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Abstract. Distributed Machine learning has delivered considerable advances in training neural networks by leveraging parallel
processing, scalability, and fault tolerance to accelerate the process and improve model performance. However, training of large-
size models has exhibited numerous challenges, due to the gradient dependence that conventional approaches integrate. To improve
the training efficiency of such models, gradient-free distributed methodologies have emerged fostering the gradient-independent
parallel processing and efficient utilization of resources across multiple devices or nodes. However, such approaches, are usually
restricted to specific applications, due to their conceptual limitations: computational and communicational requirements between
partitions, limited partitioning solely into layers, limited sequential learning between the different layers, as well as training a
potential model in solely synchronous mode. In this paper, we propose and evaluate, the Neuro-Distributed Cognitive Adaptive
Optimization (ND-CAO) methodology, a novel gradient-free algorithm that enables the efficient distributed training of arbitrary
types of neural networks, in both synchronous and asynchronous manner. Contrary to the majority of existing methodologies, ND-
CAO is applicable to any possible splitting of a potential neural network, into blocks (partitions), with each of the blocks allowed
to update its parameters fully asynchronously and independently of the rest of the blocks. Most importantly, no data exchange is
required between the different blocks during training with the only information each block requires is the global performance of
the model. Convergence of ND-CAO is mathematically established for generic neural network architectures, independently of
the particular choices made, while four comprehensive experimental cases, considering different model architectures and image
classification tasks, validate the algorithms’ robustness and effectiveness in both synchronous and asynchronous training modes.
Moreover, by conducting a thorough comparison between synchronous and asynchronous ND-CAO training, the algorithm is
identified as an efficient scheme to train neural networks in a novel gradient-independent, distributed, and asynchronous manner,
delivering similar – or even improved results in Loss and Accuracy measures.

Keywords: Neural networks, cognitive adaptive optimization, gradient free training, distributed learning, model parallelism,
asynchronous training, asynchronous training of neural networks

1. Introduction

1.1. General

Highly advanced Artificial Intelligence (AI), along
with its associated sub-disciplines like machine learn-
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ing (ML), paved the way for a wide range of real-world
applications in sectors such as visual recognition sys-
tems, language understanding, automated translation
techniques, and robotic innovations [1–18]. In recent
years, the most prominent sub-field of machine learning
(ML), Artificial Neural Networks (ANNs), have been
widely and effectively utilized to transform technologi-
cal advancements and elevate both businesses and daily
life towards a new stage of AI sophistication [19–25].

ANNs are layered mathematical models capable of
extracting semantic meaning and patterns from com-
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plex data. By simulating the biological nervous sys-
tem through algorithmic training, these computational
structures excel at learning, identifying hidden patterns,
detecting interrelations, clustering, classifying, and un-
covering anomalies. DNNs, a type of ANN, handle in-
tricate, high-dimensional information using intercon-
nected layers of nodes. They address more challeng-
ing problems by providing increased depth and com-
plexity of data processing compared to traditional ANN
structures. DNNs have rapidly revolutionized problem-
solving and our interaction with technology [26]. Some
important groundbreaking DNN implementations con-
cern healthcare [27–29] structural safety [30,31], traffic
incident detection [32,33], facial recognition [25,34],
predictive analytics [35,36], and personalized medical
diagnosis [37–41].

Deep neural networks (DNNs) however require a
more challenging training procedure, than traditional
artificial neural networks (ANNs) because of the in-
creased depth and complexity of the network architec-
ture. To this end, novel distributed machine learning
approaches have been utilized in order to enable the dis-
tributed computation of different parts of the model on
separate devices, reducing memory requirements and
enabling scalability to handle complex models with lim-
ited resources. The conventional approach to effectively
train such sophisticated models was the utilization of
gradient-based distributed algorithms [42]. However,
despite the huge success and the wide applicability of
gradient-based methodologies, their efficiency is pro-
hibited by their gradient dependency, especially in cases
where deep and scaled-up ANN architectures are con-
sidered. Such challenges most commonly arise from the
following factors:

– Dependency among layers and Difficulty for par-
allelism: Gradient-based approaches typically uti-
lize back-propagation for updating the parameters
of the ANN which prohibits the parallel calcula-
tion of the gradients that belong to different layers:
the gradient computations of the layer parameters
strongly depend on the computations of the previ-
ous layers, prohibiting the parallel updating of the
parameters. To this end, the computational process
needs to take place in a sequential mode where the
calculation of parameters of one layer starts only
when the calculations of the previous layer have
been finalized, prohibiting a more computation-
ally and timely efficient parallel/distributed learn-
ing process. This dependency may lead to slow
training and convergence rates, especially in large
ANNs, as well as memory and computational inef-

ficiencies, especially when training large datasets
are involved [43].

– Computational and Communicational Require-
ments: In ANN applications, memory limitations,
and communication constraints can arise when
handling activation values, derivatives, and weight
adjustments across the neural network. To main-
tain weights and compute errors efficiently, a sig-
nificant storage capacity is required, often in the
range of hundreds of megabytes or even gigabytes.
This necessitates using multiple CPU and GPU
devices in pipelined ANNs, as on-chip memory
alone may be insufficient [44]. Transferring data
between different hardware devices becomes nec-
essary, even in custom accelerators that solely fo-
cus on feed-forward execution. Such accelerators
rely on external memory for loading weights and
storing intermediate activation functions [45–48].
Furthermore, the increasing scale of datasets and
ANN parameters in machine learning and deep
learning applications call for high-performance
specialized equipment like powerful GPUs. Train-
ing large-scale frameworks and optimizing hy-
perparameters require substantial effort, time, and
energy, which can be expensive. Gradient-based
methodologies, given their distribution of informa-
tion across computational machines and optimiza-
tion of non-convex objectives, reinforce the need
for specific and costly hardware resources [49].
Overall, the challenges posed by memory limita-
tions, data transfer, and the demands of large-scale
frameworks emphasize the requirement for spe-
cialized and high-performance equipment in ANN
training.

– Topological Distribution: Stretching across the en-
tire edge-to-cloud continuum, including the cloud,
the edge (fog), and ultimately reaching the end-
devices, suggestions have been put forth for ANNs
utilizing distributed architectures recently [50].
Such architectures may even result in an actual
geographical distribution where parts of the ANN
are located in different geographic locations [51].
In this case, the conventional Gradient-based ap-
proaches that utilize the back-propagation algo-
rithm, obviously preserve limitations, since up-
dating the parameters requires a part-by-part (or
location-by-location) approach following the layer
dependency limitation.

– Non-analytic Scenarios: In general, gradient-based
methodologies are applicable when an analytic for-
mula of the cost function and its gradient are avail-
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able. There are certain applications such as sen-
sor networks [52], neural network control [53,54],
adaptive fine-tuning of large-scale control sys-
tems [55,56] or embedding autonomy in large-
scale IoT ecosystems [57] where analytic forms of
the cost function and its gradient are not available
and, thus the implementation of gradient-based
methodologies is not possible. In these situations,
traditional methods of gradient-based optimiza-
tion, such as gradient descent, cannot be directly
applied. Instead, alternative approaches need to be
considered to estimate or approximate the gradient

To overcome the above shortcomings, distributed,
gradient-free training methods have been proposed,
widely analyzed, and evaluated in literature [31,42,
58,59]. Such frameworks enable efficient, robust, and
large-scale training of deep neural networks adding im-
proved computational scalability. By utilizing paral-
lelism across multiple devices, scientists increased ro-
bustness to noisy data, and enhanced their ability to
escape local minima, aiming towards global optimiza-
tion solutions. This paper concerns the introduction and
evaluation of the Neuro-Distributed Cognitive Adaptive
Optimization Methodology (ND-CAO) for Training Ar-
tificial Neural Networks (ANN). Acting as a proof-of-
concept current research work introducing the algorithm
to literature and indicating its unique attributes towards
the gradient-independent and asynchronous distributed
training of Neural Networks. Apart from introducing
the algorithm and its novelty, the current work inte-
grates a detailed experimental section of 3 simulation
cases – 15 simulation scenarios overall – for the evalua-
tion of ND-CAO in asynchronous mode. The algorithm
has been put to a test under various neural network
architectures considering different datasets that con-
cerned image classification applications (FNN/MNIST,
FNN/Fashion MNST, CNN/MNIST, CNN/CIFAR10).
ND-CAO exhibited its adequacy in every case scenario
– even in cases where a substantial number of network
blocks – nodes and parameters – acted asynchronously.

1.2. Paper architecture

The paper may be summarized as follows: Section
1 concerns the description of the current status of dis-
tributed training of neural networks, along with the
challenges arising from the gradient dependence that
conventional approaches integrate. In Section 2 a de-
tailed Literature work, considering the novel distributed
gradient-free methodologies is illustrated, along with
their limitations arising from the current implementa-

tions found in the literature. Next, in Section 3, the Nov-
elty of ND-CAO is assessed illustrating the unique at-
tributes of the examined scheme. This section integrates
also the potential applications that ND-CAO methodol-
ogy may serve, based on its novel attributes. Section 4
considers the description of each experiment case setup
along with the evaluation of the algorithm’s training
adequacy. Comparison between synchronous and asyn-
chronous scenarios for every case is being assessed and
followingly, the primary verdicts are being illustrated.
Section 5 concerns the final conclusions and also the
future potential arising from ND-CAO creation toward
challenging deep learning applications.

2. Literature work

According to the literature, two primary classes of
methodologies are thoroughly examined in order to
provide both gradient-free as well as distributed ma-
chine learning in Neural Networks: BCD-Block coordi-
nates descent variants and ADMM-Alternating Direc-
tion Method of Multipliers variants.

2.1. Gradient-Free Block Coordinate Descent
(GF-BCD)

According to Gradient Free BCD methodology, the
neural network is divided into segments in non-convex
optimization strategies, which serve as an example of
a straightforward iterative algorithmic approach. By
maintaining the other coordinates fixed, the algorithm
sequentially strives to minimize the objective function
within each block coordinate.; see e.g. [60]. Many dif-
ferent GF-BCD methodologies have been proposed for
training ANNs, see e.g. [61–66]. The convergence of
GF-BDC algorithms, when applied to different types
of ANNs, has been extensively studied. For instance, a
GF-BCD methodology concerning Tikhonov regular-
ized deep neural network by [63] that employs ReLU
activation functions can be established using the results
of [67]. As concerns other activation functions, [64]
and [65] manage to improve the lifting trick – orig-
inally introduced in [63] towards multiple reversible
activation functions but the aforementioned practices
haven’t presented convergence guarantees for any of
their schemes. As concerns as other efforts, the GF-
BCD-based algorithm utilized in [68] converges to sta-
tionary points globally. Another GF-BCD-based algo-
rithm, suitable for distributed optimization, namely Par-
allel Successive Convex Approximation (PSCA), was
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suggested in [69], exhibiting adequate convergence as
well. Similarly, in more recent research, GF-BCD uti-
lized for training Tikhonov Regularized ANNs, exhib-
ited its global convergence to stationary points using
R-linear convergence [63].

2.2. Gradient-Free Alternating Direction Method of
Multipliers (GF-ADMM)

Developed in the 1970s, the ADMM methodology
represents a proximal-point optimization framework
that has been recently popularized by Boyd et al. [70]
for distributed machine learning applications. During
its operation, the algorithm separates the problem into
loosely-coupled sub-problems and since some of them
may be addressed separately, it establishes paralleliza-
tion. Gradient-free versions of the ADMM algorithm
achieve linear convergence for solely convex prob-
lems, and can also address specific non-convex op-
timization problems [71,72]. So far though, there is
no mathematical proof or evidence that ANN train-
ing is one of these non-convex optimization problems.
Thus, even if it has been experimentally utilized to-
wards ANN training [49,73], there is still a lack of
concern about its convergence guarantee. As concerns
the latest distributed machine learning implementa-
tions regarding GF-ADMM, they are following two
tendencies deepened by synchronicity [74]: a) Syn-
chronous problems: this approach commonly demands
computational machines to optimize the ANN param-
eters timely, before the global update of the consen-
sus variable: researchers in [75] suggested the appli-
cation of distributed GF-ADMM in order to address
the congestion control issue; while in [76] integrates an
analysis concerning the convergence characteristics of
the distributed GF-ADMM in relation to network com-
munication challenges. Another research effort con-
sidering synchronous problems addressed by the dis-
tributed GF-ADMM is referred in [77–81]; b) Partly
asynchronous problems: in this approach, a number of
computational machines are allowed to hold the update
of the parameters of the ANN. Additionally, the con-
vergence of distributed GF-ADMM was successfully
evaluated towards asynchronous problems in [82–84].
Another recent important research concerns Kumar et
al. where distributed GF-ADMM addressed multi-agent
problems over heterogeneous networks [85]. We might
say that the majority of the potential research efforts are
utilizing distributed GF-ADMM toward synchronous
problems. Nevertheless, there is still a lack of a gener-
alized scheme for GF-ADMM for training ANN in a
distributed fashion [74].

2.3. Limitations of gradient-free distributed
methodologies

However, while gradient-free distributed methods
may provide useful solutions in certain situations their
applicability presents multiple limitations:

– Topology restrictions: It is noticeable that the
majority of the existing approaches in the lit-
erature are applicable only when each of the
blocks/partitions corresponds to a specific layer of
the ANN. In other words, the majority of the ex-
isting algorithms consider that each of the ANN’s
layers is a separate partition, assigning a compu-
tational machine to each of the layers. This sep-
aration may be sometimes problematic since (a)
machines with different computational capabilities
may be available, in which case, splitting the ANN
into partitions that correspond to exactly one layer
maybe not be efficient and (b) there may be cases –
e.g., the case of geographically distributed ANNs
– where the one-to-one correspondence between
blocks and layers may be not suitable.

– Limited parallelism: Both distributed approaches
update parameters one block at a time, which can
limit the level of parallelism that can be achieved
during training. This can be particularly problem-
atic for large-scale problems or deep neural net-
works that require a significant amount of com-
putation. Most of the existing approaches in the
literature illustrate sequential training for the pa-
rameters of each layer for updating their values.
For instance, in many cases, a specific layer is al-
lowed to update its parameters only if its previ-
ous block/layer has completed its update. The re-
quirement of following a specific sequence in the
updating of the layers (or partitions) leads to de-
lays in the overall training procedure which could
have been avoided if a fully asynchronous training
algorithm would be available, i.e., an algorithm
where each of the blocks updates their parameters
independently of what is happening to the rest of
the blocks.

– Communication demand: Typically the gradient-
free distributed algorithms for ANN training re-
quire a significant amount of data exchange be-
tween the different layers to accomplish the update
tasks. This may be a severe drawback, especially
in cases where a hardware implementation of the
training procedure is required.

– Computational demand: The training procedure
employed in each of the blocks is quite com-



P. Michailidis et al. / ND-CAO for training neural networks in a parallel and asynchronous manner 23

putationally expensive which, sometimes, leads
the ANN users to prefer using centralized ap-
proaches which employ less computationally ex-
pensive schemes. To this end, converge is slow, es-
pecially when dealing with non-convex loss func-
tions. This can be a disadvantage when training
large-scale or complex models, where fast conver-
gence is critical.

– Lack of flexibility: Distributed, gradient-free me-
thodologies are usually designed for specific types
of problems, and may not be well-suited to prob-
lems with irregular or complex structures. It is no-
ticeable, that the convergence of gradient-free, dis-
tributed algorithms has been mathematically es-
tablished for a specific type of ANNs (e.g., ANNs
with specific activation functions).

Overall, while both approaches provide useful op-
timization for training neural networks in certain sce-
narios, do not portray a one-size-fits-all solution, and
their efficiency depends on the specific problem being
solved. When splitting an ANN into blocks, it’s im-
portant to consider the communication and synchro-
nization between the blocks to ensure convergence and
coordination. Techniques such as parameter exchange,
consensus algorithms, or periodic updates can be em-
ployed to facilitate cooperation among the blocks and
minimize any negative impact on overall performance.
The choice of how to split an ANN into blocks depends
on the specific problem, the available computational re-
sources, and the desired trade-offs between parallelism,
coordination, and communication overhead.

3. Novelty and contribution of neuro-distributed
cognitive adaptive optimization (ND-CAO)

3.1. Novelty attributes

In this paper, we introduce the Neuro-Distributed
Cognitive Adaptive Optimization (ND-CAO) method-
ology for gradient-free, distributed training of arbitrary
scale ANNs. Based on an already well-evaluated dis-
tributed optimization algorithm – namely Local4Global
CAO (L4GCAO) algorithm [55–57,86–91] for embed-
ding autonomy in large-scale IoT ecosystems, ND-CAO
application has as its primary aim to overcome sev-
eral shortcomings of the already evaluated gradient-
free distributed algorithms and also to provide a novel
distributed framework suitable also for asynchronous
training of Neural Networks. An important feature of
the algorithm is grounded on the limited communica-

tional requirements that the ND-CAO scheme requires.
Contrary to distributed algorithmic schemes that de-
mand the exchange of information between the different
network blocks, ND-CAO updates its network block
parameters towards global error minimization – to this
end, no data exchange is required between the differ-
ent blocks during training. The only information each
block requires is the global performance of the model.
Consequently such an attribute unlocks two primary
attributes of ND-CAO operation:

3.1.1. ND-CAO potential for asynchronous and
distributed training of each network block

An attribute that has not been tested in literature – at
least on model parallel terms. This paper is primarily
focused on illustrating ND-CAO adequacy in training
an ANN in asynchronous mode since such scheme eval-
uation is significantly limited in literature in compari-
son to conventional synchronous approaches. However,
we prove that such an attribute is adequate to provide
several benefits over synchronous training. For exam-
ple, it is adequate to improve the speed of training as
the network blocks can update the model weights in-
dependently and in parallel. Additionally, it can han-
dle scenarios where the blocks need different comput-
ing capabilities or network bandwidth, as each block
can work at its own pace without waiting for others.
To this end, asynchronous training is potentially more
scalable and efficient for large neural networks – espe-
cially when the model is too large to fit into a single
processor’s memory – facts that are also being iden-
tified by concerned simulation experiments in various
datasets and neural network architectures. However, it’s
important to note that asynchronous training can be
more challenging than conventional synchronous train-
ing since the updates from different blocks can interfere
with each other and lead to sub-optimal results: it may
require more careful tuning of the algorithm parameters
to ensure convergence and avoid interference between
nodes. However, according to the integrated results of
the current simulation experiments – 15 in total – such
a phenomenon does not take place when ND-CAO is
applied since convergence is achieved in every case
scenario.

3.1.2. ND-CAO adequacy to support every neural
network distribution scheme

Splitting an Artificial Neural Network (ANN) into
blocks or partitions can be done in different ways based
on various factors such as network architecture, compu-
tational resources, and problem characteristics. To this
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end, the most common approach is to split the network
by grouping layers into blocks (Layer-wise), or even
into individual nodes or neurons (Node-wise). This ap-
proach can be useful when the computational resources
are limited or when specific parts of the network re-
quire more parallelization. Each block would contain
a subset of nodes and their corresponding connections
would be limited to the nodes within the same block.
Moreover dividing the network’s towards its parameters
or weights into separate parts, each associated with a
specific block or partition is another option (Parameter-
wise). Such distribution may lead to improved scala-
bility, reduced computational burden, and faster train-
ing times. However, the effectiveness of partitioning
strategies depends on factors such as problem com-
plexity, network architecture, and the communication
and coordination mechanisms employed. Moreover, if
the model performs multiple tasks or has multiple out-
puts, one may consider partitioning the network based
on the tasks (Task-wise). Each block would focus on
a specific task, allowing for independent training and
optimization. Last but not least, a combination of the
above approaches might be suitable. The model may be
partitioned at multiple levels, such as layer-wise parti-
tioning within each block and node-wise partitioning
within certain layers. This can provide flexibility and
customization based on the specific requirements of
the problem. Based on Fig. 1 Neural Network, Fig. 2
Illustrates Node-wise, Layer-wise as well as Hybrid-
wise partitioning. It should be mentioned that for sim-
plicity reasons the number of nodes per layer has been
considered the same and equal to n. The number of
Layers is equal to K while the number of the parti-
tioned Network Blocks (N1, N2, N3..NR) have con-
sidered equal with R. The ND-CAO algorithm is ade-
quate to support every case of partitioning – in model
parallel terms – since it is applicable to any poten-
tial splitting of ANN into blocks/partitions: Node-wise
(n = R), Layer-Wise (K = R), Parameter-wise and
potentially Task-wise and Hybrid-wise partitioning. To
this end, the ND-CAO methodology significantly con-
tributes to current gradient-free distributed algorithmic
implementations, since current literature implementa-
tions are limited to Layer-wise Partitioning schemes
– and that in solely synchronous training mode: cur-
rent work exhibits Node-wise (Case I: FNN/MNSIT
and Case II: FNN/Fashion MNIST) and Parameter-wise
(Case III:CNN/MNIST and Case IV:CNN/CIFAR10)
partitioning as indicative examples in order to reveal
the adequacy of the algorithm to support such schemes.

All and all, the novelty attributes of the proposed
algorithm may be summarized as follows:

– ND-CAO is applicable to any possible splitting of
ANN into blocks/partitions.

– Each of the blocks is allowed to update its param-
eters fully asynchronously and independently of
the rest of the blocks/partitions.

– Most importantly, no data exchange is required
between the different blocks during training. The
only information each block requires from “out-
side” is the global performance of the ANN.

– The training of each block is accomplished us-
ing a computationally inexpensive least-squares
algorithm.

– Convergence of the ND-CAO is mathematically
established for generic ANNs architectures, in-
dependently of the particular choices made for
e.g., activation functions, etc. More precisely, it is
shown that ND-CAO behaves approximately the
same as asynchronous gradient-based BCD which
was shown to converge to the same points as the
ones of conventional fully centralized back propa-
gation.

ND-CAO aim represents the first approach that sup-
ports a distributed and also asynchronous training of
Neural Networks. Except from illustrating a novel con-
cept and mathematic methodology, this work illus-
trates also the adequacy of the algorithm for efficient
distributed asynchronous training and indicates that
such training scheme may be significantly beneficial in
comparison to the conventional synchronous training
scheme, using simulation results – at least as concerns
the ND-CAO training scheme.

3.2. Potential applications

Grounded on its unique novelty attributes ND-CAO
training may prove a beneficial approach towards dis-
tributed model parallel training of large-scale models
in image classification, natural language processing,
financial forecasting applications, and more. However,
ND-CAO scheme integrates a gradient-independent dis-
tributed and asynchronous training scheme, a unique
attribute suitable to overcome the challenges of data
exchange between geographically distributed models.
Such particular frameworks require training each parti-
tion independently and updating its local model parame-
ters based on local or global data or processing capabil-
ities. It is envisaged that ND-CAO Asynchronous train-
ing is adequate to offer advantages in terms of scalabil-
ity, privacy, and performance by reducing the reliance
on continuous and synchronous data exchange between
distributed locations. Such real-life frameworks may
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Fig. 1. Feed-forward ANN architecture.

concern: a) Distributed IoT applications: where Neu-
ral networks are deployed on interconnected devices
in various locations. ND-CAO asynchronous training
enables efficient local model training without continu-
ous data exchange between the sub-models; b) Multi-
Cloud applications: Partitioned neural networks trained
across diverse cloud environments across different ge-
ographical locations. ND-CAO asynchronous training
allows independent updates limiting considering net-
work latency and data transfer costs; c) Collaborative
Research Applications: Multiple institutions contribute
to a shared neural network model. ND-CAO Asyn-
chronous training allows independent updates without
constant real-time synchronization between the Net-
work Blocks of the shared neural network; d) Feder-
ated Learning applications: Decentralized training on
devices or servers in different locations. Local models
are trained and aggregated to create a global model.
ND-CAO distributed asynchronous updates may ac-
commodate varying network conditions; e) Distributed
Data Centers applications: Neural networks distributed
across multiple data centers in different regions. ND-
CAO Asynchronous training also independent updates
considering network latency and limited bandwidth; f)
Privacy-Preserving Learning applications: Data parti-
tioned across geographic locations to ensure privacy.

ND-CAO Asynchronous training enables local model
updates without sharing raw data between different lo-
cations; g) Edge Computing applications: Neural net-
works on edge devices closer to a data source. ND-
CAO asynchronous training is adequate to enable in-
dependent updates considering limited resources and
intermittent connectivity.

4. The ND-CAO algorithm

4.1. The set-up

We consider a quite standard ANN supervised learn-
ing setup. The ANN architecture is shown in Fig. 1
(for simplicity, we assume that the ANN has only feed-
forward connections; the extension to the case where
feedback connections are also present, is straightfor-
ward). Also, for simplicity the ANN shown in Fig. 1 is
assumed to have equal number of nodes at each layer;
the extension to the case of layers with different number
of nodes is straightforward. The ANN of Fig. 1 has K
hidden layers with N(i) total neurons in the i-th layer;
a(i, j) denote the activation functions of the j-th neuron
in the i-th layer; for convenience we assume that the
0-th layer is the input layer (with a(0, j) ≡ xj , where
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Fig. 2. Examples of splitting an ANN into Neural Blocks (NBs). (a) Node-wise Partitioning: presents the partition of the NN that every NB
corresponds to a node of the model; (b) Layer-wise Partitioning: presents the partition of the NN that every NB corresponds to a Layer of the
model (K = R); (c) Hybrid-wise Partitioning: presents the partition of the NN partition the network at multiple levels.
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xj denotes the j-th input; and (K + 1)-th layer is the
input layer (with a(K + 1, j) ≡ yj , where yj denotes
the j-output. Let w = [w(1);w(2); . . . ;w(K))] denote
the synaptic matrix of the overall ANN of Fig. 1, with
w(i) being the synaptic weights (including the biases)
between layers i − 1 and i. The output of the ANN
satisfies

y = Nw(x) (1)

where Nw(·) is a nonlinear function that is parame-
terized by the weights w and depends on the num-
ber and width of the hidden layers and the activa-
tion functions of the neurons. As standard in most
set-ups, we assume a set of N training data pairs
(X,Y ) =

(
x(s), y(s)

)
, s = 1, 2 . . . , N . The problem

at hand is to minimize of a cost function

εw(X,Y )

with εw(·) being a nonlinear function of its elements;
the most “popular” choice for εw(·) is εw(X,Y ) =
1
N

∑N
s=1

(
y(s) −Nw(x(s))

)2
. The proposed algorithm

is applicable to any choice for the cost function εw(·).

4.2. ANN “break-down” into Neural Blocks
(Asynchronous Agents)

Let us now assume that the overall ANN of Fig. 1 is
“broken-down” intoR Neural1 Blocks (NBs) N1,N2,
. . .NR satisfying the following:

– A synaptic weight w(k)
ij belongs only to one NB.

– There is no synaptic weight that does not belong
to one of the NBs N1,N2, . . . ,NR.

The above two properties for splitting the ANN into
R NBs allow literally for any possible splitting of the
ANN:

– from the extreme case where we have as many
NBs as neurons, i.e., the case where each neuron
is an NB, see e.g., Fig. 2(a);

– the case where each layer is an NB, see e.g., Figure
2(b);

– the cases where each NB consists of two or more
layers;

– down to cases each NBs may be constructed by
randomly picking synaptic weights across the
ANN, see e.g., Fig. 2(c);

– and, many other configurations.

1Throughout this paper, the terms “Neural Blocks (NBs)” and
“Asynchronous Agents (AAs)” is used interchangeably.

Given the above definition of NBs, let us de-
fine w(1), w(2), . . . , w(R) be the synaptic weights of
the 1st, 2nd, . . . ,R-th NB, respectively; apparently,
[w(1);w(2); . . . ;w(R) ≡ w, i.e., the set of all synaptic
weights of all NBs is equal to the set of all synaptic
weights of the ANN of Fig. 1. Figure 2 exhibits differ-
ent examples of splitting an ANN into NBs. Apparently,
the most common partitioning schemes are the first two
ones of Fig. 2 (node-wise and layer-wise partitioning).
Also, in the case of geographically distributed ANNs,
where parts of the ANN are located in different geo-
graphic locations, we may have a case where each of
the NBs corresponds to one or more layers of the ANN.
ND-CAO concept is quite generic that can handle all
the aforementioned schemes of partitioning in a model
parallel manner. Extreme cases – where e.g., a random
partitioning is chosen – like the one of Fig. 2(c) can be
also handled by our methodology.

4.3. The learning algorithm

Consider each of the NB’s N1,N2, . . .NR and as-
sume that the i-th NB Ni is updating its synaptic
weights every ∆t(i) time-units. Note that ∆t(i) may
be different than some or all of the rest ∆t(j), j 6= i
and that, also, ∆t(i) is not necessary constant but may
change at each updating cycle of the synaptic weights
of the i-th NB Ni. In other words, each of the NB’s
updates its synaptic weights asynchronously as com-
pared to the rest of NB’s and, thus, each of the NBs
acts as an Asynchronous Agent – (AA). It is also worth
noticing that the update frequency of each of the NBs
does not have to be constant: our approach can facilitate
non-constant (=non-periodic) updating.

The first key element of our approach is that each of
the NBs is associated with an estimator which attempts
– using only information available at the NB-level – to
estimate the error (or, equivalently, the output) of the
overall ANN.

More precisely, let k(i) denote the variable corre-
sponding to the current number of updates of the synap-
tic weights of the i-th NB Ni and let us associate to
the i-th NB Ni, the following Linear Local Estimator
(LLE) of dimension L

ε̂
(i)

k(i)
= θ

(i)

k(i)

τ
φ(i)

(
Z

(i)

k(i)

)
(2)

where ε̂(i)
k(i)

denotes the output of the LLE associated
with the ith NB, θ(i)

k(i)
denote the L-dimensional vec-

tor of tune-able parameters of the LLE and φ(i) is
a nonlinear L-dimensional vector function whose in-
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put Z(i)
k is a vector comprising of (a) the synaptic

weights w(i)

k(i)
of the i-th NB and (b) the measurements

εw(k(i)), εw(k(i)−1), . . . , εw(k(i)−d) of the cost func-
tion, where d is a positive integer (hyper-parameter). In
other words,

Z
(i)

k(i)
=


w

(i)

k(i)

εw(k(i))
...

εw(k(i) − d)


The purpose of the estimator (2) is to estimate the

value of the global cost function εw(X,Y ) at the next
update of the ith NB, using only local information avail-
able at the ith NB. In other words, by using informa-
tion of a subset of the overall ANN inputs and synaptic
weights, estimator (2) estimates and predicts the per-
formance of the overall ANN. As we will see in the
proof of Theorem 1, this possible thanks to the NDCAO
special attributes.

For this reason, the choice of θ(i)
k(i)

and φ(i) is made
as follows:

– The vector θ(i)
k(i)

of tune-able parameters is cho-
sen – at the k(i) − th iteration of the learning al-
gorithm – so as to minimize the error between
the global cost function εw(X,Y ) and its estima-
tion/prediction provided by the estimator (2):

θ
(i)

k(i)
= argmin

θ

k(i)−1∑
`=k(i)−h

(
εw(`)− ε̂(i)`

)2
(3)

where h denotes a positive integer (size of time-
window).
Problem (3) is a standard linear-least squares prob-
lem and can be solved using computationally in-
expensive realizations of its least-squares solution:

θ
(i)

k(i)
=
((

Φ
(i)

k(i)

)τ
Φ

(i)

k(i)

)−1 (
Φ

(i)

k(i)

)τ
Ek(i) (4)

where Φ
(i)

k(i)
=
[
φ(i)

(
Z

(i)

k(i)

)
, . . . φ(i)

(
Z

(i)

k(i)−h

)]
and Ek(i) =

[
εw(k(i)), . . . , εw(k(i) − h)

]τ
.

As it was shown in [92], it is sufficient for learning
algorithms like NDCAO that employ estimators of
the form (2), to approximate locally the global cost
function. As this global cost function is a quadratic
one, it is sufficient to use linear and second-order
terms for its local approximation. For this reason,
the nonlinear vector function comprises L first and
second-order polynomial terms; typically, these L
terms are randomly chosen among all possible first
and second-order polynomial terms.

The second key element in our approach is to em-
ploy – at its NB level and totally asynchronously with
respect to the rest of the NBs – the estimator (2) to test
different perturbations of the current value of the synap-
tic weights and pick the one that produces the “best”
estimate/prediction for the global cost function. The
overall methodology combining the two key elements
of the methodology is summarized in Algorithm 1.

We proceed with the convergence analysis of the al-
gorithm. We have the following theorem.

Theorem 1. At each time-instant k, the ND-CAO algo-
rithm satisfies

w
(i)

k(i)+1
= w

(i)

k(i)
+ αk(i)∇w(i) |w=w

k(i)
εw(X,Y )

+O(ak(i)/L)

Remark 1. In simple words, Theorem 4.3 establishes
that the ND-CAO algorithm behaves similarly to asyn-
chronous gradient-based BCD “disturbed” by the term
O(ak(i)/L) which vanishes as time increases. �

Remark 2. As it has been established in many different
papers – see e.g. [93] and the references therein – asyn-
chronous gradient-based BCD converges to the same
points as the ones of conventional fully-centralized
backpropagation. Therefore, Theorem 4.3 establishes
convergence of the ND-CAO algorithm the same points
as the ones of conventional fully-centralized back prop-
agation:

– for any possible splitting of ANN into Neural
Blocks (NBs), including even blocks elements may
be totally disconnected;

– with each of the NBs allowed to update their pa-
rameters fully asynchronously and independently
of the rest of the NBs;

– no data exchange is required between the different
blocks during training with the only information
each block requires from “outside” is the global
performance of the ANN;

– The training of each NB is accomplished using a
computationally inexpensive least-squares algo-
rithm. �

< Numbering of Theorem corrected to Theorem 1
(“Theorem 2.3” was a typo) >

Proof of Theorem 1: A brief outline of the proof is
given, as its derivation closely mirrors the proof process
of Theorem 2 of [57], by simply performing the fol-
lowing “time-transformation”: consider a sufficiently
small ∆t such that the weights of each of the NBs are
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Algorithm 1: Asynchronous ND-CAO Algorithm
Definitions/Initializations:
– Let the ANN being split into R NBs (Neural blocks). Also, for

simplicity let us assume that each of the LLEs of theR NBs has
dimension L.

– Let also each NB update its parameters asynchronously; let ∆t(i)

denote the time-units the i-th NB Ni is updating its synaptic
weights, with ∆t(i) being not necessarily constant.

– Let k(i) be a current number of updates of the synaptic weights of
the i-th NBNi.

– Let also αk(i) be a user-defined positive scalar sequence
satisfying limk(i) 7→∞ αk(i) = 0,

∑∞
k(i)=0

αk(i) =

∞,
∑∞
k(i)=0

αk(i) < ∞ and K(i) be a user-defined constant

integer satisfying K(i) > 2 dim
(
w

(i)

k(i)

)
.

for i = 1 : R do

1. Step 1 – Estimate locally the Global Cost Function. Generate
estimate ε̂(i)

k(i)
using (2).

2. Step 2 – Find the “Best” Candidate Perturbation. Generate
a set of K(i) random (or pseudo-random) zero-mean candidate
perturbations

δ
(i)
1 (k(i)), δ

(i)
2 (k(i)), . . . , δ

(i)

K(i) (k(i)) (5)

Find the candidate perturbation δ(i)j∗ (k(i)) of the current synap-

tic weight vector w(i)

k(i)
that will have the “best effect” to the

estimated cost function

δ
(i)
j∗ (k(i)) = argmin

j=1,...,K(i)

(
θ
(i)

k(i)

τ
φ(i)

(
Z

(i)

j,k(i)

))
(6)

where

Z
(i)

j,k(i)
=


(
w

(i)

k(i)
+ αk(i)δ

(i)
j (k(i))

)
εw(k(i))

...
εw(k(i) − d)


3. Step 3 – Update NB synaptic weights. Update w(i)

k(i)
according

to

w
(i)

k(i)+1
= w

(i)

k(i)
+ αk(i)δ

(i)
j∗ (k(i)) (7)

4. Step 4 – Update parameters of the estimator (2). Update the
parameters θ(i)

k(i)
of the estimator (2), using (4).

= 0

updated always at some time-instances t(i) that sat-
isfy t(i) = n∆t for some integer n. Then, Theorem
2 of [57] holds for the case of the asynchronous ND-
CAO by assuming that w(i) is updated at time-instances
t(i) = n∆t and remains constant at all other time-
instances. Using this transformation and following the
same arguments as the ones in the proof of Theorem 2
of [57], we have that

εw
k(i)

(X,Y ) = E(w
(i)

k(i)
, εw

k(i)−1
(X,Y ), . . . ,

εw
k(i)−d

(X,Y ))

for some nonlinear function E(·), i.e., the cost function
εw(X,Y ) – which depends on the whole weight vec-

tor w – can be also written as a function E(·) which
depends on the “local” sub-vector w(i) of the ith NB
as well as of past measurements of the cost function
εw(X,Y ). On the other hand, following the same steps
as in [92], it can be seen that Eqs (5)–(7) are equivalent
to

w
(i)

k(i)+1
= w

(i)

k(i)
+ αk(i)∇w(i) |w=w

k(i)

E(w
(i)

k(i)
, εw

k(i)−1
(X,Y ),

. . . , εw
k(i)−d

(X,Y )) +O(ak(i)/L)

Combining the two above equations, we establish the
proof. �

5. Experimental evaluation of ND-CAO
asynchronous training

In this section, we examine ND-CAO adequacy in
training neural networks of different architectures, to-
wards image classification problems, giving also em-
phasis on asynchronous mode training. Asynchronous
training can provide several benefits over synchronous
training, especially towards a distributed model. For
example, it can improve the speed of training as the
blocks can update the model weights independently and
in parallel. Additionally, it can handle scenarios where
the blocks need different computing capabilities or net-
work bandwidth, as each block can work at its own
pace without waiting. Before proceeding to the detailed
description of the four experimental Cases and their in-
tegrated simulations, it is appropriate to describe some
initial conditions and frameworks that served equally
the procedures in order to implement the experiments.
Table 1 describes at a high level the four experimental
Cases:

Datasets, model type, architecture, and number of
training epochs: Case I concerns an FNN model for
addressing the MNIST image classification problem in
5000 epochs, Case II concerns a more demanding FNN
model for addressing the Fashion MNIST image clas-
sification problem in 1000 epochs, Case III concerns a
CNN model for addressing the MNIST image classifi-
cation problem in 2500 epochs, and Case IV concerns
a CNN model for addressing the CIFAR10 image clas-
sification problem in 2500 epochs. In Fig. 3 the (a), (b),
(c) and (d) subfigures, illustrate the architecture of Case
I, Case II, Case III, and Case IV models respectively.

Asynchronous agents: Additionally. we have con-
sidered the same following asynchronous training sce-
narios: at each time instant, N randomly chosen NBs
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Table 1
Use case description and setup features

Case Dataset
Input
shape

Model
type

Model
architecture Weights

Partitioning
scheme Asynchronous agents Epochs

I MNIST 28 × 28 × 1 FNN 32 × 10 320 Node-wise:
1 Agent/Node

0, 10, 20, 30, 40 5000

II Fashion
MNIST

28 × 28 × 1 FNN 32 × 16 × 10 672 Parameter-wise:
1 Agent/Node

0, 10, 20, 30, 40, 50, 55 1000

III MNIST 28 × 28 × 1 CNN 32 × 32 × 10 25258 Parameter-wise:
1 Agent/1000 Weights

0, 10, 20, 30, 40 2500

IV CIFAR10 32 × 32 × 3 CNN 32 × 32 × 10 25258 Parameter-wise:
1 Agent/1000 Weights

0, 10, 20, 30, 40 2500

are not updated their parameters while the rest 42 N
Network Blocks (NBs) or Asynchronous Agents (AA)
are updated using ND-CAO. In ND-CAO asynchronous
training mode, each partition updates its parameters in-
dependently, without the need to wait for updates from
other partitions; To this end, five different scenarios for
N = 0 (synchronous case-baseline), N = 10, N = 20,
N = 30, N = 40 were executed and through their
evaluation and comparison, fruitful conclusions arise.
Moreover as concerns the distribution scheme that has
been adopted

Partitioning scheme: It should be also underlined
that in Case I and Case II, the Network Blocks (NBs)
have been elected to act as Asynchronous Agents/Nodes
(AA) in order to implement a Node-wise Partitioning
scheme while in Case III and Case IV, the agents of
ND-CAO concern a certain amount of parameters (1000
weights per agent – 42 agents overall) in order to imple-
ment a more sophisticated Parameter-wise partitioning
scheme. Last but not least, It should be mentioned, that
in our work the selection of the asynchronous agents
per epoch is taking place in a random manner in or-
der to exhibit the adequacy of our approach to training
the networks under totally stochastic conditions. The
primary conclusions of the comparison between ND-
CAO synchronous and ND-CAO asynchronous training
exhibit the adequacy and efficiency of the algorithm.

Hardware and software: As regards the hardware and
software equipment it acted equally for all four Cases
(4 × 5 overall simulations):

– Hardware: The computational machine that all ex-
periments took place considered a conventional
x64 – based PC setup holding the following char-
acteristics CPU: AMD Ryzen 7 5800X / 8 cores,
3801 Mhz; GPU: NVIDIA GeForce RTX 3060 Ti /
8 GB; RAM: Corsair Vengeance RGB Pro / 32GB;

– Software: The concerned PC was operating Win-
dows 11 Pro. Python 3.8 Code Framework was
enabled and acted as the ground for constructing
the algorithm and executing all four experimental

simulations for ND-CAO evaluation. The Primary
Python Machine Learning Libraries that were uti-
lized concerned: numpy, scipy, multiprocessing
(mp) module, keras, scikit-learn, pandas and open-
pyexcel.

The following subsections of the paper describe the
Setup of each experimental Case in detail, providing
the dataset information, the deployed network archi-
tecture, the elected distribution scheme that took place,
and the settings of the five experimental scenarios for
each Case. Next, after illustrating the training results in
Figs 4, 5, and Fig. 6 for Case I, Case II, Case III, and
Case IV respectively, a brief Evaluation is conducted
for every respective case. The last subsection of the
Results Section concerns the final Verdict where fruitful
conclusive notes are drawn, considering the training of
ND-CAO efficiency in synchronous and asynchronous
modes.

5.1. Case I: ND-CAO asynchronous training
evaluation on FNN – MNIST

The first set of experiments took place, concerning a
typical Feedforward ANN of 42 NBs being trained over
the MNIST dataset in synchronous and asynchronous
modes. The summary of the Use case Description setup
may be found under Table 1 – Case I.

5.1.1. Setup – Case I
Dataset information: It should be mentioned that the

MNIST dataset contains a total of 70,000 data items.
These items are split into two main subsets: a training
set and a test set. The training set consists of 60,000
handwritten digits from 0 to 9, while the test set con-
tains 10,000 handwritten digits. Each data item in the
MNIST dataset represents a 28 × 28 grayscale image
of a handwritten digit, making it a widely used bench-
mark dataset for machine learning tasks, especially in
the field of image classification.
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Fig. 3. Detailed architecture of the examined Neural Network cases: (a) Case I: Feed-forward NN over MNIST; (b) Case II: Feed-forward NN over
Fashion MNIST; (c) Case III: Convolutional NN over MNIST, and (d) Case IV: Convolutional NN over CIFAR10.

Neural Network Architecture: In this case, each NB
(Network Block) or ND-CAO agent considers a sin-
gle ANN neuron. The ANN architecture consists of
two dense (fully connected) layers: The first layer is a
dense layer with 32 neurons, using the ReLU activation

function. This layer takes the input of shape (28 × 28),
which corresponds to a flattened version of a 28 × 28
image. The second layer is a dense layer with 10 neu-
rons, using the softmax activation function. This layer
outputs a probability distribution over 10 classes, which
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can be interpreted as the model’s prediction for the in-
put image. The model is then compiled using the Adam
optimizer, categorical cross-entropy loss function, and
categorical accuracy as the evaluation metric. Overall,
this architecture portrays a simple Feed-Forward neural
network (FNN) suitable for image classification tasks
on small datasets. The full Architecture of the FNN is
illustrated in Fig. 3(a).

Distribution type and features: This initial scenario
concerns a Node-wise Partitioning scheme since Net-
work Blocks (NBs)/Asynchronous ND-CAO Agents
(AA) have been elected to act as Asynchronous Nodes.
The choiceN = 0 corresponds to the fully synchronous
training case.

Experimental scenarios: We have considered the fol-
lowing asynchronous training scenarios, at each time
instant, where N randomly chosen NBs are not being
updated while the rest 42-N NBs are being updated us-
ing ND-CAO. 5 different choices for the integerN were
tested, N = 0, N = 10, N = 20, N = 30, N = 40.
Training Epochs have been set to 5000 for each scenario
of the 5 experimental simulations.

5.1.2. Evaluation – Case I
The results overall are presented in Loss and Accu-

racy measures in Fig. 4: (a) presents the overall Loss
during training while (b) Illustrates the Accuracy of the
Network. The course of all the training simulations is
potentially the same and convergence is guaranteed for
each case scenario. The Asynchronous cases (N = 10
– Red Line, N = 20 – Orange Line, N = 30 – Pink
Line, N = 40 – Green Line) follow the Synchronous
training (N = 0 – Blue Line) tendency in every epoch
as concerns Loss and Accuracy measures. It is notice-
able that for a certain time of epochs (epoch 2500), the
N = 20 Asynchronous case surpasses the N = 0 syn-
chronous case in Loss and Accuracy measures (2500
epoch). Moreover, after 5000 epochs of trainingN = 0,
N = 10, N = 20, N = 30 synchronous and asyn-
chronous simulation cases converge to almost the same
Loss and Accuracy measures while the N = 40 asyn-
chronous case performance is slightly decreased.

5.2. Case II: ND-CAO asynchronous training
evaluation on FNN – Fashion MNIST

The second set of experiments took place, concerning
a similar Feedforward NN being trained over the Fash-
ion MNIST dataset in synchronous and asynchronous
modes under 1000 Epochs. While the implementation
concerns similarly a Node-wise partitioning to Case I,

the FNN architecture is more deep and serves a rel-
atively more demanding image classification task by
utilizing 58 ND-CAO agents. The primary aim of this
implementation is to illustrate the adequacy of ND-
CAO training in synchronous and asynchronous modes
over a potentially more complicated network, under a
more demanding dataset. The summary of the Use case
Description setup may be found under Table – Case II.

5.2.1. Setup – Case II
Dataset information: Fashion MNIST is a dataset

commonly used for image classification tasks. It con-
sists of 60,000 grayscale images of 10 different cloth-
ing categories, with each image having a size of 28 ×
28 pixels. The dataset is a drop-in replacement for the
original MNIST dataset and serves as a more challeng-
ing benchmark for evaluating machine learning mod-
els. It provides a realistic representation of real-world
image classification problems and allows researchers
to compare the performance of different algorithms on
a more diverse set of images. Fashion MNIST has be-
come popular in the deep learning community as a stan-
dard dataset for testing and developing new models and
algorithms.

Neural network architecture: Similarly to Case I,
each NB (Network Block) or ND-CAO agent considers
a single NN neuron. The NN architecture consists of
three dense (fully connected) layers: The first hidden
layer is a dense layer with 32 neurons, using the ReLU
activation function. This layer takes the input of shape
(28 × 28), which corresponds to a flattened version of
a 28 × 28 image. The second hidden layer is a dense
layer with 16 neurons utilizing also ReLU activation
function. The third output layer consists of 10 neurons,
using the softmax activation function. This layer outputs
a probability distribution over 10 classes, which can
be interpreted as the model’s prediction for the input
image. The full Architecture of the FNN is illustrated in
Fig. 3(b). In summary, the 32 × 16 × 10 FNN provides
a deeper and more expressive architecture compared
to the 32 × 10 FNN, allowing for potentially better
representation and learning of complex features in the
Fashion MNIST dataset. However, the increased com-
plexity comes with the cost of additional parameters to
train and potentially longer training times.

Distribution type and features: Case II concerns a rel-
atively more demanding Node-wise Partitioning scheme
considering 58 nodes overall being updated by 58 Asyn-
chronous ND-CAO Agents (AA). The choice N = 0
corresponds to the fully synchronous training case.

Experimental scenarios: Similarly the training sce-
narios have considered the same number of asyn-
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Fig. 4. Asynchronous ND-CAO for training FNN towards MNIST: (a) Loss per Epoch, (b) Accuracy per Epoch.

chronous agents and one additional of 50 AA (Tirquise
line): at each time instant, N randomly chosen NBs
are not being updated while the rest 58-N NBs are be-
ing updated using ND-CAO. 5 different choices for the
integer N were tested, N = 0, N = 10, N = 20,
N = 30, N = 40, N = 50. Training Epochs have been
limited to 1000 for each scenario of the 5 experimental
simulations.

5.2.2. Evaluation – Case II
This particular experiment was executed for 1000

epochs revealing also the efficiency of ND-CAO in
both synchronous and Asynchronous manner in Fig. 5.
Scenario N = 0 (blue line) was more efficient for
1000 Epochs while the rest revealed the same tendency.
N = 40 scenario (green line) portrayed the most fruit-
ful scenario of all the asynchronous cases following

closely the N = 0 synchronous scenario. The rest of
the cases N = 10, N = 20, N = 30, N = 50 exhib-
ited significantly less performance in Loss and Accu-
racy measures than the above-mentioned N = 0 and
N = 40 towards the particular limited Epoch range
(1000 Epochs).

5.3. Case II: ND-CAO asynchronous training
evaluation on FNN – Fashion MNIST

The third set of experiments took place, concerning a
Convolutional Neural Network (CNN) (32 × 32 × 10)
being trained over MNIST dataset in synchronous and
asynchronous scenarios. Each ND-CAO Network block
is set to 1000 weights. The summary of the Case III
Use case description setup may be found under Table 1
– Case III.
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Fig. 5. Asynchronous ND-CAO for training CNN towards MNIST: (a) Loss per Epoch, (b) Accuracy per Epoch.

5.3.1. Setup – Case III
Dataset information: The dataset information of

MNIST has already give in Case I. However, the archi-
tecture and design principles of a CNN portray a poten-
tially well-suited model for image classification tasks
like MNIST, allowing to capture spatial information,
exploit parameter sharing, handle translation invari-
ance, and learn hierarchical representations, resulting
in improved prediction performance.

Neural network architecture: The model portrays a
convolutional neural network (CNN) designed for im-
age classification tasks taking as input grayscale images
of MNIST (size 28× 28 pixels). Overall, this model ar-
chitecture consists of two sets of convolutional and max
pooling layers for feature extraction, followed by a flat-
ten layer to convert the output into a 1D vector. Finally,
a dense layer with softmax activation is used for class

probability predictions. The overall weights of the CNN
reach 25258. he model is compiled with the following
settings: Optimizer: Adam, Loss function: Categorical
cross-entropy, Evaluation metric: Categorical accuracy.
More specifically

– Convolutional Layer 1: Number of filters: 32, Ker-
nel size: 3 × 3, Activation function: ReLU)

– Max Pooling Layer 1: Pooling size: 2 × 2
– Convolutional Layer 2: Number of filters: 32 (Ker-

nel size: 3 × 3, Activation function: ReLU)
– Max Pooling Layer 2: Pooling size: 2 × 2
– Flatten Layer: Converts the output from the pre-

vious layer into a 1D vector for input to the dense
layers

– Dense Layer: The number of neurons is 10, pro-
ducing a probability distribution over the 10 pos-
sible classes (Activation function: Softmax)
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The full Architecture of the FNN is illustrated in
Fig. 3(b).

Distribution type and features: In this distribution
scheme we have elected to dedicate one ND-CAO agent
towards 1000 weights of the neural network. Such
Parameter-wise partitioning involves dividing the net-
work’s parameters or weights into separate parts, each
associated with a specific block or partition. This par-
titioning allows different parts of the network to be
trained or updated independently while still working
towards the common goal of minimizing the overall
error.

Experimental scenarios: Similarly to Case I, we have
considered the following asynchronous training sce-
narios, at each time instant, N randomly chosen NBs
are not updated while the rest NBs weigh are updated
their parameters using ND-CAO. Five different choices
for the integer N were evaluated, N = 0, N = 10,
N = 20, N = 30, N = 40. Training Epochs have been
set to 2500 for each of the five experimental simula-
tions.

5.3.2. Evaluation – Case III
The results overall are presented in Loss and Accu-

racy measures in Fig. 6: (a) presents the overall Loss
during training while (b) Illustrates the Accuracy of the
Network. The course of all the training simulations is
potentially the same and convergence is guaranteed for
each case scenario. The Asynchronous cases (N = 10 –
Red Line, N = 20 – Orange Line, N = 30 – pink
Line, N = 40 – Green Line) follow the Synchronous
training (N = 0 – Blue Line) tendency in every epoch
as concerns Loss and Accuracy measures. In this set of
scenarios, the synchronous case (N = 0 – blue line)
outperforms all asynchronous cases.

However, the asynchronous cases – and especially the
N = 40 asynchronous scenario that tends to converge
closer at 2500 epoch – potentially required less training
time as well as less computational and communicational
demand overall. It is noticeable that for a certain period
of 2500 epochs, the most advantageous asynchronous
case is the N = 40 setting (green line) Fig. 6 which is
converging closely to the synchronous case after 2000
epochs at least in loss measure.

5.4. Case IV: ND-CAO asynchronous training
evaluation on CNN – CIFAR10

The fourth set of experiments took place, concerning
the same Convolutional Neural Network (CNN) being
trained over the more challenging CIFAR10 dataset,

in synchronous and asynchronous scenarios. The sum-
mary of the second Use case description setup may be
found under Table – Case IV.

5.4.1. Setup – Case IV
Dataset information: The CIFAR10 represents a

widely used benchmark dataset in the field of com-
puter vision and machine learning. It consists of 60,000
32 × 32 color RGB images (32 × 32 × 3) in 10 dif-
ferent classes, with 6,000 images per class (Airplane,
Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship,
Truck). The dataset is divided into two subsets, a train-
ing set, and a test set. The training set contains 50,000
images, with an equal number of images from each
class while The test set contains 10,000 images, also
evenly distributed across the 10 classes.

Neural network architecture: The CNN model por-
trays a convolutional neural network (CNN) designed
for image classification tasks taking as input RGB im-
ages of CIFAR10 (size 32 × 32 pixels). Overall, this
model architecture is similar to Case III and has com-
piled with identical settings: Optimizer: Adam, Loss
function: Categorical cross-entropy, Evaluation metric:
Categorical accuracy. More specifically:

– Convolutional Layer 1: Number of filters: 32, Ker-
nel size: 3 × 3, Activation function: ReLU)

– Max Pooling Layer 1: Pooling size: 2 × 2
– Convolutional Layer 2: Number of filters: 32 (Ker-

nel size: 3 × 3, Activation function: ReLU)
– Max Pooling Layer 2: Pooling size: 2 × 2
– Flatten Layer: Converts the output from the pre-

vious layer into a 1D vector for input to the dense
layers

– Dense Layer: The number of neurons is 10, pro-
ducing a probability distribution over the 10 pos-
sible classes (Activation function: Softmax)

The full Architecture of the CNN is illustrated in
Fig. 3(d).

Distribution type and features: Similarly to Case
III, the distribution scheme considers Parameter-wise
partitioning where one ND-CAO agent updates 1000
weights of the model. This partitioning allows different
parts of the network to be trained or updated indepen-
dently while still working towards the common goal of
minimizing the overall error.

Experimental scenarios: Similarly to Case I and Case
III, Case IV integrates a set of five simulations which
have been implemented considering the following asyn-
chronous training scenarios, at each time instant,N ran-
domly chosen NBs are not updated while the rest NBs
are updated using ND-CAO agents; similarly, five dif-
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Fig. 6. Asynchronous ND-CAO for training CNN towards MNIST: (a) Loss per Epoch, (b) Accuracy per Epoch.

ferent choices for the integerN were evaluated,N = 0,
N = 10, N = 20, N = 30, N = 40. Training Epochs
have been set also to 2500 for each of the five simulation
scenarios.

5.4.2. Evaluation – Case IV
The results overall are presented in Loss and Accu-

racy measures in Fig. 7: (a) presents the overall Loss
during training while (b) Illustrates the Accuracy of
the Network. The course of all the training simulations
is perfectly identical however, convergence is guaran-
teed for each case scenario. The Asynchronous cases
(N = 10 – Red Line, N = 20 – Orange Line, N = 40
– Green Line) achieve slightly better performance than
the Synchronous baseline training scenario (N = 0
– Blue Line). The asynchronous scenario of N = 30
however (N = 30 – pink Line), substantially sur-

passes every other synchronous or asynchronous sce-
nario in Loss and Accuracy measures between 1000–
2500 epochs.

To this end, and similarly to Case I Case II, and Case
III, Case IV asynchronous scenarios converge towards
the synchronous case as Fig. 7 illustrates. However, the
synchronous case does not portray the best potential
training setting, since the N = 30 scenario surpasses
significantly the N = 0 synchronous scenario in Loss
and Accuracy measures while potentially concerning
less computational, communicational, and training time
demand at 2500 epochs.

5.5. Verdict

The primary verdict of the Evaluated comparison
between ND-CAO synchronous and ND-CAO asyn-
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Fig. 7. Asynchronous ND-CAO for training CNN towards CIFAR10: (a) Loss per Epoch, (b) Accuracy per Epoch.

chronous training arising from Figs 4, 5, 6 and 7 ex-
hibits the adequacy of the algorithm to training neural
networks in a gradient-free and distributed manner in
both synchronous and asynchronous modes under dif-
ferent model architectures. The primary attributes of
ND-CAO evaluation may be summarized as follows:

– Note 1 – ND-CAO training efficiency: One impor-
tant attribute observed in all of the synchronous
and asynchronous training cases is that ND-CAO
achieved both Loss and Accuracy convergence
close to the Synchronous ND-CAO reference case:
by the examination of two FNNs and two CNNs
case scenarios concerning different image classi-
fication problems (MNIST, Fashion MNIST, CI-
FAR10), ND-CAO exhibited its robustness and
efficiency for training in both synchronous and
asynchronous modes in an adequate manner.

– Note 2 – ND-CAO Asynchronous training capa-
bility: ND-CAO was operational even in cases
where a substantial number of neurons or param-
eters were potentially deactivated (e.g. the sce-
narios of N = 40 in Case I, Case II, Case III,
and Case IV portrayed by a green line). Such an
attribute, indicates the operational efficiency of
the algorithm in cases of asynchronous learning,
even when a significant number of nodes, parti-
tions, or parameters of the model are potentially
deactivated for different reasons or purposes. It
is also noticeable that in Case II and Case III,
the N = 40 setting outperforms all other asyn-
chronous scenarios, while in Case IV the N = 30
scenario turned to achieve significant improve-
ments in Loss and Accuracy measures in compari-
son to synchronous and asynchronous scenarios in
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2500 epochs. In other words, it is potentially ben-
eficial to deploy ND-CAO asynchronous scenario
over a synchronous one since performance will
be similar, while training time and computational
demand will be significantly decreased.

– Note 3 – Parameters Optimization requirement:
It is noticeable that there is a critical number of
deactivated nodes that results in the best possi-
ble outcome of each potential model. That num-
ber is potentially different for every model and is
being affected by diverse parameters that are re-
sulting in the best possible outcome in Loss and
Accuracy measures: model architecture, training
epochs, dataset characteristics, etc. To this end,
before deploying an asynchronous training mode,
it is beneficial to determine the potential features
that suit the model and its potential characteristics.
Such type of optimization is not an easy task, how-
ever, and thus, it paves the way for more essential
research work that may be generated in the future.

– Note 4 – ND-CAO distribution adequacy: Last
but not least, ND-CAO achieved to adequately re-
spond to synchronous or asynchronous training
challenges towards different distribution schemes.
While Case I and Case II concerned a Node-wise
distributing scheme, Case III and Case IV which
preserved a significantly larger number of param-
eters, considered a more sophisticated Parameter-
wise distributing scheme. Such attribute indicates
the novelty of the algorithm to support gradient-
free distributed training of ANNs in a wide range
of applications that demand multifunctional dis-
tribution schemes e.g. Task-wise or Hybrid-wise
partitioning schemes that have never been illus-
trated in the literature as concern gradient-free dis-
tributed methodologies.

6. Conclusions and future work

ND-CAO methodology, portrays a novel gradient-
free and distributed algorithmic scheme, capable to sup-
port synchronous and asynchronous training. Grounded
on its conceptual background, the algorithm proved
adequate to support any potential partitioning scheme
– in a model parallel manner and eliminate the data
exchange between the network blocks during training.
Contrary to conventional approaches, ND-CAO proved
sufficient to update the parameters of each network
block fully independently and asynchronously, towards
global error minimization: ND-CAO proved adequate

to train each scenario efficiently without requiring a
definition of discrimination areas – in local areas – for a
given network configuration. Moreover, interesting re-
sults have arisen from the comparison between the syn-
chronous training – which acted as the baseline – and
the asynchronous settings in each case scenario. As the
comparison indicates for Case I, Case II, Case III, and
Case IV, ND-CAO asynchronous approach proved quite
beneficial in numerous scenarios evaluations – in terms
of Loss and Accuracy measures over a certain number
of epochs. Taking in mind that asynchronous training
is additionally advantageous in training time, computa-
tional, and communicational demand, such benefits are
extended even further.

Such properties deliver a quite optimistic perspective
for the future utilization of the algorithm and poten-
tially contribute to the challenging training of large-
scale neural networks that require gradient-free dis-
tributed and asynchronous training that is prohibited by
the limitations of conventional approaches. It should
be mentioned that this work portrays the first literature
work that a gradient-free distributed algorithmic frame-
work has been successfully utilized for asynchronous
training – in a model parallel terms and thus, it paves
the way for addressing challenging distributed deep
learning problems that haven’t been satisfied – or have
merely satisfied. Moreover, the current work portrays
the first gradient-free and distributed scheme that is be-
ing evaluated for Node-wise and Parameter-wise parti-
tioning, since the literature integrates applications that
have solely concerned Layer-wise partitioning applica-
tions.

Future work is already planned to investigate the be-
havior of ND-CAO in broader contexts, such as the
utilization of the algorithm towards challenging asyn-
chronous training of neural networks regarding the In-
ternet of Things (IoT), Multi-Cloud Environments, Fed-
erated Learning, Distributed Data Centers, Privacy-
Preserving Learning, Collaborative Research and more
where challenges of data exchange between geographi-
cally distributed partitions limiting the application po-
tential of conventional methodologies. Future work
will additionally focus on newer supervised machine
learning/classification algorithms as part of a poten-
tial extension of ND-CAO, such as Neural Dynamic
Classification algorithm, Dynamic Ensemble Learning
Algorithm, Finite Element Machine for fast learning,
and self-supervised learning [94–96]. More specifically,
ND-CAO asynchronous methodology performance is
expected to be enhanced, by adopting different poli-
cies for selectively updating partitions of the NN in or-
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der to further upgrade its efficiency. Additionally, ND-
CAO is planned to act as a training framework for asyn-
chronous learning on large-scale NNs and be compared
with the already evaluated gradient-based asynchronous
approaches. Last but not least, the novel algorithm is
planned to generate a hybrid framework between ND-
CAO and gradient-based methodologies, in order to em-
brace both advantages and create a fruitful ecosystem
of algorithmic CAO-based tools, targeting to address
specific challenging machine learning problems.
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