negatives. The F1-Score is a
harmonic mean between precision and recall. Support
refers to the mean number of cases in the test split per
fold.

In this case, the results show that the models perform
poorly for most labels. It can be seen that no F1-score
higher than 0.5 is achieved for all appliances except the
refrigerator and lighting, where 0.76 and 0.52, in DAUG
and normal, respectively, are achieved. Furthermore, it
should be noted that the refrigerator label has a preci-
sion of 94.2 and 96.4 in both models, suggesting that
the model can effectively identify this class. Further-
more, we can see that the microwave has also achieved
proper precision, reaching 77.3 in the DAUG model,
from 48 without data augmentation. However, there are
appliances whose prediction has not been good, as is
the case of outlets_unknown, which has obtained a pre-
cision of 0.13 and 0.65 in each model. Unfortunately,
we did not find a reasonable explanation as to why for
this appliance, compared to the rest, the models obtain
results that can be significantly improved.

4.2. CNN results

This Section presents the results of CNN. In this case,
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Table 4
CNN results for SCA-DS without data augmentation regarding precision, recall, F1-score, and support for each appliance. The highest
F1-score for each appliance is in bold

Normal DAUG

Appliance Precision Recall F1-score Precision Recall F1-score Support
bathroom_gfi 0.12 ± 0.15 0.07 ± 0.12 0.05 ± 0.05 0.36 ± 0.12 0.38 ± 0.11 0.35 ± 0.08 53.250 ± 53.13
dishwasher 0.10 ± 0.15 0.02 ± 0.03 0.03 ± 0.05 0.38 ± 0.25 0.52 ± 0.33 0.42 ± 0.26 33.800 ± 27.81
disposal 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.35 ± 0.07 0.23 ± 0.15 0.27 ± 0.13 28.500 ± 6.36
electronics 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.28 ± 0.00 0.41 ± 0.00 0.33 ± 0.00 181.000 ± 0.00
furnace 0.76 ± 0.00 0.35 ± 0.00 0.48 ± 0.00 0.61 ± 0.00 0.69 ± 0.00 0.65 ± 0.00 120.000 ± 0.00
kitchen_outlets 0.32 ± 0.23 0.15 ± 0.10 0.16 ± 0.08 0.53 ± 0.24 0.61 ± 0.15 0.55 ± 0.20 74.667 ± 68.23
lighting 0.47 ± 0.28 0.61 ± 0.07 0.49 ± 0.23 0.34 ± 0.24 0.64 ± 0.02 0.40 ± 0.22 356.167 ± 290.60
microwave 0.41 ± 0.42 0.17 ± 0.22 0.18 ± 0.18 0.74 ± 0.17 0.63 ± 0.19 0.65 ± 0.06 175.667 ± 107.73
outlets_unknown 0.07 ± 0.00 0.09 ± 0.00 0.08 ± 0.00 0.16 ± 0.00 0.26 ± 0.00 0.19 ± 0.00 82.000 ± 0.00
refrigerator 0.90 ± 0.23 0.75 ± 0.26 0.81 ± 0.26 0.92 ± 0.18 0.82 ± 0.25 0.86 ± 0.22 1254.600 ± 588.16
washer_dryer 0.59 ± 0.52 0.39 ± 0.34 0.47 ± 0.41 0.66 ± 0.41 0.65 ± 0.36 0.65 ± 0.39 59.000 ± 43.31

the scalograms generated from the wavelets were used
as data to train the model. The results are presented for
SCA-DS without and with data augmentation (DAUG).
The Resnet-50 architecture and a fine-tuning with the
same configuration for both datasets: 4 epochs with
frozen weights and 20 epochs with unfrozen weights,
and a base learning rate of 0.003. The results of these
models are shown in Table 4. As in Table 3, the best
result in terms of F1-score for each appliance is shown
in bold.

As can be seen, the results obtained by the CNN
applied to the scalograms have obtained good results.
We can see how, in terms of F1-Score, the highest values
are in the model that has used data augmentation. It
should be noted that the furnace, the kitchen_outlet,
the microwave, the refrigerator, and the washer_dryer
obtained F1-Score above 0.5, with the fridge the highest
with 0.864 for DAUG. This means that the model has
identified some positive examples for this class, but has
missed many others, resulting in low recall.

In this table, we can see that the algorithm has im-
proved significantly in terms of precision, recall, and
F1-Score for most of the labels compared to the results
of MLkNN. In particular, the CNN-DAUG method has
significantly improved the classification of disposal,
kitchen_outlets, and washer_dryer appliances, which
were difficult to classify in MLkNN, even with data
augmentation.

In addition, it has improved the recall and precision of
the washer_dryer and furnace appliances. In particular,
the classification of the washer_dryer label stands out,
with a much higher recall value compared to MLkNN,
achieving an improvement of +0.56 points. In terms
of precision, the furnace label also obtains an essential
change from MLkNN, achieving an improvement of
+0.31 points.

The results indicate that the CNN model with the pro-
posed data augmentation has achieved significantly bet-
ter performance in classifying most appliances than the
MLkNN model. However, the most significant change
is in data augmentation, which has led to detections
where previously this was not possible.

As can be seen, there has been a notable improve-
ment in the use of data augmentation, in general, in all
household appliances. It can be seen that the disposal
and electronics have obtained an F1-Score of 0.269
and 0.333 respectively, while in the SCA-DS without
DAUG, they obtained 0.0. Furthermore, we can see that
in the case of the kitchen_outlets and microwave, the
result has improved significantly, achieving a gain in
F1-Score of +0.388 and +0.468 points. However, in
appliances that already had an acceptable F1-Score,
such as lighting and “refrigerator”, we see that they
have also improved, but to a lesser extent.

Finally, we compare the results obtained with
MLkNN and CNNs with and without data augmenta-
tion in Fig. 4.2. The figure illustrates the results for each
algorithm in terms of the F1-Score for the appliances.

Focusing on the MLkNN results, it can be seen at a
glance that the MLkNN-DAUG results generally im-
prove MLkNN. However, if we analyze the details, it
can be observed that the result of some appliances was
better in MLkNN. On the one hand, we find appliances
where the results between the two models are similar,
like lighting and washer_dryer. There are other cases
in which the DAUG has had a slight negative influ-
ence, such as in the case of outlets_unknown. We also
found other appliances whose identification has been
facilitated by the DAUG, such as electronics, furnaces,
dishwashers, and microwaves. It could be affirmed that,
in general, DAUG has helped identify the appliances,
as the results are improved in 8 of the 11 appliances
shown. Moreover, the improvement is very noticeable in
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some cases, such as those with high consumption, such
as in the furnace or the microwave. However, some ap-
pliances, such as lighting, do not improve with DAUG,
and this may be due to the fact that the consumption of
this one has a shape that could lead to confusion with
others.

It was observed that the “refrigerator” label had the
best results in all algorithms evaluated. In contrast, the
labels “dishwasher” and “microwave” presented the
lowest performance, and this could be because these
techniques do not perform well in minority classes,
since classes with a more significant amount of real data
will exhibit better predictive performance. In general, it
can be concluded that classifying electrical appliances
in a smart home remains a challenge for machine learn-
ing algorithms. The results suggest that the choice of
algorithm is highly dependent on the classification label
considered and that further exploration and experimen-
tation with different machine learning techniques are
still needed to improve the performance of appliance
classification in a smart home.

The results indicate that the CNN and CNN-DAUG
algorithms achieved the best results for most appli-
ances, with F1-Scores that reach 0.86 in the refrigera-
tor. In contrast, the MLkNN and MLkNN-DAUG al-
gorithms had lower performance, especially in detect-
ing appliances such as disposal, kitchen_outlets, and
washer_dryer. It is important to note that the results
presented may depend on various factors, such as the
quality and quantity of training data, the selection of
features, and the parameters used in classification algo-
rithms. In addition, a statistical evaluation would be of
interest to determine whether the differences between
the algorithms are significant. In general, the results
suggest that using convolutional neural networks (CNN)
with the proposed data augmentation can effectively de-
tect home appliances, obtaining more significant results
in minority classes.

4.3. Statistical analysis

This section presents the results of the statistical anal-
ysis. To carry out the statistical test, the mean F1-Score
of the appliances for each MLkNN and CNN was taken
into account, without and with data augmentation. To
determine whether these performance differences were
statistically significant, the non-parametric Friedman
test and the Holm post hoc test were used to determine
any significant differences between the performances of
multiple results. The test uses a chi-square distribution
to calculate a p-value indicating whether the observed

Table 5
Sorted ranked mean for Fried-
man’s test

Algorithm Ranking
CNN-DAUG 2.48
MLkNN-DAUG 4.54
MLkNN 5.45
CNN 5.70

Table 6
Post-hoc Holm procedure results using
CNN-DAUG as the control method

Algorithm p z

MLkNN-DAUG 0.0389 2.0643
MLkNN 0.0059 2.9726
CNN 0.0038 3.2203

performance differences between the algorithms are
statistically significant. The test requires the F1-Scores
of each algorithm on each appliance as input. Apply-
ing the Friedman test to the given dataset, a chi-square
value of 29.2938 and a p-value of 0.0011 are obtained,
which may indicate significant differences between the
performance of the algorithms.

According to the Friedman test and the mean ranking
in Table 5, CNN-DAUG is the best algorithm, followed
by MLkNN-DAUG and MLkNN, and CNN in the last
position. Furthermore, according to Holm’s post hoc
test (Table 6), there are significant differences between
CNN-DAUG and the other algorithms, as the p-values
are lower than the alpha of 0.05. On the other hand, z
refers to the test statistic used to compare differences
between group means and determine their significance.
The “z” statistic is based on the difference between the
means of the group and takes into account variance and
sample size. In summary, applying the Friedman and
Holm post hoc tests to the given dataset, we find sig-
nificant differences between the performance of CNN-
DAUG and the other algorithms. The CNN-DAUG al-
gorithm performs significantly better than the other
three algorithms, while the CNN algorithm performs
the worst.

4.4. Comparison with state-of-the-art

In this section, we will compare the performance of
our proposed algorithms with the current state-of-the-
art methods in the field. We will consider a wide range
of popular and well-established techniques as bench-
marks to ensure a fair and comprehensive comparison.
These methods will be evaluated using the same dataset
and performance metrics used for our algorithms. This
will ensure that the comparison is based on the same
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Table 7
Comparison of F1-Score over four appli-
ances on House 2 between Machlev et al.
[22] and our proposed method

Appliance Machlev et al. Our
Dishwasher 0.36 0.55
Kitchen Outlet 0.72 0.79
Refrigerator 0.98 0.97
Microwave 0.77 0.72

ground and hence, provide a reliable assessment of the
performance of our proposed approaches.

Nevertheless, some state-of-the-art studies do not
sufficiently specify the partitions established and the
data treatment performed. For this reason, when they do
not determine the house used as validation, we compare
them with the average obtained by all the houses, which
will be specified in the description of the results.

In contrast to Machlev et al. [22], our study focuses
on all available appliances, validating with 11 due to the
number of sample restrictions. Nonetheless, we have
used the four appliances that overlap with their research
for this comparison. To establish a basis, we utilized
the first scenario, household two. This was deemed
appropriate since other scenarios do not encompass
the entirety of electricity usage in a household or use
different datasets.

Table 7 reveals a significant improvement in the clas-
sification of “dishwasher”, with a gain of +0.19 points,
and once again, the class “Kitchen Outlet” outperforms
with an increase of +0.07 points. However, our re-
sults for “refrigerator” and “microwave” are similar and
slightly lower.

Our next step was to compare our results with those
from the studies by Singh et al. [23], and Verma et
al. [24]. Although these studies did not present the vali-
dation data, we assumed they evaluated a random se-
lection, given that they only indicated the percentage
used. We used the average obtained in our experiments
to compare our results, validated using independent
houses. We also included the standard deviation of these
results. As in the previous study, we compared the co-
inciding ones as they do not have many classes.

Table 8 compares our proposed algorithms’ per-
formance with existing studies, where “dishwasher”,
“Kitchen Outlet” and “Lighting” show inferior results.
The “Washer Dryer” scores similarly, considering the
standard deviation, while our proposal demonstrates
superior outcomes in the “refrigerator” category, with a
gain of +0.10 points. Our methodology ensures a more
rigorous and realistic validation of our algorithms’ per-
formance by never using the same house for training
and validation. Therefore, the results cannot be entirely

Table 8
Comparison of F1-Score over five appliances between Singh et
al. [23], Verma et al. [24] and our proposed method

Appliance Singh et al. Verma et al. Our
Dishwasher 0.74 – 0.43 ± 0.26
Kitchen outlet 0.66 0.76 0.55 ± 0.20
Lighting 0.70 0.72 0.40 ± 0.22
Washer dryer 0.70 0.74 0.65 ± 0.39
Refrigerator – 0.76 0.86 ± 0.22

Table 9
Comparison of F1-Score over two appliances on
House 1 and House 3 between Hur et al. [25] and
our proposed method

Hur et al. Our

Appliance H.1 H.3 H.1 H.3
Refrigerator 0.84 0.85 0.46 0.97
Microwave 0.81 0.82 0.60 0.64

comparable to those of studies using random partition
selection.

We compared our study with the one by Hur et
al. [25], which had two similar appliances. Their study
included House 1 and House 3, training with one and
validating with the other. However, their model could
result in low generalization when applied to an actual
system. To avoid this, our training data included the
remaining houses, even if this means a deterioration in
performance.

Table 9 displays the outcomes obtained from testing
the “refrigerator” and “microwave” appliances in two
houses, comparing the study of Hur et al. [25] and ours.
It is noticeable that the “refrigerator” results are lower
in House 1, possibly due to differences in consump-
tion patterns compared to the other houses. However,
compared to Hur et al.’s study, our “refrigerator” re-
sults in House 3 show an improvement of +0.12 points,
achieving a high precision F1-Score of 0.97. In contrast,
the “microwave” appliance shows lower results in our
study, possibly due to the difficulty of detecting this
appliance among the other appliances included in our
research.

Finally, we compared our results with the most re-
cent study presented, which, like us, utilizes 2D-CNN
models and wavelets, thereby giving a more direct com-
parison standpoint. In their research, Shahab et al. [26]
used four appliances to test their system, for which we
will provide comparative results. Furthermore, in this
case, the metric used is accuracy, as they used it in their
study to showcase their per-appliance results.

Table 10 shows the average accuracy obtained in our
study with different houses, accompanied by standard
deviation, compared to the study by Shahab et al. [26].
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Table 10
Comparison of accuracy over four appliances between
Shahab et al. [26] and our proposed method

Appliance Shahab et al. Our
Dish washer 94.60% 97.76% ± 0.42
Microwave 94.41% 94.09% ± 2.50
Refrigerator 86.58% 81.71% ± 25.29
Washer dryer 89.97% 98.95% ± 0.20

As their research does not specify which houses were
used for training and testing, we assume that the parti-
tion selection is random over the entire set. Based on
these results, we can see that our system surpasses the
accuracy obtained in the “Dish Washer” class with an
improvement of +3.16 points and the “Washer Dryer”
class with a gain of +8.98 points, which is a consid-
erable improvement. On the other hand, we present a
similar accuracy in the “Microwave” class and slightly
lower in the “Refrigerator” class. However, in the latter
case, the standard deviation is very high due to the sig-
nificantly lower precision observed during the valida-
tion of House 1, which is much higher in the remaining
houses.

5. Conclusions

In this study, we have conducted a thorough evalua-
tion of two machine learning algorithms, MLKnn and
CNN, in the context of appliance classification within
a smart home environment. Our analysis focused on
comparing these algorithms in terms of precision, re-
call, and F1-Score using both an original dataset and
one augmented with data augmentation techniques. The
results have clearly demonstrated that the CNN model,
particularly when enhanced with our proposed data aug-
mentation techniques, exhibits superior performance
over MLKnn in handling the complexities of NILM
tasks. This combination of advanced modeling with
customized data enhancement represents a significant
advancement in the classification of electrical appli-
ances, effectively addressing both the challenges of data
scarcity and the variability inherent in appliance energy
usage patterns.

However, while our findings indicate a notable im-
provement, we also observed that the classification met-
rics for many appliances did not reach the high stan-
dards anticipated. This highlights a critical aspect of our
research, showcasing the intricate challenges inherent
in NILM due to the diverse and variable nature of appli-
ance behavior and energy consumption patterns. These
results underscore the need for the ongoing refinement

and development of more sophisticated models and ap-
proaches in this domain.

In addition, the practical implications of our study are
significant. The deployment of our system in homes or
buildings with access to real-time electrical consump-
tion data, facilitated by low-cost sensors or smart me-
ters, opens up possibilities for detailed energy use anal-
ysis. This could lead to substantial reductions in energy
waste, lower energy bills, and a decrease in greenhouse
gas emissions, contributing to environmental sustain-
ability.

Future research directions, as identified from our
study, include exploring diverse data preprocessing
techniques to enhance the quality of input data and fur-
ther deepening the investigation into the impact of data
augmentation. Testing our methodology with varied
datasets such as UK-DALE [50], SynD [51], or EN-
ERTALK [52] will help assess its applicability in dif-
ferent scenarios and domains. Additionally, the explo-
ration of new and emerging Deep Learning architectures
and machine learning techniques, including Neural Dy-
namic Classification algorithms [53], Dynamic Ensem-
ble Learning Algorithms [54] and self-supervised learn-
ing [55], holds promise for uncovering more nuanced
and complex patterns in energy consumption data.

In conclusion, the results of this study are poised to
make a substantial contribution to the field of smart
home appliance classification. They provide a founda-
tion for future research aimed at developing more accu-
rate and efficient methods for NILM, ultimately helping
in the global effort to promote more sustainable and
efficient energy use in households and buildings.
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