
Integrated Computer-Aided Engineering 30 (2023) 395–412 395
DOI 10.3233/ICA-230714
IOS Press

A measured data correlation-based strain
estimation technique for building structures
using convolutional neural network
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Abstract. A machine learning-based strain estimation method for structural members in a building is presented The relationship
between the strain responses of structural members is determined using a convolutional neural network (CNN) For accurate strain
estimation, correlation analysis is introduced to select the optimal CNN model among responses from multiple structural members.
The optimal CNN model trained using the response of the structural member with a high degree of correlation with the response
of the target structural member is utilized to estimate the strain of the target structural member The proposed correlation-based
technique can also provide the next best CNN model in case of defects in the sensors used to construct the optimal CNN. Validity
is examined through the application of the presented technique to a numerical study on a three-dimensional steel structure and an
experimental study on a steel frame specimen.
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1. Introduction

When subjected to strong loads associated with nat-
ural disasters that exceed the load levels considered in
the design phase the structure suffers unexpected dam-
age. If damage occurs to some components, the struc-
ture loses its expected structural function, undergoes
greater damage due to the additional load, and may
eventually collapse. Such damage may cause serious
economic losses and result in casualties [1,2]. There-
fore, continuous building monitoring and maintenance
are required to ensure the safety of a building struc-
ture. In this regard, structural health monitoring (SHM)
techniques have been developed to identify structural
behaviors and evaluate safety with precision [3–5]. In
the SHM fields, various structural responses such as
displacement, acceleration and strain are measured us-
ing sensors installed in the structure [6–8]. Structural
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health is currently evaluated based on the analysis of
the measured structural response. The lateral displace-
ment of a high-rise building can be measured using a
device for displacement measurement with GPS, while
the safety of a high-rise building is assessed via mea-
sured displacement under wind loads [10–13]. Vibra-
tion in buildings can be measured using accelerometers
attached to multiple floors of the building. Aside from
the vibration under strong loads, the vibration under
ambient excitation is also measured to determine the
dynamic characteristics of a building structure, through
which the building status can be evaluated [10–13].
Strain sensors have been used in buildings to more di-
rectly evaluate the safety of structural members such as
columns, beams and walls [14]. The stress of the mem-
bers can be obtained from the measured strain response
of the structural member, which can then be used to
evaluate safety [15].

Various types of strain sensors such as long gage fiber
optic sensor [6,17], vibrating wire strain gage [18] and
fiber Bragg grating sensors [19] have been developed
and applied in structural safety assessment In the initial
stage of their use after a building’s completion, strain
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measurement can be done without any complication,
and the stress of the structural member can be evalu-
ated based on the results. However, with the current
technology, long-term structural health monitoring is
difficult because the lifespan of the sensor is signifi-
cantly shorter than that of the building [20]. There may
be instances when it is not feasible to measure struc-
tural responses due to a temporary or permanent failure
of the sensor during the monitoring process. Displace-
ment and acceleration sensors can be replaced in case
of a failure, but this is not possible with strain sensors,
which are embedded in concrete. The strain sensor in-
stalled on the surface of a structural member can be
replaced, but a newly installed strain sensor cannot re-
flect the stress that has already occurred in the structural
member. In this case, the measured value may not be
representative of the actual strain value of the struc-
tural member. Transmission of information on struc-
tural responses measured from the sensor attached to
the structural member is generally done using a wire-
less communication system [21,22]. In this case, the
measured structural strain response may be lost due to
problems with data transmission and temporary power
supply [23,24].

In response to situations where strain sensing is im-
possible or when strain data is lost, techniques for strain
data prediction and recovery have been developed based
on the measured strain response data in advance. Sev-
eral researchers have proposed strain response predic-
tion methods using correlation among strain responses
measured from installed strain sensors. Chen et al. [25]
utilized the correlation between the sensors for strain
data recovery Using the nonparametric copulas tech-
nique, they investigated the interdependence between
the response of the strain sensor installed at one loca-
tion and the structural strain response measured from
the sensor installed at another location which was then
applied to predicting the lost strain response. Zhang and
Luo [26] presented a technique for missing stress data
recovery based on the correlation between the mea-
sured stress data. Using the regression technique, they
analyzed and identified the correlation between mul-
tiple measurement points, through which they recov-
ered the missing stress data of the steel structure. Skafte
et al. [27] proposed a time history strain estimation
method based on operational modal analysis. The vi-
bration responses measured from structures, such as the
acceleration response, are divided into high and low
frequency parts. The high frequency part is decomposed
into the modal coordinate and then strain responses are
extracted by multiplying the modal coordinate with the

strain mode shape. The low frequency part of the strain
response is decomposed by Ritz-vectors, which are then
are extracted from the finite element model by em-
ploying a load. Strain responses for low frequency are
subsequently derived by multiplying the decomposed
data with the strain Ritz-vector. The strain time history
response was finally obtained by summing the strain
responses corresponding to the two parts. The proposed
method was applied to estimate the strain in an off-
shore structure. Bharadwaj et al. [28] presented a time
history of strain response prediction technique using
strain mode shapes obtained through highspeed image
capture. The limited response measured using the strain
sensor is expanded by the strain mode shape and is used
to extract the full-field strain. The proposed technique
was verified through time history strain response pre-
diction of a composite spoiler. Wang and Ni [29] pro-
posed a Bayesian modeling approach, which can prob-
abilistically predict the dynamic strain response of a
structure. The proposed Bayesian dynamic linear model
predicts both stationary and non-stationary time history
strain responses. The time-dependent strain response
is also predicted by reflecting the long-term trend and
seasonal change in the strain response to the proposed
technique. The applicability of the proposed technique
was examined using the strain response collected from
an actual structure which is a cable-stayed bridge.

Machine learning techniques have been applied
to various researches on data estimation and predic-
tion [30–33]. Those techniques have also been intro-
duced to predict and recover strain data [34,35]. Kro-
manis and Kripakaran [36] introduced a support vector
machine (SVM) for long-term strain prediction of struc-
tures. The SVM was used to investigate the relation-
ship between the temperature and temperature-induced
strain response of concrete structures and predict the
strain response using the relationship. A convolutional
neural network (CNN) that not only facilitates process-
ing big data because it hardly requires handcrafted work
of input data, but also has high-accuracy prediction,
recognition and classification performance [37–41], has
been introduced recently in strain estimation research.
With this development, studies intended to determine
the correlation between strain and structural responses
other than strain with CNN have been undertaken for
strain estimation and recovery Gulgec et al. [42] pre-
sented a deep learning-based strain sensing technique
by combining data measured using an accelerometer
In the proposed technique, the collected acceleration
response was set as input information of a deep neural
network using long short-term memory and fully con-
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nected layers in order to estimate the time history of
strain response. The strain sensing performance of the
proposed technique was evaluated using the structural
response measured from a steel beam-like structure for
a relatively long period. Chen et al. [43] presented a
long-term strain reconstruction method. In the method,
a nonlinear deep learning model was employed to cap-
ture the long-term and short-term pattern of strain re-
sponses. In the deep learning model, strain data from
one sensor, temperature data from one sensor, and air
temperature data were set in the input and the target
response is set as strain data from another strain sensor.
The presented method was validated by using long-term
measured data from a structure and reconstruction per-
formances of the results were evaluated for multiple
sensing scenarios.

This study presents a strain estimation technique for
building structures based on correlation analysis. In the
proposed technique, CNN, one of the machine learn-
ing techniques, is used to determine the relationship of
strain responses of the structural members. The strain
responses of adjacent members and ground acceleration
are set as the CNN input, while the strain responses
of target structural members subject to safety assess-
ment are set as the CNN output. The CNN trained us-
ing the measured structural response data estimates the
strain response of the target structural member. For ac-
curate and efficient strain response prediction of the tar-
get structural member, the correlation analysis of mea-
surement data from multiple strain sensors installed in
the building’s structural members is introduced prior
to CNN training. In the technique, Pearson correlation
analysis is employed to select an optimal CNN The pro-
posed strain estimation technique is applied to a numer-
ical study on the American Society of Civil Engineers
(ASCE) benchmark model and an experimental study
with a shaking table test on a 3-story steel frame speci-
men Through application, the strain estimation perfor-
mance of the optimal CNN model searched via the pro-
posed technique is examined. The adequacy of the data
types in the input map configuration of the proposed
CNN is also investigated. In addition, the effectiveness
of a method for selecting the optimal CNN based on
the correlation analysis in the proposed technique is
then verified. Strain estimation performance according
to variations in input size in the CNN architecture is
consequently confirmed.

The main contribution of the presented technique
lies in the selection of the optimal CNN for estimating
strain responses of the target member in a reasonable
manner. To find the adjacent structural members repre-

senting the highest correlation with the target member,
the correlation analysis of measured responses between
adjacent and target members is employed. Through the
correlation analysis, the adjacent members are found
and their responses are used to train the optimal CNN
model with the most accurate strain estimation perfor-
mance. In addition, considering the defect of the sensors
in the structural members, the prior correlation analysis
results can also provide the next best CNN model. Us-
ing the alternative CNN model, the strain responses can
be estimated with relatively high accuracy in a stable
and prompt manner in case any defect in the sensors
installed in the already identified adjacent members is
found.

2. Methodology

The basic concept of the proposed strain estima-
tion technique is based on the assumption that a struc-
tural member has a relationship with adjacent struc-
tural members in terms of the response to loading. To
identify the relationship, the correlation between a spe-
cific structural member and many adjacent structural
members is investigated. Through the established cor-
relational relationship, the responses of multiple adja-
cent structural members are also used to estimate strain
responses of specific target structural members.

The structural response relationship between a tar-
get structural member and adjacent members is made
through the CNN, which is one of the machine learn-
ing techniques. Because there are numerous structural
members, many CNNs can be formed to represent the
relationships with many adjacent members to estimate
the strain in a specific structural member Using the
measured structural response subjected to various exci-
tations, the CNN is trained to establish the relationship
between structural members.

Although there are various types of relationships
established between the structural response of a tar-
get structural member and the response of many ad-
jacent structural members, there will be specific adja-
cent structural members that are most closely related to
the structural response of the target structural member
(member A). Accordingly, it is necessary to select a
CNN with the closest correlation with the target mem-
ber (member A) among many CNNs built between the
target member (member A) and many adjacent mem-
bers for more efficient strain response estimation. Thus,
this technique includes the correlation-based selection
of an optimal CNN for the strain estimation of the target
member.
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Fig. 1. Framework of the proposed approach.

The CNN of the adjacent member that is most effec-
tive and has the closest correlation for estimating the
strain response of a specific member is selected in this
technique. To select the CNN, a correlation analysis
between the measured structural response data of the
target structural member and adjacent members is con-
ducted. Based on the correlation analysis, the CNN be-
tween the target member and the adjacent member with
the highest correlation is selected and adopted as the
optimal CNN for use in estimating the strain response
of the target member.

If there is a change in the monitoring system due to
defective sensors, it may be impossible to use the opti-
mal CNN based on the correlation. In this case, except
for the defective CNN among many CNNs between
the target structural member and many adjacent struc-
tural members, the next best CNN can be derived from
the correlation analysis. This alternative CNN is em-
ployed to reliably estimate strain responses of the tar-
get structural member. The framework for the proposed
approach is shown in Fig. 1.

2.1. Structural response estimation using CNNs

In the proposed strain estimation technique, the rela-
tionship between the structural responses of the target
structural member and many adjacent structures is de-
termined by the CNN Consequently, many CNNs can
be trained according to the number of members adjacent
to the target member In this study, the strain response
that can directly evaluate the safety of structural mem-
bers was selected as the target structural response. The
target load was also limited to seismic load, which is
one of the dynamic loads that can cause serious damage
to structures.

Table 1
Detailed information on the CNN layer and operator

Layer Size/Depth Operator Size
Input layer 20 × 20 Kernel 1 9 × 9
Convolutional layer 1 12 × 12/10 Subsampling 1 2 × 2
Pooling layer 1 6 × 6/10 Kernel 2 5 × 5
Convolutional layer 2 2 × 2/10 Subsampling 2 1 × 1
Pooling layer 2 2 × 2/10
Fully connected layer 80 × 1
Output layer 20 × 1

The strain response is measured and accumulated by
strain sensors installed on the target structural member
to be monitored and adjacent structural members under
seismic loading. The obtained strain responses are used
to build CNNs representing the relationships between
the target member and adjacent members When mon-
itoring of the target member is impossible, the strain
of the target member is estimated using a CNN trained
with the structural response of the member that is highly
correlated with the target member. Accordingly, the
strain response of the adjacent structural member highly
correlated with the target member is set in the CNN
input layer for strain estimation of the proposed tech-
nique. The strain response of the target member is set
in the CNN output layer. There are two pairs of con-
volutional and pooling layers between the input layer
and the output layer. Detailed information on layers
and operators present in these layers are summarized
in Table 1. A fully connected layer that exists between
the second pooling layer and the output layer connects
the two layers. The CNN architecture of the proposed
technique with the input and output layers set is shown
in Fig. 2 Ground acceleration (GM), which affects all
structural members during an earthquake and is easier
to measure than structural response, is additionally set
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Fig. 2. CNN architecture for strain estimation.

in the CNN input layer In Section 3, a comparative anal-
ysis of the strain estimation performance of the member
subject to monitoring due to the additional use of GM
data is presented. To constitute input layer, the time
series data of the strain responses of the adjacent struc-
tural member with the highest correlation with the tar-
get members are rearranged to a matrix form according
to the time stamp. The GM time series data o are then
rearranged to the matrix following the rearranged time
series data of strain of the adjacent member. The re-
maining parts of the matrix are changed by the number
of the adjacent members according to the correlation
analysis and those remaining parts are filled by zero
padding.

2.2. Correlation-based activation strategy for optimal
CNN selection

Because there are many structural members in a
structure, the number of adjacent structural members
that can correlate with the target structural member for
monitoring is also significant. Accordingly, a number
of CNNs can be formed for one target structural mem-
ber. For a specific dynamic load, the structural response
correlation of one target structural member and adja-
cent members is very complex depending on the loca-
tion, size, structural role and service load. A process
of finding the structural member most closely related
to the target member is needed for accurate structural
response prediction of the target structural member and
safety assessment.

In this study, finding the most effective CNN among
multiple CNNs defining the relationship of responses
between the target member and adjacent members is
referred to as the optimal CNN selection process. To
find the most reliable and effective CNN among CNNs
for adjacent members, correlation analysis between the
strain response data is performed. Prior to the construc-
tion of a CNN, the correlation between the strain re-
sponse of the target member and the strain response

of the adjacent members is analyzed to find the mem-
ber with the highest degree of correlation. The CNN
between the strain response of the identified adjacent
member and the strain response of the target member
is set as the optimal CNN to estimate the strain in the
target member.

In the present technique, the Pearson correlation co-
efficient method was introduced to analyze the struc-
tural response correlation between the target member
and adjacent members. The Pearson correlation coef-
ficient is a measure of the degree of linear correlation
between two variables, with the correlation coefficient
having a value ranging from −1 to 1. When the two
variables have a positive correlation, the correlation co-
efficient value is greater than 0. When the two variables
have a negative correlation, the correlation coefficient
value is less than 0. The closer the value is to 1 or −1,
the greater the degree of correlation is If the correlation
coefficient value is 0, no correlation exists between the
two variables.

When the strain response of the target structural
member to a specific seismic load is , and the strain re-
sponse of the i-th adjacent member among n number of
adjacent members is the Pearson correlation coefficient
between the two responses is defined as follows.

ρi =

l∑
t=1

(εm(t)− εm(t))(εia(t)− εia(t))√
l∑

t=1
(εm(t)− εm(t))2

l∑
t=1

(εia(t)− εia(t))
2

(1)

i = 1 to n

where l represents the total length of the data to be ana-
lyzed, and represent the average of the strain responses
of the target member and the i-th adjacent member. For
n number of adjacent structural members, the corre-
lation coefficients as in Eq. (1) can be obtained. The
responses from the adjacent member with the largest
value of correlation coefficient is used to train the op-
timal CNN for strain estimation. Figure 3 shows the
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Fig. 3. Correlation coefficient between the target member and adjacent members for the CNN selection.

correlation analysis of structural responses from two
structural members with those of the target structural
member. The strain responses of the adjacent structural
member representing higher correlation with the target
member show a sharper linearity compared with the
lower one. As described in Section 2 the selected op-
timal CNN is the only one used to estimate the strain
of the target member. If the sensor installed in the ad-
jacent member, which has the highest degree of cor-
relation with the target member, is defective, the first
selected optimal CNN is useless In this case, the strain
estimation of the target member should be done using
another CNN If n number of correlation coefficients
are obtained for one target member, the values will
be ranked from high to low As mentioned earlier, the
highest is the optimal CNN, while adjacent members
with the second-order correlation coefficient value will
serve as alternatives for the strain estimation. As such, a
strategy to find and utilize the next best CNN for strain
estimation is also proposed in this technique.

3. Application

3.1. Numerical study

3.1.1. Descriptions on example structure
The ASCE benchmark model was used to exam-

ine the effectiveness of the strain estimation technique
based on the proposed measurement correlation-based
activation strategy. The ASCE benchmark model shown
in Fig. 4a is a 4-story 2-span by 2-span steel structure
Each story is 0.9 m high, with a total height of 3.6 m

and has a plan of 2.5 m by 2.5 m. The cross-sectional
dimensions of columns and beams, which are major
structural elements for applying the present research
technique, are B100 × 9 and S75 × 11, respectively.
More detailed information on this model is given in the
references [44,45].

Measurements of the structural strain responses of
structural members in the target structure subjected to
various earthquakes are needed to apply the proposed
technique. In this section, it is assumed that the strain
responses extracted through dynamic earthquake anal-
yses on multiple seismic loads have been measured.
To this end, the target structure was modeled using
OpenSees [46], a nonlinear seismic analysis program,
to carry out dynamic analysis of seismic loads. A total
of 20 historical earthquakes were selected and used to
perform seismic analysis. Detailed information on the
earthquakes is given in the literature [47]. As shown in
the reference, the structural responses to 18 earthquakes
were used to train CNNs to define the relationship be-
tween the target member and adjacent members. After
training, the structural response estimation performance
of the optimal CNN was verified using the structural
responses for the test datasets. The test datasets in this
application were set as the remaining two earthquakes
(19th and 20th earthquakes in the literature [47]) among
the 20 earthquakes.

3.1.2. Correlation analysis of strain
Prior to examining the strain response estimation per-

formance of the proposed technique, correlation anal-
ysis for optimal CNN selection was carried out. The
structural members subject to monitoring were assumed
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Fig. 4. Example structure (ASCE benchmark model): (a) perspective view; (b) sensor locations in column; and (c) sensor locations in beam.

Fig. 5. Correlation coefficient of strain measurements from the example structure.

to be the columns viewed from the side of the bench-
mark model, and the strain extraction locations where
the strain is assumed to be measured in the columns
are shown in Fig. 4b. The beam on the same elevation
was selected as the adjacent member of the column.
The locations of the strain response extraction, where
the strain is assumed to be measured in the beam, are
shown in Fig. 4c. The specific locations of the columns
shown in Fig. 4b correspond to the members subject to
monitoring. The correlation coefficients for the strain
responses of target members (columns) with those of
the beams was calculated using Eq. (1) as shown in
Fig. 5. These strain responses to calculate the correla-
tion coefficients were derived from dynamic analysis
for the ASCE model subjected to an earthquake load.
Using the correlation coefficients, the optimal CNN will

be selected and the CNN will be utilized to estimate
strain subjected to another earthquake load in the future.
It can be confirmed that there is a specific tendency and
correlation with adjacent beam members according to
the location of the column subject to monitoring (floor,
location in the member). For example, the first-floor
column showed the highest degree of correlation with
the first-floor beam. It was also confirmed that the strain
response at the lower end of the second- and third-floor
columns had the highest degree of correlation with the
response of the second-floor beam. On the other hand,
the strain response at the upper end of the second- and
third-floor columns was highly correlated with the re-
sponse of the first-floor beam. The strain response of
the fourth-floor column showed the highest degree of
correlation with the strain of the fourth-floor beam.
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Fig. 6. Training results: (a) convergence curve and (b) comparison of strains between reference and estimated values.

Based on the correlation analysis, it is possible to
find the member with the highest degree of correlation
using the strain response of the target member subject
to monitoring. In this study, the column member is set
as the target member. Structures other than the ASCE
benchmark model, which have different structural char-
acteristics from the present model, are expected to ex-
hibit different trends from the correlation characteris-
tics analyzed in this study. Therefore, correlation anal-
ysis using the strain response measured for each target
structure is required for the application of the proposed
technique. Although the adjacent member, which has
the highest degree of correlation with the target mem-
ber is selected as the optimal CNN model, training of
CNNs to define the relationship between the responses
of the other adjacent members and the target member is
also needed to avoid unstable strain estimation associ-
ated with problems due to sensor failure in the adjacent
member corresponding to the optimal CNN.

3.1.3. Results of strain estimation
This section examines the strain estimation perfor-

mance of the proposed technique. The upper part of the
central column (CCU_1) on the first floor in Fig. 4b was
selected as the structural member subject to monitoring.
Accordingly, all beams in Fig. 4b present in the same
elevation were selected as adjacent members to be used
for the structural response prediction of the target mem-
ber In addition, 18 earthquakes for training and struc-
tural responses were used to train CNNs to define the re-
lationship between the strain responses of the target col-
umn member and adjacent beams Among these CNNs,
the CNN trained by first-floor beam members (BLL_1

and BRR_1) representing the highest correlation coeffi-
cient with the target member was selected as the optimal
CNN that exhibits the most accurate strain estimation
of the target column member according to the degree
of correlation analyzed in Section 3.1.2. Training of
the optimal CNN was conducted stably, and this can be
confirmed via the convergence curve of the loss func-
tion composed of the discrepancy between the CNN es-
timation output and the labeled data in the output layer
during training in Fig. 6a. In addition, Fig. 6b shows
the degree of agreement between the reference value
and the estimated strain of the optimal CNN for two
test earthquakes The trained optimal CNN showed root
mean squared errors (RMSEs) of 4.8554 and 4.0656,
respectively, for the training and test datasets, and mean
squared errors (MSEs) of 2.3106 and 2.9470, respec-
tively, for the training and test datasets. Figure 6 and er-
ror analysis results showed that the proposed technique
accurately predicts the strain response of the column
subject to monitoring only with the strain response of
the adjacent member Fig. 7 shows the strain time his-
tory estimation results of the optimal CNN for one test
earthquake, which confirmed that considerably accurate
response estimation is possible. To investigate the ef-
fectiveness of the optimal CNN trained by data with the
highest correlation coefficient (0.9979 of CC between
CCU_1 and first-floor beam members), the CNNs were
additionally trained by data with the lower correlation
coefficient and their estimation performances were con-
firmed. A CNN was trained by data from CLU_1 and
first-floor beam members. The correlation coefficient
value between them is 0.9537. The CNN trained by data
with 0.9537 of correlation coefficient showed RMSEs
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Fig. 7. Strain estimation results subjected to a test earthquake load.

of 5.7554 and 5.2016. A CNN was additionally trained
by data from CLD_4 and first-floor beam members.
Their correlation coefficient is 0.5199. In this case with
very low value of correlation coefficient, CNN could
not be made, which means loss function was not con-
verged during the CNN training. From these results,
it is confirmed that the optimal CNN selected by the
presented method has excellent estimation performance
than other CNNs trained by data with lower correlation
coefficients.

As mentioned in Section 2.1, the prediction perfor-
mance of both the CNN model using the strain of the
adjacent members and the CNN model using ground
acceleration along with the strain of the adjacent mem-
bers was analyzed in the CNN input data configuration.
The strain estimation performance of the CNN using
only ground acceleration data was investigated first. As
shown in Fig. 8a if only the GM data is used without
the strain of the adjacent member, strain estimation fails
with a large RMSE of 47.28. On the other hand, when
the GM data and the strain from one measurement lo-
cation of an adjacent beam member are used together
in the CNN input data the RMSE value is 7.36 which
indicates that the strain of the target structural member
is accurately predicted as shown in Fig. 8b. It can also
be confirmed that the RMSE was reduced by 81% com-
pared to the CNN model using only GM data. The above
results showed that in applying the present technique, it
is difficult to estimate strain of the member subject to
monitoring only with the GM data. The strain response
of the adjacent member should be used in combination
to ensure reliable estimation performance.

This study investigated the influence of GM data
added to the optimal CNN model on the strain estima-

tion performance. Figure 9a shows the strain estimation
results of the CNN trained using only the strain response
of adjacent members as CNN input data, which is the
same as in Fig. 7. Figure 9b shows the strain estimation
results of the CNN trained using GM data in addition to
the strain responses of the adjacent member to the CNN
input data. Both predictions were found to estimate the
strain response of the target column member with high
accuracy and the difference is not significant When GM
data was additionally used as shown in Fig. 9b, RMSE
for the test dataset was 3.7853, which was about 6.89%
lower in RMSE, compared to the case where GM data
was not used as in Fig. 9a, RMSE: 4.0656 Therefore,
it was confirmed that although the effect is not huge,
the use of GM data in addition to the strain data of the
adjacent members contributes to more accurate strain
estimation of the target member In addition, compar-
ison of the results between the case using one beam
strain with GM data (Fig. 8b) and the case using two
strains with GM data (Fig. 9b) showed the increase in
the number of the strain data derived a more accurate
CNN model.

3.2. Experimental study

3.2.1. Descriptions of specimen
In order to examine the practical applicability of the

strain estimation technique proposed in this study, an
experimental study using experimental models was car-
ried out. The specimen used is a steel frame structure
shown in Fig. 10a. The specimen consists of beams and
columns comprising a total of three floors, with each
floor measuring 0.5 m high. The length of the long side
with no braces installed and the length of the short side
with braces are shown in Fig. 10b. The specimen is
installed on a shaking table, and the structural response
to various seismic waves is measured. The experiment
is performed with vibrations in one direction, which
is the long side direction without braces. Braces were
installed in the short side direction to restrain the tor-
sion of the specimen. Through the shaking table test,
the strain responses of the beam and column in the
specimen were measured and used to validate the pro-
posed technique. The locations of sensors installed in
the beam and column for strain measurement are shown
in Fig. 10b. Figure 11 shows photos of the specimen,
strain sensor and accelerometer installed for ground
acceleration measurement.

Strain measurement experiments were performed to
verify the proposed technique. The shaking table test
was conducted on a total of 20 seismic waves used in
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Fig. 8. Strain estimation results: (a) using only GM data and (b) using one beam strain with GM data.

Fig. 9. Influence of GM data in the CNN input on strain estimation performance: (a) by two beam strain data; (b) by two beam strain data with GM
data; (c) enlarged plot of (a); and (d) enlarged plot of (b).
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Fig. 10. (a) Experimental specimen and (b) sensor locations.

Fig. 11. Photo of experiment: (a) specimen on shaker; (b) strain sensor; and (c) accelerometer.
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Fig. 12. Strain measurements of a column and beam on the 3rd floor
subjected to a seismic wave.

the simulation study. Information on the seismic waves
can be found in the author’s research [47]. As an ex-
ample, the structural strain response to a seismic wave
measured in the beam and column in the third floor
during the shaking table test is presented in Fig. 12.

Prior to examining the strain response prediction per-
formance of the proposed technique, correlation anal-
ysis was performed to select the optimal CNN model
for strain estimation. Pearson correlation analysis be-
tween beams and columns constituting the specimen
was carried out, and the results are shown in Fig. 13.
The strain responses measured from columns in each
floor have high degrees of correlation with the strain
responses measured from the adjacent beams as shown
in Fig. 13. The strain measurement location used to
build the optimal CNN model for strain estimation of
a specific structural member is selected based on the
results.

3.2.2. Results of strain estimation
In the experimental study, the proposed technique

using the measured strain response of the specimen was
applied. The second-floor column (CU_2) in the spec-
imen was selected as the target for strain estimation.
The optimal CNN model selection based on correla-
tion analysis was conducted to estimate the strain re-
sponse of the second-floor beam. As shown in Fig. 13
the strain responses measured at the left and right ends
of the second-floor beam (BR_2 and BL_2) with the
highest degree of correlation with the strain response
of the second-floor column were used to train the opti-
mal CNN model The ground acceleration response was
used in the input layer of the CNN model along with

Fig. 13. Correlation coefficient of strain measurements from the ex-
perimental specimen.

the strain response of the second-floor beam, while the
strain response of the second-floor column was used in
the output layer of the CNN model. The CNN architec-
ture in this experimental study is identical to the one in
the numerical study. Among the 20 earthquakes used
in the shaking table test, 18 earthquakes were used to
train the optimal CNN model The measured responses
to two earthquakes, which were the 19th and 20th earth-
quakes in the literature [47]) and were not used in the
CNN training, were used as test datasets to validate the
trained CNN model.

The optimal CNN training results are shown in
Fig. 14. Figure 14a shows the convergence curve of the
loss function during CNN training. It was confirmed
that the loss function decreased rapidly at the beginning
of training and exhibited a rapid decrease once more
at the middle of training, showing stable convergence.
Figure 14b shows the strain estimation results for the
training and test datasets of the trained optimal CNN
model RMSE values were 1.1987 and 0.8785, respec-
tively, for the training and test datasets, indicating that
a CNN model with high estimation performance has
been trained.

Figure 15 shows the results of the study that exam-
ined the prediction performance of the optimal CNN
model in terms of the time history of the strain re-
sponse. The estimation results for the time history of the
strain of the second-floor column subjected to the 19th
and 20th earthquakes, which were not used for CNN
training, are given in Fig. 15a and 15b. The reference
value and estimated values by the optimal CNN model
showed high degrees of agreement. The RMSEs be-
tween the estimated and reference values were 0.7559
and 0.9471 for the 19th and the 20th earthquakes, re-
spectively In order to examine the estimation results
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Fig. 14. Optimal CNN training results for predicting strain of the 2nd floor column using strains of the 2nd floor beams: (a) convergence curve and
(b) strain estimation results.

Fig. 15. Prediction of time series of strain of the 2nd floor column using the strain of the 2nd floor beam: (a) sub-jected to the 19th seismic wave;
(b) subjected to the 20th seismic wave; (c) enlarged plot of Fig. 15a; and (d) enlarged plot of Fig. 15b.
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Fig. 16. Comparison of strain prediction according to the variation in correlation coefficient.

Fig. 17. Comparison of strain prediction according to the variation in the CNN input size: (a) RMSE and (b) computational cost.

for a range with a relatively high amplitude among the
time history of strain responses, an enlarged view of
the section was examined. Figure 15c and 15d show
enlarged views of the ranges with high amplitude of
the response values for the 19th and 20th earthquakes.
The optimal CNN model was capable of estimating the
response accurately even in the range where a large
deformation took place.

The proposed technique is essentially based on the
optimal CNN selection based on correlation analysis.
To confirm the validity of the present research tech-
nique for selecting the optimal CNN model through
correlation coefficient analysis, a CNN model using re-
sponses with low degrees of correlation with the struc-
tural responses of the target structural member was

trained, and its prediction performance was confirmed.
The CNN model was trained using the strain response
at the left and right ends of the third-floor beam (BR_3
and BL_3), which had a low degree of correlation with
the response of the second-floor column (CU_2). Sim-
ilar to the verification of the response prediction per-
formance of the optimal CNN shown above, the strain
prediction performance of the CNN model trained using
the third-floor beam response was examined. Results
showed RMSEs for the training dataset and the test
dataset were 1.5720 and 1.9728, respectively, which
were less accurate when compared to the optimal CNN
model. This study confirmed the response prediction
results of CNNs according to the correlation between
the second-floor column strain data and all the beam
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Fig. 18. Optimal CNN training results subjected to the 16th and 17th seismic waves (case 2): (a) convergence curve; (b) strain estimation results.

Fig. 19. Prediction of time series of strain of the 2nd floor column: (a) subjected to the 16th seismic wave; (b) subjected to the 17th seismic wave;
(c) enlarged plot of Fig. 19(a); and (d) enlarged plot of Fig. 19(b).
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strain data. Figure 16 shows the arithmetic mean of the
correlation coefficient values between the responses at
the left and right ends of the beam for each floor and
the column on the second floor and RMSEs of corre-
sponding CNNs. It was confirmed that higher degree
of correlation results in greater strain estimation per-
formance of the CNN This in turn verified the validity
of the Pearson correlation analysis process for the op-
timal CNN model selection included in the proposed
technique.

This study also examined the structural response pre-
diction performance according to the variation in the
CNN input size. The size at the CNN input layer of the
measured data used in the above research results was
20 × 20 The structural response prediction results were
investigated by changing the input size to 10 × 10 and
6 × 6. Figure 17a shows the structural response predic-
tion performance of CNNs according to the variation
in the input size It can be confirmed that the structural
response prediction performance is improved as the in-
put size increases. Figure 17b shows the time required
for CNN training according to the variations in CNN
input size. It was also confirmed that as the input size
increases, more computational cost is required for CNN
training. Therefore, selecting the appropriate CNN in-
put size can be taken into account considering the ur-
gency of monitoring and the importance level of the
target structural member.

The above research results were limited to a dataset
partitioning, which means 18 earthquakes including
from 1st to 18th earthquakes in the literature [47] were
selected for the training dataset while the remaining 2
earthquakes such as 19th and 20th earthquakes in the
literature [47] were selected for the test dataset. This
data constitution refers to case 1. In this part, the estima-
tion performance of the presented method subjected to
another data partitioning was investigated. In this case,
16th and 17th earthquakes in the literature [47] were
selected to test datasets. Remaining earthquakes such
as from the 1st to 15th earthquakes and from 18th to
20th earthquakes were selected for the training datasets.
Another data constitution refers to case 2. The strain
responses of the 2nd floor column (CU_2) and 2nd floor
beams (BR_2 and BL_2), which have the highest cor-
relation coefficients and used in the above examination
(case 1) were used to train the optimal CNN. All con-
ditions in this investigation were identical to the above
case (case 1). The CNN was trained and the training
results are shown in Fig. 18.

Figure 18a shows the convergence curve of the
loss function. Figure 18b shows the estimation re-

sults for training and test datasets. RMSE values were
1.1269 and 1.1954, respectively, for the training and
test datasets. Although the optimal CNN in this investi-
gation estimated strain responses with relative accuracy,
the RMSE values were slightly higher than those of
the above estimation case (1.1987 and 0.8785, respec-
tively, for the training and test datasets). It was regarded
that the higher error stems from the response range
for test datasets in case 2 was wider than the above
case 1, which means more responses for test datasets
in case 2 had nonlinearity than case 1. The estimation
performance of the optimal CNN was also examined in
terms of the time history of strain responses. Figure 19
showed the prediction results. It was confirmed that
the optimal CNN efficiently predicted the time series
responses subjected to the 16th and 17th earthquakes.

4. Conclusions

A correlation analysis-based strain estimation tech-
nique for building structures was presented. The rela-
tionship between the strain responses of several struc-
tural members in the structure was determined using
a CNN model for strain estimation. The optimal CNN
model for strain response estimation was selected based
on the correlational analysis between responses mea-
sured from the structural members. The proposed tech-
nique was applied to the analytical study for strain es-
timation of the ASCE benchmark model Applicability
of the proposed technique was also examined through
a shaking table test on a 3-story steel frame specimen.
Through analytical and experimental studies, the strain
estimation performance of the proposed technique was
validated. The RMSEs for test datasets in the experi-
mental study were 0.8785 and 1.1954 for case 1 and
case 2, respectively. The RMSE values correspond to
2.30% and 2.17% of the maximum strain responses of
the target structural member for test datasets, demon-
strating the precision of the presented method. The ad-
equacy of the data types in the input map configura-
tion of CNN in the technique, such as the utilization
of ground acceleration responses and the number of
response locations, was likewise verified. Furthermore,
the validity of the correlation analysis method between
the responses of structural members for the optimal
CNN section was confirmed. The response estimation
performance of the proposed technique according to the
variation of the CNN input size was also examined.

As confirmed in the prediction results for case 2, the
error for the test dataset was higher than case 1. The test
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dataset in case 2 had a wider strain response range than
case 1, which indicates test datasets in case 2 had more
nonlinearity than those in case 1. From this compari-
son, it was regarded that the presented method can be
limited to the datasets including large nonlinearity. As
the nonlinear data particularly including residual defor-
mation can be extracted in case of occurring damage in
the structure, the presented method can also be limited
to the datasets from damaged structures. In future stud-
ies, some prediction methods for the datasets including
nonlinearity will be focused based on the data driven
approach with frequency domain data as well as time
domain data [48]. In addition, the CNN architecture
employed in the study was derived by modifying the
author’s previous works [47] that dealt with time series
of structural responses. Even if the used architecture
in this study showed relatively accurate performance,
there is still room for progress by investigating some
methods to find the optimal architectures, which will
be another research focus for the authors in the fu-
ture. Furthermore, to improve the prediction capacity of
the present method, the applicability of more powerful
and sophisticated supervised machine learnings [49–51]
will be investigated in the future works.
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