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Abstract. Thermal images are widely used for various applications such as safety, surveillance, and Advanced Driver Assistance
Systems (ADAS). However, these images typically have low contrast, blurred aspect, and low resolution, making it difficult to
detect distant and small-sized objects. To address these issues, this paper explores various preprocessing algorithms to improve the
performance of already trained object detection networks. Specifically, mathematical morphology is used to favor the detection of
small bright objects, while deblurring and super-resolution techniques are employed to enhance the image quality. The Logarithmic
Image Processing (LIP) framework is chosen to perform mathematical morphology, as it is consistent with the Human Visual
System. The efficacy of the proposed algorithms is evaluated on the FLIR dataset, with a sub-base focused on images containing
distant objects. The mean Average-Precision (mAP) score is computed to objectively evaluate the results, showing a significant
improvement in the detection of small objects in thermal images using CNNs such as YOLOv4 and EfficientDet.
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1. Introduction

The main targeted application (ADAS) must remain
reliable whatever the weather and lighting conditions,
by day and by night, for tracking pedestrians and ve-
hicles and estimating their trajectories. That is why
thermal sensors are generally used, despite their low
contrast, their blurred aspect, and their low resolution.
Due to such drawbacks, small objects are often indis-
cernible, limiting the detection distance and thus the
ADAS efficiency.

To improve the quality and therefore the relevance
of image interpretation, the use of neural networks has
gradually replaced the application of image processing
tools. Nevertheless, it is legitimate to ask whether an
image pre-processing step could improve the perfor-
mance of such neural networks.

∗Corresponding author: Michel Jourlin, Hubert Curien Labora-
tory, 18 Rue Professeur Benoît Lauras, 42000 Saint-Étienne, France.
E-mail: michel.jourlin@univ-st-etienne.fr.

We will see in the next section “Related works”
that previous papers, mainly dedicated to visual en-
hancements, proposed various pre-processing tools to
improve the aspect quality of thermal images. In the
present paper, we focus mainly on algorithms per-
forming contrast enhancement, deblurring and super-
resolution.

The originality of our strategy first lies in the choice
of a specific framework to perform contrast enhance-
ment: the LIP (Logarithmic Image Processing) frame-
work, which presents several advantages: it is based on
strong physical properties, its addition law of two im-
ages remains in the considered grey scale, which means
that it results in a real image, without any truncation,
contrary to a classical addition of two grey levels, and
finally, it is consistent with Human Vision, which en-
sures that preprocessed images remain interpretable by
the system as a human eye would do.

Another contribution of the present work is to study
precisely what can bring each of the three considered
approaches (contrast enhancement, deblurring, super
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resolution) for improving the detection of small objects
in thermal images. Various combinations of these ap-
proaches have been tested to select the most efficient
ones.

Concerning the experiments, we know that multi-
ple databases exist for visible images, but only a few
exist for thermal images. CNN are known to perform
better with large databases. In our case, available ther-
mal images are in much lesser quantities than visible
images. To compare our results to existing ones ob-
tained with CNN object detectors like YOLOv4 or Ef-
ficientDet, we have chosen to work with the classical
dataset FLIR. More precisely, we have created a subset
of FLIR, constituted of images containing small sized
objects, namely pedestrians and cars.

2. Related works

Previous works, mainly dedicated to visual enhance-
ments, proposed various pre-processing tools to im-
prove the aspect quality of thermal images, like his-
togram equalization [1] or dynamic range expansion [2]
with the aim of improving contrast in thermal images.
Recently, methods using Mathematical Morphology
and more precisely the Top-hat operators [3] permit to
detect bright parts, or hot zones, of a thermal image.
However, bright objects, like pedestrians, will appear
with variable size, making the choice of the structuring
elements critical for applying morphological operators.
To overcome this, [4] and [5] designed a multi-scale
version of the Top-Hat operation, using two structuring
elements of same shape and different size. In a same
way, [6] designed a ring structuring element to be used
in a Top-Hat regularization to help the detection of
small targets.

The low resolution of thermal images prevents pre-
cise measure and detection. Jones et al. [7] address this
problem of low resolution in their studying of leaf tem-
perature as an indicator of plant water deficit. The stud-
ied images are mostly remote sensing images, and the
authors focus on the Mixed Pixels problem. Using an-
other high-resolution sensor, we can estimate sub-pixels
values by identifying the influence of the surroundings
pixels. Considering the low resolution of thermal im-
ages and our own objective to precociously detect ob-
stacles (ie. when they are distant, therefore small), we
find ourselves in a similar situation, where the pixel
size is not negligible compared to that of objects. In
the case where the structure of the object seen is a pri-
ori known, [8] proposes an algorithm to precisely lo-

cate defects causing a difference in thermal conductiv-
ity. Convolutional Neural Networks (CNN) have also
been tested for increasing thermal images resolution [9],
which could improve measure and detection precision.

Another problem regarding thermal images concerns
the small number of databases, unlike the case of visible
images. This is the reason why some authors predict a
thermal image from a visible image. Using a segmenta-
tion approach, Lile et al. [10] develop a method predict-
ing a thermal image from a visible one, then comparing
it to a real thermal image to detect defects based on
the differences found. This situation can be connected
to [11], in which a conditional-Generative Adversarial
Network (c-GAN) is developed to generate synthetic
SEM images. First, a Convolutional Neural Network is
pre-trained on real images. Then the transfer-learned
CNN is trained on synthetic SEM images and validated
on real ones. This approach could be of interest to syn-
thetize thermal images from visible images. We can
also refer to [12], in which a pose transfer method is
proposed to produce a new image of a target person in
a novel pose. Such a result is valuable in several appli-
cations. In the paper, it is used for person reidentifica-
tion. In our case, it could be used to expand the thermal
images database.

Thermal images are often blurred, and CNN can be
used to remove the blur or at least reduce it. [13] uses
a pre-processing step to sharpen thermal images, as-
sisting in the detection of defects in scenarios where
temperature variation within the scene is minimal or ex-
treme. [14] reviews multiple techniques to increase edge
information in CNN based segmentation algorithms.
The use of a multi-level attention Module (MAM) com-
posed of two sub-modules: Context Aggregation Mod-
ule (CAM) and Correlation Matrix Correction Module
(CMCM) permits to enhance the object edge informa-
tion across the different layers of the neural network. If
the neural network used is based on an encoder-decoder
structure, extracting contours in the third encoder layer
and fusing them with the last feature map of the de-
coder increases the segmentation precision. The authors
present a comparative survey of existing methods based
on mIoU values. In a same way, Ammari et al. [15]
aim at reconstructing small inclusions inside a homo-
geneous object. They apply a heat flux and locate the
inclusions from boundary measurements of the temper-
ature. The model is developed in a rigorous mathemati-
cal frame by computing an asymptotic expansion of the
boundary perturbations.

In [16] and [17], a CNN object detector is used,
based on the Single-Shot Detection, SSD [18], archi-
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tecture to detect objects in thermal images. A set of pre-
processing methods are proposed in [16], like Random
Noise, Training images shuffle, Random Crop and Ran-
dom Brightness shift, to improve detection accuracy
while [17] applies a Dilation and a Deconvolution mod-
ule to enhance feature maps resolution and enlarge the
receptive field zone of the neural net backbone, increas-
ing detection performance of their SSD based detector.
At last, [19] shows that using a multi-scale approach as
a data augmentation technique permits to improve up
to 6% the detection performance of a multi-class boost-
ing based object detector. We can also refer to [20],
where the authors present the detection of four types of
objects: pedestrian, vehicle, two-wheeler, and cattle.

At last Lu et al. [21] deal with intelligent compaction
and more precisely with real-time roller path tracking
and mapping in pavement compaction operations. The
authors propose a thermal-based method to overcome
the problems due to variable weather conditions. To
drive the roller optimally, they estimate its motion dur-
ing successive frames, based on pavement boundary and
the optical flow technique. This paper will be valuable
for the rest of our work, analyzing the video instead of
working image by image, when our goal will be to esti-
mate the motion intention of the detected pedestrians,
bicycles, and cars.

3. Methods

3.1. Recall on the LIP framework

The LIP framework was first introduced by Jourlin
et al. [22–24], in the context of images acquired in
transmission (cf. Annex 1). Let I(D, [0,M [) denote
the space of grey level functions defined on the same
spatial support D and taking their values in the grey
scale [0,M [. If f and g belong to I(D, [0,M [) and λ
is a real number, two operations are deduced from the
optical Transmittance Law according to:

f ⨹ g = f + g − f · g
M

(1)

λ⨻ f =M −M
(
1− f

M

)λ
(2)

The subtraction f ⨺ g is defined by:

f ⨺ g =
f − g
1− g

M

(3)

It has been established that the laws ⨹ and ⨻ re-
called above are internal laws, which means that the

resulting functions lie in the space I(D, [0,M [), so that
they cannot take values outside the grey scale [0,M [.

For 8-bits digitized images, M = 256 and the grey
levels vary from 0 to 255.

Let us recall that the laws ⨹ and ⨻ possess strong
properties, structuring I(D, [0,M [) as a subset of a
vector space. This result gives access to many mathe-
matical tools specific to this kind of space. Note that
inside the LIP framework the grey scale is inverted: in
such a way, 0 represents the “white” extremity of the
scale, i.e., when no object is placed between the source
and the sensor.

To complement these benefits, we know that the con-
sistency of the LIP model with the Human Visual Sys-
tem [25] extends its application field to images acquired
in reflection, giving the opportunity to interpret such
images as a human eye would do.

For the interested reader, Carré et al. [26] have shown
that the LIP-addition (resp. subtraction) of a constant
to an image (resp. from an image) perfectly simulates a
decrease (resp. an increase) of the exposure time or of
the source intensity. Concerning the scalar multiplica-
tive law, λ appears as a “thickness” parameter: in fact,
given a grey level image f , one can associate to it a
virtual half-transparent object producing f in transmis-
sion. Then λ⨻ f is the image we get by stacking f
on itself λ times. This means that the scalar multiplica-
tive law simulates the thickness (opacity) changing of a
half-transparent object.

Many new tools have been introduced in the LIP
framework, especially in link with the concept of con-
trast and associated metrics. Here we will limit our-
selves to the Logarithmic Additive Contrast [24].

Given a grey level function f and a pair (x, y) of
neighboring pixels in the spatial supportD, the simplest
notion of contrast consists of computing |f(x)− f(y)|.
If we replace the classical subtraction by a logarith-
mic one, we define the Logarithmic Additive Contrast
LAC(x,y)(f) according to:

LAC(x,y)(f) = Max (f(x), f(y))⨺
(4)

Min (f(x), f(y))

Due to the scale inversion, Max (f(x), f(y)) is al-
ways darker than Min (f(x), f(y)), so the contrast
LAC(x,y)(f) results in a grey level. Using the definition
of the logarithmic subtraction Eq. (3) yields:

LAC(x,y)(f) =
|f(x)− f(y)|

1− Min(f(x),f(y))
M

(5)

Remark 1: The previous formula resembles the clas-
sic expression of Michelson’s contrast defined accord-



314 M. Chaverot et al. / Improvement of small objects detection in thermal images

ing to:

CMi
(x,y)(f) =

|f(x)− f(y)|
f(x) + f(y)

,

(6)
f(x) 6= 0 or f(y) 6= 0

and:

CMi
(x,y)(f) = 0, if f(x) = f(y) = 0 (7)

Obviously, we can observe that the Michelson’s ap-
proach overestimates the contrast between two dark
grey levels compared to two bright ones with the same
difference. A similar effect can be seen with the LAC
definition. More precisely an explicit link has been es-
tablished in [24] between these two contrasts concepts.

Remark 2: If f(x) is noted f and f(y) becomes f +
δf , the above formula shows that the LAC is expressed
as M δf

M−f = MW where W represents the Weber
constant. This means that the LAC follows the Weber-
Fechner law.

3.2. Mathematical morphology and Top-Hat LIP

Grey level Mathematical Morphology has been in-
troduced and developed by the Fontainebleau School
(Ecole des Mines, Paris) [27]. Given a grey level im-
age fand a binary set S called structuring element, two
operations are defined: the dilation f ⊕ S and the ero-
sion f 	 S of f by S. The structuring element is gen-
erally chosen as a disk. For a given point x of D, if Sx
represents the disk S centered at x, we have:

(f ⊕ S)(x) = Supy∈Sx
f(y) (8)

(f 	 S)(x) = Infy∈Sx
f(y) (9)

Then these two operators are combined to produce
the opening (f 	 S)⊕ S and the closing (f ⊕ S)	 S
of f by S which always satisfy the inequalities:

∀x ∈ D, f(x) > [(f 	 S)⊕ S](x) (10)

∀x ∈ D, [(f ⊕ S)	 S](x) > f(x) (11)

It is well-known that the difference f− [(f	S)⊕S]
between f and its opening detects all the bright peaks
of f . More precisely, this operation consists of moving
S inside the subgraph of f and detecting all the parts of
the subgraph whereS cannot penetrate.

For thermal images, these peaks correspond to hot
objects (pedestrians, cars. . . ). According to the size of
S, hot objects, more or less distant from the sensor, will
be extracted.

When applying such a technique to real images, all
the peaks are detected, the significant ones and those

Fig. 1. Illustration of the White Top-Hat. Top: stars picture, middle:
difference between f and its opening: f − [(f 	 S) ⊕ S] with S
disk of radius 3, bottom: WTHt(f) with t = 100.

due to noise. To overcome this problem, the concept of
White Top-Hat WTHt has been introduced [3], in which
a threshold t permits to select the peaks higher than t:

WTHt(f) = {x ∈ D,
(12)

f(x)− [(f 	 S)⊕ S](x) > t}

The value of t is empirically chosen or preferably
determined after studying the noise magnitude. Figure 1
shows the effects of a simple subtraction f− [(f	S)⊕
S] compared to a WTHt(f).
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Fig. 2. Top: image f with pedestrians, middle: f+WTHt(f) showing
saturated regions, bottom: f ⨹ WTHt(f).

In [4] and [5], the White Top-Hat transform is used
with a rather empirical modification whose goal is to
enhance the contrast of hot objects: the image f is re-
placed by f + WTHt(f), which means that the peaks
height is doubled, with the risk of going out of the grey
scale. For this reason, knowing that the LIP addition
remains inside the grey scale, we propose to use a LIP
addition instead of a classical one, and thus compute
f ⨹ WTHt(f). An example is presented in Fig. 2 for a
thermal image of the FLIR dataset.

As shown in Fig. 2, the classical addition of
WTHt(f) to f clearly generates saturated regions while
the LIP addition of WTHt(f) to f solves this problem.
Another significant benefit is that such an enhancement

Fig. 3. Top-Hat transform with different diameters. Top: 3, middle: 7,
bottom: 11.

preserves the objects representation in comparison to
the learned ones, which will favor their detection.

Note that the Logarithmic Additive Contrast permits
to quantify the contrast gain generated by this approach:
for each region R of D where the value of WTHt(f) is
not null, the contrast of R with its surrounding back-
ground will be increased of the value of WTHt(f).

In the same way, we define the closing [(f⊕S)	S]−
f , which detects the dark minima of f . Then the Black
Top-Hat BTHt is defined and is used to accentuate the
dark minima by computing f ⨺ BTHt(f).

Finally, we can summarize the Mathematical Mor-
phological method by performing together the White
and Black Top-Hats, which means that the initial image
f is replaced by f ⨹ WTHt ⨺ BTHt.

Now let us consider the multiscale aspect of the prob-
lem. Depending on the structuring element radius used
in the Top-Hat operators, different information peaks
are extracted. The small objects we want to detect in
the background of our thermal images have very dif-
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Fig. 4. Person detection for different values of diameter. Top: 3,
middle: 7, bottom: 11.

ferent sizes according to the scene and to their position
and distance from the sensor. It’s understandable that
a given structuring element will favor one size of ob-
ject. Thus, we compute multiple Top-Hat transforms
with structuring elements of increasing size, the max-
imal radius being empirically chosen from detection
performance and time constraints. Chaverot et al. [28]
proposed a method consisting of executing the neural
network object detector on all these Top-Hat transform
iterations. The next step is to concatenate the obtained
results. The selection of the best bounding-boxes is
made with the Non-Maximal Suppression algorithm,
NMS [29]. Figure 3 shows the result of the Top-Hat
transform for different radii of the structuring element:
we can observe that the dark regions like the car wind-
shield become progressively darker while the bright
ones (pedestrians) become brighter.

Figure 4 shows the different detections of increasing
diameters of the Top-Hat transform structuring element.

3.3. Deblurring

As already remarked, thermal images are systemat-
ically blurred, in the sense that they look like slightly
misfocused images. From an optical point of view, it
means that a single bright point is replaced by an Airy
disk, whose central part can be approximated by a Gaus-
sian.

During the digitizing step, if the Airy disk diameter is
larger than the size of a pixel x, only a percentage of the
light particles (photons for example) destinated to xwill
really contribute to its grey level f(x). To correct this
kind of blur, many solutions have been explored. One of
the oldest was presented by Pratt ( [30], Section Edge
crispening) as an application of the Laplacian operator
and consists of adding to the initial digitized image f
its Laplacian Lap(f) defined as a 3 × 3 convolution.
Observing that such a method does not consider the blur
level, Jourlin proposed a more accurate technique [31]
in which f is replaced by fα = f +αLap(f), the value
of α being chosen to maximize a quality parameter
computed on fα. This approach is very efficient as long
as the Airy disk is not larger than a 3 × 3 mask.

In the literature [32], a resembling approach, com-
monly referred as the Unsharp Masking (UM) algo-
rithm, consists of computing fλ = f + λz, where fλ
and f denote respectively the enhanced and original
images and zthe correction component. This correction
component can be a Laplacian operator. Nevertheless,
for computational purposes, we consider the similar-
ity of the Airy disk with a Gaussian function. If G(f)
represents the convolution product of f by a Gaussian
filter G, the correction factor z is computed as follows:
z = f −G(f).

An example of such a deblurring is shown in Fig. 5
with λ = 1, which means that f1 = 2f −G(f).

3.4. Super resolution

In the case of an already trained network, modern
CNN architecture permits to increase the input im-
age resolution without having to retrain it. Increasing
the network resolution has the advantage of detecting
smaller targets, despite an increase of the processing
time. Considering the same original dataset, in this ap-
proach, the input images require an upscale too. A bi-
linear or bicubic interpolation is usually used for this
task. But in our situation, image Super Resolution (SR)
appears particularly interesting.

SR algorithms aim at increasing images resolution
while keeping precise and sharpened details in compar-
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Fig. 5. Unsharp masking. Top: initial thermal image f , bottom: de-
blurred image f1.

ison of classical interpolation methods generating blur
and approximated information (e.g. bicubic interpola-
tion (BC)). Generally, SR methods provide an increase
in resolution by a factor × 2, × 3 or × 4. For example,
applying a SR algorithm to a target of size (m,n) re-
sults in a (2m, 2n) resized target for a factor × 2 and
a (4m, 4n) one for a factor × 4. We assume that an
object detector failing at detecting too small targets can
retrieve them if they are properly resized.

Recently many deep learning-based SR methods have
been developed and achieve new state-of-the-art per-
formances. We can refer to the following reviews pre-
senting recent SR works [33–35]. In our experiments
we use the CARN model (CAscading Residual Net-
work) [36], based on a residual network and implement-
ing a cascading mechanism. This network proposes a
satisfying image quality and is quite efficient in term
of computational complexity thanks to its lightweight
design.

In the learning phase, couples of low resolution and
high resolution images are required. High resolution
images correspond to the original images of the training

Table 1
Image quality comparison between super resolution and bicubic in-
terpolation

FLIR-08901 FLIR-08953 FLIR-08960
PSNR SSIM PSNR SSIM PSNR SSIM

BC 41.38 0.979 40.14 0.976 44.82 0.986
SR 43.61 0.983 42.2 0.981 46.41 0.988

Fig. 6. Super resolution applied on thermal images. Top: bicubic
interpolation. Bottom: SR × 2.

dataset (with the native resolution). Low resolution im-
ages are obtained by reducing the images size by factors
× 2, × 3 and × 4. The network is trained to retrieve
high resolution images from their low-resolution ver-
sion. Since three resized factors have been used in the
training phase, we can choose between these different
factors when executing the network. Figure 6 proposes
a comparison between resized images by bicubic inter-
polation and by our specialized SR network. The SR
image looks slightly sharper than the interpolated one.

A comparison between SR and bicubic upscaling
is proposed in Table 1. On some images of the FLIR
dataset, PSNR and SSIM metrics are evaluated between
Ground Truth (GT) and upscaled images. GT images
correspond to original FLIR images, the upscaled ones
are obtained by downscaling the GT and then upscaling
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them by SR or bicubic interpolation. On every compar-
ison, Super Resolution gets the best scores.

3.5. Combined algorithms

We have also explored combinations of our previous
proposed methods. We focused on combinations of SR
with UM (Unsharp Masking) and SR with Multiscale
Top-Hat transform. As the SR multiplies the number
of pixels in each direction, we adapt the radius of the
structuring element used in the Top-Hat transform and
the neighboring region size of the Unsharp Masking to
consider the novel targeted size. Typically, we double
the size for a SR × 2.

The combination of UM and Multiscale Top-Hat
transform has been tested, as the first one enhances the
information peaks to be detected by the Top-Hat opera-
tions. However, such a combination yields poorer de-
tection performance than using only one of the previous
exposed methods and will not be further discussed in
this paper.

4. Experiments

4.1. Materials

4.1.1. FLIR dataset and validation subset selection
The FLIR ADAS dataset [37] is a dataset of ther-

mal images proposed by the FLIR company, a thermal
image sensor manufacturer. This set is constituted of
10228 images with a resolution of 640× 512 pixels and
includes 80000 annotations. Images have been acquired
in the Santa Barbara region in California in various situ-
ations of daytime and weather. Thermal images are pro-
posed in two formats, RAW 14 bits images and 8 bits
preprocessed images. The last ones are issued of FLIR
own enhancement and domain adaptation algorithms.
We choose to use the RAW thermal images provided
by FLIR, normalized into an 8 bits greyscale with a
dynamic expansion centered on a fixed mean m = 0.5
and standard deviation of σ = 0.25. The motivation to
use RAW images instead of the already transformed
ones is to avoid artifacts generated by FLIR’s own en-
hancement algorithm and to apply a custom enhance-
ment algorithm. In Fig. 7, a FLIR enhanced image is
compared to our normalization combined with Unsharp
Masking: this last approach preserves the details of the
persons while the FLIR transformation saturates the
information.

Table 2
FLIR ADAS classes distribution along train and validation split

Persons Bicycles Cars Dogs
Train 13725 3297 36642 178
Val. 4955 441 5209 12

Fig. 7. Top left: 14 bits RAW image, top right: the proposed normal-
ization, bottom left: the proposed normalization and unsharp masking,
bottom right: FLIR enhanced image.

The FLIR ADAS dataset provides annotations for
four classes: persons, cars, bicycles, and dogs. Table 2
presents the classes distribution.

In this paper, due to the large unbalance between the
classes, we decided to focus only on the two following
classes: persons and cars.

The FLIR ADAS dataset is not perfect. The annota-
tions of small objects are not present. It can be explained
by the difficulties to annotate them due to the poor
quality of thermal images. To obtain accurate scores
of detection performance, 693 images from the valida-
tion dataset were chosen and reannotated. One hundred
of these images were chosen because of their interest-
ing scene, with vehicles relatively far, and pedestrians
crossing the street in the background. The rest of the im-
ages were randomly picked. Full list of images and an-
notations files are freely available on GitHub [38]. The
selected validation images contain 5318 annotated per-
sons and 3206 annotated cars. Figure 8 shows the dif-
ference between the original annotation and our novel
annotation. Table 3 shows a comparison of the number
of labeled objects before and after our reannotation. The
number of small bounding boxes has doubled, while
the count of boxes in other sizes remained relatively
unchanged.
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Table 3
Bounding boxes areas distribution along our selection

Small Medium Large Total
Original 2378 2577 538 5493
Updated 5669 2676 546 8891

Fig. 8. Comparison between FLIR annotation (top) and the new
one (bottom). Red boxes are labeled cars, Green boxes are labeled
pedestrians.

4.1.2. Fine tuned YOLOv4
YOLOv4 is an object detector proposed by Bochkov-

skiy et al. [39] leveraging multiple features to obtain
the best trade-off between inference time and detection
accuracy. The authors aim to design a detector suitable
for systems production and optimizable for parallel
computation. This detector is built with CSPDarknet53
[40] as backbone due to its state-of-the-art classification
results on MSCOCO [41]. CSPDarknet53 is associated
with a Spatial Pyramid pooling module, increasing the
separation of significant features without reducing the
processing speed. The path-net aggregation neck of
the detector is PANet [42], shortening the information
path between lower layers and topmost feature. At last,
the detector head is the same as YOLOv3 [43], anchor
based.

YOLOv4 also uses state-of-the-art training strategies
and data augmentation methods, increasing detection

Fig. 9. YOLOv4 architecture [39].

Fig. 10. Performance comparison chart.

performance and overall robustness.
The network architecture is presented in Fig. 9 and a

performance comparison chart given in [39] is shown
in Fig. 10.

In our experiments, we use a fine-tuned YOLOv4 on
the FLIR ADAS dataset [28].

The fine-tuning was made with the following param-
eters:

– Resolution: 640 × 512 pixels
– Optimizer: Stochastic Gradient Descent
– Learning Rate: 0.001

The optimizer and learning rate were selected in ac-
cordance with the original publication of the network.

The train and validation split provided by FLIR was
kept. The mean Average-Precision, mAP, score was
computed on the validation set at each epoch for a
minimum of 60 epochs, the model obtained is the one
with the best score along the training. This model has
the state-of-the-art detection performance on the FLIR
ADAS Dataset.
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4.1.3. Fine-tuned EfficientDet
EfficientDet [44] is a detector using the Efficient-

Net [45] architecture as backbone. EfficientNet was de-
signed to improve efficiency and accuracy of CNN’s by
using a compound scaling method to scale the network
architecture and feature resolution. This allows to bal-
ance the trade-off between accuracy and efficiency. Ef-
ficientDet uses a weighted Bi-Directional Feature Pyra-
mid Network, BiFPN, to fuse features from different
scales and a Single Shot Detector, SSD, as its head, to
predict the bounding boxes and class probabilities of
the objects in a scene. As shown in the performance
comparison chart depicted in Fig. 10, the deepened
architecture of EfficientDet, like EfficientDet-D3 and
EfficientDet-D4 outperforms YoloV4 on the MS COCO
dataset, albeit with a significantly decreased inference
speed.

We have fine-tuned the EfficientDet-D3 model, pre-
trained on the MS COCO dataset. We used the follow-
ing parameters:

– Resolution: 640 × 640 pixels
– Optimizer: AdamW [46]
– Learning Rate: 0.0002

As with the YoloV4 fine-tuning, we maintained the
optimizer and learning rate used by the original authors,
as well as the train validation split of the FLIR dataset.
Unlike the previous architecture, our network required
training with a square image size. To accommodate this
requirement, we employed a resolution of 640 × 640
pixels. Starting from the original resolution of the FLIR
images, we applied the letterbox algorithm, which en-
closes the original image within a square frame, pre-
serving its aspect ratio. The model was trained on a
minimum of 60 epochs, we retained the model with the
best mAP score on the validation set.

4.1.4. CARN trained on thermal images
To train the CARN network on thermal images, we

have followed the steps described by the authors in the
original paper. We use a batch size of 64, a patch size
of 64, the ADAM optimizer with a starting learning
rate of 0.0001 which is halved every 4 × 105 steps. We
have randomly selected 1000 images from the FLIR
ADAS train set and 200 images from the validation set
as our training and validation subsets. To obtain low
resolution images, each image is resized with a bicubic
downsampling, respectively by a factor × 2, × 3 and
× 4. We have trained the model for 2 × 106 steps and
selected the one with the best PSNR score.

Fig. 11. Sensitivity analysis: influence of the Gaussian filter diameter
of the UM method with the YoloV4 fine-tuned model.

Fig. 12. Sensitivity analysis: influence of the Gaussian filter diameter
of the UM method with the EfficentDet-D3 fine-tuned model.

4.2. Experimental settings

For the YOLOv4-based network, the Unsharp Mask
is computed using a Gaussian filter with a standard devi-
ation σ = 1.4, corresponding to a neighboring region of
diameter k = 3. On the other hand, for the EfficientDet-
based network, the Unsharp Mask uses a Gaussian filter
with a standard deviation σ = 2.3, corresponding to a
diameter k = 11.

These diameters have been set thanks to a sensitivity
analysis for the impact of the kernel diameter of the
Gaussian filter. This analysis is presented in Figs 11
and 12, showcasing the effects of different diameters
on the results.

When the Unsharp Mask is applied to the Super-
Resolution (SR)× 2 method, the value of σ is increased
proportionally to the doubled value of the filter diame-
ter.

The Multiscale Top-Hat transform employs a circu-
lar structuring element with an odd diameter ranging
from 3 to 13. When used in combination with the SR
× 2 method, the following diameters are used: 7, 11,
15, 19, 23, and 27. The chosen range of values for the
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Table 4
Detection performances of the different methods for the fine-tuned
YoloV4

AP50

Methods Person Cars mAP
Baseline 68.23 81.37 74.80
FLIR enhanced 67.44 81.36 74.4
MTH 69.13 80.63 74.88
MTH LIP 69.42 81.24 75.33
UM 70.17 82.22 76.19
SR × 2 72.98 84.79 78.89
BC × 2 69.83 82.85 76.34
SR × 2 + UM 74.54 85.62 80.08
SR × 2 + MTH LIP 75.44 84.77 80.11

Table 5
Comparison of AP50 scores between objects categories for the fine-
tuned YoloV4

AP50

Methods Small Medium Large
Baseline 57.74 91.79 92.55
FLIR enhanced 56.06 93.27 97.11
MTH 57.61 91.56 92.48
MTH LIP 58.21 91.45 93.06
UM 59.01 91.48 93.34
SR × 2 67.73 90.08 73.78
BC × 2 63.60 90.04 73.09
SR × 2 + UM 70.23 88.87 72.22
SR × 2 + MTH LIP 69.61 90.04 73.04

kernel diameter in the Multiscale Top-Hat transform
is intended to specifically target the enhancement of
small objects contrast. By limiting the diameter within
the range of 3 to 13 for the Multiscale Top-Hat trans-
form and using a standard deviation within the specified
range for the Unsharp Mask, the focus is on enhancing
the visibility and brightness of small objects in the im-
ages. It is worth noting that larger values for the kernel
diameter can result in more significant alterations of
the original image and may require higher computa-
tional resources. Therefore, the chosen values strike a
balance between achieving contrast enhancement for
small objects and avoiding excessive image distortion
and excessive computational overhead.

For the concatenation and selection of the best
bounding boxes in the Multiscale Top-Hat method, a
Non-Maximum Suppression algorithm [29], NMS, is
applied with a threshold of 0.45. This threshold value
is commonly used when inferring a detection network
and helps eliminating redundant bounding boxes.

4.3. Results and discussion

In our study, we present the results in Tables 4–7,
which provide comparisons of Average Precision (AP)
and mean Average Precision (mAP). The computation

Table 6
Detection performances of the different methods for the fine-tuned
EfficientDet-D3

AP50

Methods Person Cars mAP
Baseline 35.52 59.46 47.49
FLIR enhanced 30.71 49.74 40.22
MTH 39.04 61.08 50.06
MTH LIP 39.03 61.05 50.04
UM 36.34 59.44 47.89
SR × 2 45.37 72.04 58.71
BC × 2 42.94 70.12 56.53
SR × 2 + UM 45.31 71.89 58.60
SR × 2 + MTH LIP 47.37 72.91 60.14

Table 7
Comparison of AP50 scores between objects categories for the fine-
tuned EfficientDet-D3

AP50

Methods Small Medium Large
Baseline 24.10 76.65 86.02
FLIR enhanced 13.38 70.31 78.09
MTH 26.45 78.86 87.35
MTH LIP 26.20 78.97 87.76
UM 24.28 76.70 85.31
SR × 2 44.12 77.00 60.21
BC × 2 42.43 74.90 56.51
SR × 2 + UM 43.86 75.89 57.63
SR × 2 + MTH LIP 45.50 77.80 61.10

method for AP is defined in the MS COCO Dataset [41].
Specifically, we used the AP50 score, which corre-
sponds to the AP computed at an IoU (Intersection over
Union) threshold value of 0.5. To further analyze the
performance, we also considered the classification of
AP50 scores into Small, Medium, and Large categories
as defined in [41]. These categories are used to assess
the performance of the detection model across different
object sizes.

The baseline score is obtained with the fine-tuned
model presented in [28] on our validation subset. The
four presented methods are: MTH (Multiscale Top-
Hat), MTH LIP, UM (Unsharp Masking deblurring), SR
(Super Resolution). For a comparison purpose, we have
included results obtained from two additional image
variations. The first variation involves using images
enhanced automatically by the FLIR algorithms (FLIR
Enhanced). The second variation involves resizing the
images by a factor of two using Bicubic Interpolation
(BC).

For each considered detector, the LIP version of the
MTH has outperformed the classical one. The UM and
the SR× 2 method permit to produce better results than
the baseline. It is worth noting that the observed im-
provement in performance is particularly notable for the
Small objects category, which aligns with our specific
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Table 8
Processing time and frames per second of the fine-tuned models
(I9-10850k – RTX3090)

Methods Times (ms) FPS
YoloV4 (640*512) 10.98 98.32
YoloV4 (1280*1024) 43.16 23.17
EfficientDet-D3 (640*640) 24.50 40.82
EfficientDet-D3 (1280*1280) 87.40 11.44

Table 9
Processing time and frames per second of the different algorithms
(I9-10850k – RTX3090)

Methods Time FPS FPS
(ms) (Yolov4) (EfficentDet-D3)

UM 0.19 89.53 40.50
MTH 4.67 67.39 34.28
MTH LIP 10.17 63.90 28.84
BC2 0.51 22.90 11.38
SR2 95.85 7.19 5.46
SR2 + UM 96.6 7.16 5.43
SR2 + MTH LIP 154.53 5.06 4.13

objective. This outcome demonstrates the effectiveness
of our approach in addressing the challenges associated
with small objects detection.

However, it is important to mention that when
employing Bicubic interpolation or Super-Resolution
methods, there is a decrease in the AP50 scores for the
Large objects category. This drop in performance for
larger objects does not significantly impact the overall
mAP score, which considers the performance across all
objects categories.

This discrepancy suggests that while the BC and SR
techniques impact the detection of larger objects, the
overall detection performance, as measured by mAP,
remains positive. It highlights the trade-off between en-
hancing small objects detection while potentially af-
fecting the detection accuracy of larger objects when
using these methods.

The SR × 2 method outputs better performance than
the BC x 2 one, suggesting than an image obtained via
an SR network gives better detection performance.

The following combinations have been tested: SR ×
2 with UM and SR × 2 with MTH LIP. Both improve
detection performances. Compared to the Baseline, the
mAP gain is above 5% with YoloV4 and 11% and 13%
with EfficientDet-D3, and we remark that SR × 2 with
MTH LIP increases the AP50 of Persons of near 7%
and 13% respectively, resulting in the best observed im-
provement. In both cases: single method and combined
ones, the MTH LIP appears essential.

In our experiments, using FLIR images as train-
ing dataset, the scores obtained by EfficientDet-D3 are
globally lower than those obtained with YoloV4 while

these networks show more similar performances on the
COCO dataset. These performance differences can be
explained by the dataset sizes (328,000 images in the
COCO dataset vs 10,228 in the FLIR dataset) and the
ability of YoloV4 to perform new augmentation tech-
niques [39]. YoloV4 appears more adapted to reduced
datasets.

The execution times of fine-tuned models and pre-
processing algorithms are presented in Tables 8 and 9,
respectively. Additionally, the frames per second (FPS)
obtained with the full pipeline using YoloV4 or Effi-
cientDet are also reported. These times were obtained
using an Intel Core i9-10850k CPU and an NVIDIA
RTX3090 GPU, with Python, PyTorch 1.8.2 and CUDA
10.2. The YoloV4 architecture is more parallelizable
than the EfficientDet one, which explains the different
inference times measured. The UM algorithm requires a
very low execution cost, making it an attractive option.
The MTH LIP is significantly slower than the original
MTH, however, parallelizing the algorithm and imple-
menting it in CUDA would accelerate it. Although the
BC2 appears to be very effective, the increasing infer-
ence time of the neural network for a doubled resolution
should not be ignored. In the end, the choice of the pre-
processing will depend on the initial performance level
of the network, the performance requirement, and the
available processing time. In our case, network quanti-
zation can be a valuable technique to reduce network
inference computation, as studied by Wu et al. [47]. By
applying network quantization, we can decrease stor-
age costs and reduce computation time associated with
network inference.

It should be noted that the training of the EfficientDet
detector was not optimized for the best performance,
the purpose of this example is to show that our method
can be applied to a trained detector and achieve better
performances, even when the training is not carried out
in the best possible manner.

Considering the scores presented in Tables 4 and
6, we notice that with both networks YoloV4 and
EfficientDet-D3 our image pre-processing techniques
provide a significant performance gain. With YoloV4,
from our baseline of mAP 74.80, applying SR x 2 and
MTH LIP on input images leads to a mAP score of
80.11. Using the same pre-processing technique with
EfficientDet-D3, from a baseline of mAP 47.49, the
performance reaches a mAP of 60.14.

These results demonstrate the ability of the proposed
pre-processing techniques to improve the detection per-
formance of an already trained network. Despite the
performance gap between the two detectors, the results
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demonstrate the effectiveness of our proposed meth-
ods, and shows the generalization possibilities to other
datasets and tasks.

5. Conclusion and perspectives

The objective of the present paper was to overcome
the main drawbacks of thermal images and improve the
detection of small objects. Three methods were stud-
ied, each addressing a specific problem: the Multiscale
Top-Hat transform and its LIP version to detect objects
far from the sensor and enhance their contrast with the
neighboring background, the Unsharp Masking method
to deblur thermal images, and the CARN network to
enlarge the spatial resolution. The most efficient com-
binations of these techniques allowed for a significant
gain compared to the baseline results. These techniques
showed a real impact on performance without having
to retrain a detection network, knowing that dataset ac-
quisition and annotation are tedious tasks, especially in
the case of thermal images.

For future work, we plan to study more precisely the
following elements to open the way to real applications
such as ADAS: better transformation of raw images
into 8-bit ones and optimization of execution time, esti-
mation of the obstacle trajectory and especially of the
pedestrian intention, and optimal linking between the
distance detection needed and the speed of the aided
car.

Concerning the MTH approach, the multiscale tech-
nique could be replaced by an automated adaptation
of the structuring element size in relation to local in-
formation. Finally, more fundamental subjects appear
interesting to explore, particularly the benefit of the LIP
framework application to thermal images, as demon-
strated in [28] for the Top-Hat LIP version. For exam-
ple, considering the vector space structure associated to
the LIP operations, the concept of grey level interpo-
lation opens the way to define a LIP Super Resolution
algorithm.
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Annex 1: Transmittance law and LIP addition

Such a law addresses images acquired in transmission
i.e., when the observed object is located between the
source and the sensor. Given an image f defined on the
spatial support D with values in the grey scale [0,M [,
the transmittance Tf (x) of f at x ∈ D is computed as
the ratio of the out-coming flux at x by the incoming
flux, this last one corresponding to the source intensity.
Obviously, Tf (x) is nothing but the probability, for a
particle of the source incident at x, to go through the
observed object.

The addition of two images f and g is interpretable
as the image f ⨹ g resulting of the superposition of
the obstacles (objects) generating respectively f and g.
Now let us recall the transmittance law:

Tf⨹g = Tf · Tg (13)

This formula means that the probability, for a particle
emitted by the source, to go through the “sum” of the
obstacles f and g, equals the product of the probabilities
to go through f and g, respectively. Jourlin and Pinoli
[23] established the link between the grey level f(x)
and the transmittance Tf (x):

Tf (x) = 1− f(x)

M
(14)

If we replace in Eq. (13) the transmittances by their
values deducted from Eq. (14), we get the LIP addition
of two images, as explained in Eq. (1).
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