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Abstract. The accuracy and reliability requirements in aerospace manufacturing processes are some of the most demanding in
industry. One of the first steps is detection and precise measurement using artificial vision models to accurately process the part.
However, these systems require complex adjustments and do not work correctly in uncontrolled scenarios, but require manual
supervision, which reduces the autonomy of automated machinery. To solve these problems, this paper proposes a convolutional
neural network for the detection and measurement of drills and other fixation elements in an uncontrolled industrial manufacturing
environment. In addition, a fine-tuning algorithm is applied to the results obtained from the network, and a new metric is defined
to evaluate the quality of detection. The efficiency and robustness of the proposed method were verified in a real production
environment, with 99.7% precision, 97.6% recall and an overall quality factor of 96.0%. The reduction in operator intervention
went from 13.3% to 0.6%. The presented work will allow the competitiveness of aircraft component manufacturing processes to
increase, and working environments will be safer and more efficient.
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1. Introduction

Nowadays, the aeronautical sector is a global and
highly competitive sector [1] because it develops high
value-added products that are subjected to the most
demanding sustainability and efficiency conditions [2].

Therefore, aeronautical manufacturing processes,
seen from complexity of detail, need innovative technol-
ogy that avoids low value-added operations, increases
efficiency and reduces associated costs per aeronauti-
cal structure unit [1]. For these purposes, progressive
automation in every production process stage is taking
place by using machinery and robots that work on dif-
ferent aircraft parts to, therefore, achieve higher pro-
ductivity and process efficiency, while meeting the high
accuracy and quality required by this industry [2].
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Of the technologies introduced by this growing au-
tomation, by focusing on digital innovation [2], and also
framed within the so-called Industry 4.0 [3], employ-
ing artificial vision plays a fundamental role in these
manufacturing processes thanks to its great versatility
that allows it to work on a wide variety of elements in
all kinds of scenes [4]. However, its use in the aeronau-
tical industry is still difficult because these techniques
face two formidable challenges; first, its use in large
industrial scenarios with a wide variety of physical en-
vironments (lightning, brightness, traces of metal chips,
etc.) that can affect the information available during the
image capture and reconnaissance process; second, the
variability of the geometrical nature of the mechanical
elements to capture, which can involve the databases
designed for training the Artificial Intelligence (AI)
system being pre-labeled by humans and could, there-
fore, imply biases due to the complexity and volume
of the employed data. All these challenges, along with
the dimensional characteristics related to aeronautical
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structural components, frequently require the simulta-
neous intervention of both robots and operators dur-
ing fabrication processes. Consequently, it would be
very interesting to develop and validate a non contact
vision system to reduce operator interventions during
these processes to, therefore, allow the production rate
in airship fabrication to rise.

Another key technology in Industry 4.0 for devel-
oping intelligent production methods is deep learning
(DL) [3]. It is an innovative tool used for analyzing
industrial data. In machining operations, DL algorithms
are employed for predictive maintenance operations,
quality prediction, process monitoring or parameter op-
timization [6–8]. However, information about the use of
these algorithms in aeronautical fabrication processes
is scarce because they form part of manufacturers’ in-
tellectual property assets.

Therefore, the objective of this paper is to define and
design a lightweight CNN model for the detection and
categorization of referencing elements present in the
vast majority of aeronautical industry manufacturing
processes. Additionally, an algorithm that has been de-
veloped for the precise measurement of the center and
diameter of elements of a circular nature that utilizes a
captured image of them, and a new metric to unequiv-
ocally evaluate the performance of these algorithms in
precision terms when locating the center and measuring
its diameter, are introduced.

The article is organized as follows: Section 2 intro-
duces other relevant studies found in the literature for
object detection in aeronautical manufacturing. Section
3 presents the proposed approach for the accurate de-
tection and measurement of these elements. The results
and statistical analysis are shown in Section 4. Section
5 discusses the performance of the developed method.
Finally, Section 6 lists the conclusions and future work.

2. Related works

As part of the transition to Industry 4.0, digital tech-
nologies like machine vision and artificial intelligence,
together with adaptive robotic systems, have drawn air-
craft manufacturers’ interest [4,5].

In particular, non contact artificial vision technolo-
gies should be flexible and scalable for those indus-
trial applications that require high-precision opera-
tions in real uncontrolled environments [9–11]. These
systems have reported good success rates in produc-
tive processes [12,13] and in other sectors [14–16].
For example, vision systems in the civil infrastructure

field [17–20] have been successfully employed to cap-
ture images of large structures in real uncontrolled open
environments.

In the industry field, one of the elements most fre-
quently measured by artificial vision methods in ma-
chining operations are drilling holes given their ubiq-
uity in manufacturing processes and their easy creation.
However, accurately measuring these elements in large
uncontrolled industrial environments, with the presence
of external elements like sealant stains or machining
residues (i.e., chips and lubricant) or scenarios with
inadequate lighting (shadows, etc.) can be difficult and
computationally costly. Thus taking the most precise
measurements possible requires good resolution im-
ages [12].

The methods applied in industry are based mainly on
the segmentation of contrasts in images and edges de-
tection [21]. Some of the most widely used algorithms
are the labeling of connected regions where, from a
binarized image, all the pixels connected to one another
are grouped together and a label is assigned to them.
Having labeled all the regions, they can be selected ac-
cording to their area circularity. Another widespread
algorithm is Hough transform, which allows geometric
features like circles and straight lines to be identified
from the edges detected in an image. Some authors have
used Hough transform for circle detection. Sinha and
Aneesh [22] applied it to detect the presence of tumors
in circular eyeball and iris regions. Huan et al. [23] pro-
posed using transform to detect vehicle logos in open
scenarios. Both authors’ studies acknowledge computa-
tional problems in algorithms when employing Hough
transform. Specifically, Huan et al. [23] recognized dif-
ficulties when processing images captured by cameras
in open scenarios (brightness, distance, etc.), which
affected the resolution quality of their images.

To reduce computational complexity with Hough
transform, Liang et al. [24] proposed an angle-assisted
circle detection algorithm that reported good results for
the detection of multiple circles in complex scenarios.
However, these authors acknowledged that the method
should be validated with a larger welding dataset. In
this study, despite knowing the problems described in
the literature with using Hough transform, transform
was initially applied to detect mechanical elements with
circular geometry, although its effectiveness consider-
ably reduced when scene conditions changed (crowd
interference) or in the presence of abundant foreign el-
ements, which forced the fine adjustment of multiple
parameters; that is, operator supervision during manu-
facturing processes and, therefore, reduced autonomy
of automated processes.
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One solution for circle detection is DL algorithms.
Fikret et al. [25] used convolutional neural networks
(CNN) to detect circular images under water. However,
the dataset employed for network training was small.
Other authors have proposed using other CNN architec-
tures for the detection of circles from images obtained
in controlled databases for various applications, such
as crop detection [26], fuel tanks [27,28], unproductive
crop land [29] or eye diseases [30]. All these studies
agree that the results of the employed learning method
are closely related to the quality and quantity of the
training samples of the applied model. In our study, we
obtained an extensive dataset of sufficient quality from
seven different manufacturing stations for large aircraft
components. To the best of our knowledge, no such
dataset has been applied to detect mechanical fixation
elements (circular geometry) in aeronautical manufac-
turing processes.

Another handicap in the aeronautical industry must
be taken into account: the reliability and precision re-
quirements of measuring complex geometries in aero-
nautical structures are very high. Judit et al. [31] pro-
posed an evolutionary algorithm for designing aircraft
fuel quantity indication systems, but did not analyze
the different discretization levels of tank geometry. Our
study considers a range of geometries of mechanical
fastening elements, which makes it a unique and possi-
bly more challenging process.

On the architecture of DL algorithms used in intel-
ligent production methods, there are numerous stud-
ies in the scientific literature in which CNN have been
used effectively and robustly together with artificial vi-
sion systems [32–41]. These algorithms are character-
ized by a diversity of architectures for solving com-
plex problems [42], simple detection systems [43] or
rapid [44] cubic space motion systems [45], and for the
recognition of images in uncontrolled open spaces for
various uses [46,47], which led them to establish two
paradigms in terms of their main architecture. They can
usually present an architecture based on two stages: a
first phase with the extraction of regions, followed by
another phase with the classification and adjustment of
those regions. Currently, the most widely used architec-
tures are the CNN based on regions (R-CNN) [34] and
the Fast R-CNN [33]. Both are characterized by good
flexibility and efficiency as regards the performance of
their tasks and at the cost of less speed. They normally
present an architecture based on a single stage, which
means that all the processing for characteristics extrac-
tion, proposed regions and final classification is inte-
grated into the same network, which implies a simpler

model. Today the two most widespread object detection
architectures are the Yolo network [38] and its different
enhanced versions [48,49], and the Single Shot Detector
(SSD) network [37].

The Yolo network and its improved versions feature
good precision along with high object processing speed
by incorporating a deeper back-end network. Benamara
et al. [46] used this architecture to recognize facial
emotions. The authors proposed smoothing labels for
any erroneously labeled in uncontrolled environments.
Macias-Garcia et al. [45] also applied this architecture
to generate collision-free trajectories between mobile
robots.

Another one-stage architecture is SSD [37], which is
a network that performs detection tasks in a single for-
ward step to, thus, eliminate the generation of proposals
and the resulting subsystem. This network has shown
good image detection performance in complex environ-
ments [23,50]. However, its potential to apprehend a
unique-looking model capable of representing a variety
of objects in an uncontrolled scenario has not yet been
sufficiently exploited. Other authors have proposed hy-
brid deep convolutional networks [46] by combining
different architectures (Yolo plus SSD), but their use
should be validated to utilize consecutive frames.

In addition, CNN networks can be classified as 1D
CNN [51], 2D CNN [52–54] and 3D CNN [55] based on
how information is encoded according to its spectral or
special nature. In this study, 2D CNN was used because
convolution operations were spatially performed.

The academic literature on the employment of these
algorithms in advanced aeronautical manufacturing pro-
cesses is scarce because they often form part of the
intellectual property portfolio of the airframe system
supplier that delivers the subsystem design and are not
published.

These algorithms are beginning to be introduced into
some aeronautical component manufacturing processes.
The classification of defects in CFRP laminates is an
example of such [56,57].

To the authors’ best knowledge, these CNN-based
detection algorithms have not yet been applied for ref-
erencing aeronautical manufacturing processes using
fixation elements like fasteners or drilling holes.

3. Materials and methods

3.1. Dataset

The experiments employed a set of images obtained
from seven different machines and stations for manufac-
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Fig. 1. Sample of the images contained in the dataset.

turing and assembling aeronautical components, each
with its own configuration in terms of image resolution,
lighting conditions, predominant object categories and
the complexity of the scene to be inspected.

After removing out-of-focus, erroneous images and
those not containing any element to be detected, a set
of 24625 images was obtained. All the images in the
dataset were captured on the gray scale, with a resolu-
tion of 5 or 10 MPx. Figure 1 shows some examples of
this dataset, in which images from drilling and riveting
machines predominate.

3.1.1. Image process and labeling
In the analyzed set of images, different fastening or

referencing elements used in aeronautical manufactur-
ing processes were detected and classified into eight
different categories (Fig. 2):

a) Drill (D): encompasses every straight blind or
through holes, without countersink

b) Countersink (Cs): comprises those holes with
countersink

c) Rivet (R): includes those rivets that are flush with
the surface

d) Protruding Rivet (PR): those rivets protruding
over the surface

e) Temporary Fastener 1 (F1): this category groups
images of the head of a temporary fastener, which
will be drilled during a subsequent process to
insert a rivet

Table 1
Amount of elements present in each category

Category Code Number
Drill D 23772
Countersink Cs 5572
Rivet R 1459
Protruding rivet PR 360
Temporary fastener 1 F1 8329
Temporary fastener 2 F2 1382
Hexagonal Hx 365
Screw S 372
Total 41611

Fig. 2. Prototype elements for the established categories.

f) Temporary Fastener 2 (F2): the same as F1 cate-
gory, but in this case the images of the temporary
fastener tail are included

g) Hexagonal (Hx): this category represents those
elements with a hexagonal shape

h) Screws (S): images of screws are included in this
class

The prevalence of elements from the different cat-
egories is not uniform throughout the dataset because
the D category is by far the best represented one, while
the presence of others like PR, Hx and S is minor in the
set of images (Table 1).

Image labeling was carried out semi-automatically
using a potential region proposal algorithm based on the
labeling of connected regions (blobs). These proposed
regions were subsequently classified with a classifica-
tion neural network developed in [58].
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Fig. 3. Element labeling using its circumscribing circle.

The proposal was finally and manually validated by
experts to correct the identification errors made by the
automatic labeling algorithm. It should be noted that,
given the circular nature of all the identified categories,
a decision was made to label these elements by means
of the circle that circumscribed them to, thus, do away
with the bounding boxes normally used (Fig. 3).

3.2. Proposed approach

To develop the detection neural network, several
of the most widespread architectures were evaluated
[59,60], such as R-CNN, SSD and RetinaNet. Finally,
we opted to design a network architecture based on SSD
developments [37]. However for this detection prob-
lem, a very light convolutional network with only seven
layers (inspired by MobileNet architectures [61]) was
used as a backbone.

Following the work methodology of SSD networks,
the localization of elements was be done in the coor-
dinates related to anchor boxes (represented in Fig. 4).
In this case, as the elements to be detected were al-
ways circular in nature, their size was characterized
by using only the value of their height: h. In this way,
the network architecture is simplified by the particular
characteristics of the elements to be detected. Anchor
boxes were created with the following sizes (in relation
to image height): 16%, 32%, 64% and 96%.

The neural network structure (shown in Fig. 5) can
be divided into three sections:

An adaptation section or input layer: this section was
configured for an image size of 480 × 343 pixels with
a single channel (grayscale image). At the same time,

Fig. 4. Element bounding box (blue) and closest anchor box (red).

image normalization was performed, which mapped it
to the interval v ∈ [−1, 1].

Next data were passed through a convolutional sec-
tion, which constituted the network’s backbone, and
was composed of seven convolutional blocks. All these
blocks contained a convolutional layer, followed by a
Batch Normalization block [62] (with momentum value
= 0.99), an ELU activation signal and a Max Pooling
layer with factor 2.

Finally, from the last three convolutional blocks, fea-
ture maps were extracted (dimensions 30 × 21, 15 ×
10 and 7 × 5), whose information fed the prediction
section, which comprised convolutional blocks for both
category and location predictions.

Additionally, a series of blocks in charge of generat-
ing information from anchor boxes was included in the
network architecture so that output would contain all
the information needed to reconstruct detection values.

All the results of these convolutional blocks were
concatenated in the output, whose shape was 815 × 19.

Instead of following the training scheme proposed
for SSD networks, this work opted to do away with the
Hard Mining stage and use the FocalLoss function [13]
as the primary loss function, parametrized with α =
0.25 and γ = 2. This loss function offers a much better
management of the differences between the number of
“positive” cases (item detections) and the much more
numerous “negative” cases. Therefore, Hard Mining is
not needed to achieve successful training. It also allows
the network to train with highly unbalanced datasets
without further work.

3.2.1. Measuring fixation elements
For the accurate adjustment of the center and diame-

ter of referencing elements, a measurement algorithm
called Spoke was designed.
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Fig. 5. Final developed network architecture.

Fig. 6. Accurate measurement “Spoke” algorithm.

The algorithm began by using the circle proposed
by the detection neural network (shown in yellow in
Fig. 6), on which a set of radii or spokes (drawn in
green) was defined and the image intensity values over
them were analyzed. These profiles were analyzed dur-
ing the search of the point of most contrast. For this
purpose, the derivative of the values along the profile
was calculated. The points with the highest and lowest

derivative values (in red and blue, respectively) were,
thus, located.

Those points represented the most likely locations of
the referencing element edge.

In order to extract the circular shape from the set
of points of the highest contrasts, a least squares algo-
rithm to find the circle that best fitted the point set was
developed [64].
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Given a set of m points pi = (xi, yi), the aim was to
calculate the values β = (cx, cy, r) that minimized the
following sum:

m∑
i=1

ri(β)
2

=

m∑
i=1

(
r −

√
(xi − cx)2 + (yi − cy)2

)2

The value of β that minimized this expression can be
calculated by iteratively solving the expression:

βk+1 = βk + (JTJ)−1JT · rk

where J is the Jacobian of ri(β) so that:

Ji,cx =
cx − xi√

(xi − cx)2 + (yi − cy)2

Ji,cy =
cy − yi√

(xi − cx)2 + (yi − cy)2

Ji,r = −1

After calculating the best-fit circle, the root mean
square error (RMS) for that solution was calculated.
Then a new iteration was executed, when the length of
spokes became shorter. This process was run while the
RMS value converged, and it stopped when it was lower
than a set threshold. If the RMS value did not converge,
an early stop would be thrown with a warning for that
detection.

This procedure can be used only with the images
taken from the perpendicular direction to the plane con-
taining the element, which is the case of all the images
in the studied dataset. A more generic approach would
require modifying the best-fit algorithm to model an
ellipse instead of a circle.

3.3. Experimental setup

This study employed 24.6k images (containing 41.6k
referencing elements). The images in this dataset were
randomized and split into five sets for a K-Fold cross
validation (with a training test ratio of 80%–20%). Due
to this randomization, the actual ratio test images per
class varied between 16% and 23%.

Several data augmentation transformations were ran-
domly applied to the training set of images. The result
is shown in Fig. 7:

– Horizontal, vertical symmetry and 180◦ rotation
– Image scaling and translation
– Brightness and contrast transformations
– Image blur

Fig. 7. Examples of the random transformations applied to a single
image.

The model was initialized with random values fol-
lowing a truncated normal distribution. Tensorflow’s
“HeNormal” initializer [64] was trained and evaluated
using machine learning frameworks Tensorflow 2 and
Keras. An Adam optimizer [65] was employed for 400
epochs of 100 iterations each at an initial learning rate
of 10−3 with β1 = 0.9 and β2 = 0.999. In addition,
a reduction in the optimization rate was applied every
six epochs without improvement (factor 0.8), plus an
early stop in training if there was no improvement for
25 consecutive epochs. A computer with 32GB of RAM
and a GTX1070Ti GPU was used to perform training.

3.3.1. Quality factor for result evaluations
The correct categorization of the detected elements

was checked by using the confusion matrix, as well
as the resulting precision and recall values for each
category.

To evaluate neural network performance for correctly
locating the referencing elements, an ad hoc metric was
designed to assign a value within the interval [0, 1]
according to the quality of the performed detection.

For this purpose, two error values were calculated
for each detected element (of circular nature) according
to the deviation from the center and the deviation in
diameter:

εc =

√
(x− x0)2 + (y − y0)2

d0
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Table 2
Quality factor values for several error and diameter settings

Center quality factor qc Diameter quality factor qd
Error (mm) Diameter (mm) Diameter (mm)

4 6 8 10 12 4 6 8 10 12
0.01 99% 100% 100% 100% 100% 100% 100% 100% 100% 100%
0.02 99% 99% 99% 99% 100% 99% 99% 100% 100% 100%
0.05 96% 98% 98% 99% 99% 98% 98% 99% 99% 99%
0.1 93% 95% 96% 97% 98% 95% 97% 98% 98% 98%
0.2 86% 90% 93% 94% 95% 90% 94% 95% 96% 97%
0.5 69% 78% 83% 86% 88% 78% 85% 88% 90% 92%
1 47% 61% 69% 74% 78% 61% 72% 78% 82% 85%
2 22% 37% 47% 55% 61% 37% 51% 61% 67% 72%
5 2% 8% 15% 22% 29% 8% 19% 29% 37% 43%

Fig. 8. Example of the evolution of neural network training and test losses.

εd =
|d− d0|
d0

where x0, y0 and d0 refer to the element ground truth.
Both errors were adimensionalized so that this metric
would be independent of factors like image resolution
or optics focal length. Finally, the detection quality
parameter was defined from this expression:

Q = qc · qd = e−aεc · e−bεd

where coefficients a and b were set as a = 3 and b = 2
(according to the specific requirements of the studied
processes).

Table 2 outlines the calculated quality factor values
for several configurations.

In both cases, three areas were defined for the quality
of the detected elements:

– Very good (upright in Table 2): q > 97.5%
– Medium (bold in Table 2): 95% < q < 97.5%
– Bad (italic in Table 2): q < 95%
Considering the global quality factor, which was cal-

culated the multiplication of both individual values, the
corresponding ranges were:

Table 3
False positive rate per class

FP relative rate (%)
D 17.7
Cs 72.2
R 1.3

PR 0.4
F1 4.7
F2 0.0
Hx 0.4
S 3.3

– Very good (upright): Q > 95%
– Medium (bold): 90% < Q < 95%
– Bad (italic): Q < 90%

4. Results

With the described configuration, neural network
training was executed for 307 epochs. Then the estab-
lished early stopping mechanism was activated (Fig. 8).

Once training ended, network performance in the test
set was evaluated for the different detection threshold
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Table 4
Global confusion matrix

Predicted Class (%)
FN D Cs R PR F1 F2 Hx S

Ground D 2.29 97.50 0.16 0.01 0.00 0.03 0.00 0.00 0.00
truth Cs 6.15 2.92 90.87 0.00 0.00 0.04 0.02 0.00 0.00

R 9.84 0.00 0.00 90.16 0.00 0.00 0.00 0.00 0.00
PR 4.31 0.00 0.00 1.19 94.50 0.00 0.00 0.00 0.00
F1 0.75 0.09 0.07 0.00 0.00 99.03 0.06 0.00 0.00
F2 4.24 0.14 0.00 0.00 0.00 0.15 95.47 0.00 0.00
Hx 9.68 0.00 0.00 0.00 0.00 0.00 0.00 90.32 0.00
S 10.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 89.45

Table 5
Quality factors in the neural network localization

Raw NN output (%) Spoke refinement (%)
Class qc qd Q qc qd Q

D 92.87 94.80 88.04 99.58 99.40 98.99
Cs 90.56 88.54 80.19 97.66 94.20 91.99
R 86.40 86.09 74.38 95.44 89.97 85.86

PR 90.62 90.03 81.58 98.46 55.12* 54.27*
F1 93.66 93.11 87.20 98.00 95.18 93.28
F2 92.72 91.21 84.57 97.11 86.75 84.25
Hx 83.37 81.14 67.65 90.34 26.90* 24.30*
S 87.10 88.44 77.04 95.65 90.38 86.45

Global 92.35 93.00 85.89 99.24 98.15 97.40

values (every detected element was given a confidence
value, but only those with a value above the threshold
were considered actual detections. This value helps to
balance network sensitivity). The best results were ob-
tained within the range of the detection threshold values
[0.55, 0.75]. Specifically, the maximum of parameter
F1 (defined as the harmonic mean of precision and re-
call [66], averaged over 5 folds) was reached for a value
of 0.58, with which a 1.25% false-positive (PF) rate and
a 1.34% false-negative (FN) rate would be obtained. In
the studied case, as FPs in detection were severer (and
could lead to the erroneous drilling of the part) than
FNs, a detection threshold of 0.70 was selected, which
gave FP and FN rates of 0.58% and 2.97%, respectively.

The rate of FP detections was split into the different
classes shown in Table 3.

The system’s accuracy for locating and measuring
the diameter of the detected elements was also evalu-
ated (Table 5). This evaluation, averaged over 5 folds,
was done for the raw output of the neural network and
after applying the Spoke algorithm to allow the im-
provement introduced into the system by this algorithm
to be evaluated.

Finally, some examples of detection carried out by
the neural network are presented in Fig. 9.

The evaluation of the quality factors deserves spe-
cial attention for classes PR and Hx because their mea-
sured diameter did not match that detected by the net-

Fig. 9. Examples of detecting referencing elements.

Fig. 10. Discrepancy between the bounding box defined for training
(blue) and the circle optimized by the Spoke algorithm (red).

work (Fig. 10). This situation is further explained in
Section 5.
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4.1. Ablation study

The performance improvement achieved by the re-
placement of the original SSD training scheme with
Focal Loss training was studied. To do so, a network
was trained following this original scheme.

In this network, the detection threshold was adjusted
so that the same FP rate would be achieved (0.58%).
For this threshold, the network returned a bigger FN
number (3.70%).

Classification accuracies were similar for every class,
except for S class, where 90.0% of the elements were
not detected (FN), and the remaining 9.1% were incor-
rectly assigned to other categories.

This test clearly showed how using Focal Loss with
this architecture improved the management of the un-
balanced datasets, and no further actions were needed.
Regarding the location accuracy of the detected ele-
ments, the averaged values of qc = 91.7% and qd =
91.4% were obtained, and were similar to the proposed
architecture.

5. Discussion

With the chosen configuration and overall FP and FN
rates of 0.35% and 2.36% respectively, the classifica-
tion accuracy over the detected elements was higher
than 90% in most categories, despite the disparity in
the number of examples between the different cate-
gories. This revealed that class unbalance was correctly
managed by the selected loss function.

The classes with a higher rate of FN detections were
S, R and Hx (around 10%). The FPs shown in the results
comprised mainly elements from classes Cs (72%) and
D (18%). Both situations could be explained by the
relative number of elements in each class.

By considering the classification accuracy among
classes, only Cs and PR showed significant classifica-
tion errors, where around 3% of the Cs elements were
misclassified as D and 1.2% of PR were incorrectly
classified as R. These errors could be explained by the
similarity between these classes (countersink-straight
drill, rivet-protruding rivet).

The neural network accuracy in element localization
terms yielded an average quality factor of 92.5% for
localization and 93.6% for the diameter measurement.
This is the equivalent to position and diameter errors
of 0.21 mm and 0.26 mm, respectively, for an 8-mm
diameter element. However, they are insufficient values
for the precision required in aeronautical manufacturing
processes.

By subsequently executing the Spoke algorithm, it
was possible to increase these accuracies to an average
value of 98.5% for location and 97.3% for the diameter
measurement. These values are the equivalent to errors
of 0.04 mm and 0.11 mm, respectively, which are suffi-
ciently accurate for the aforementioned manufacturing
processes.

The diameter quality factor calculation gave inconsis-
tent results in Hx and PR. This was because the bound-
ing box selected for training (which circumscribes the
element to be detected) did not fulfill the geometric and
contrast requirements needed by the Spoke algorithm
to accurately locate the element. As a workaround for
these categories, an inner concentric circular shape was
chosen by selecting a smaller circle as a seed for the
algorithm. This choice gave accurate center results, but
the quality factor for the diameter was distorted in the
results. An example of this situation is illustrated in
Fig. 10.

With the aforementioned configuration, the training
time of the neural network was under 7 h, with an aver-
age training time of about 78 seconds per epoch.

In turn, the prediction of an image took the system
about 3.5 ms, while the refinement of detection using
the Spoke algorithm needed about 20–24 ms.

6. Conclusions

A novel system has been developed for the detection
and accurate measurement of referencing elements in
industrial environments of aeronautical manufacturing
processes, which lowers FP and FN rates in relation to
conventional systems and, thus, improves the reliability
of inspection processes.

The reduction in the FN rate also involved needing
fewer manual interventions to complete the manufac-
turing process, which increases process productivity.
The reduction in FPs in detection translates meant fewer
erroneous operations in the system, which lowers final
manufacturing costs.

The developed system was integrated into a real pro-
duction environment with a manual intervention rate of
operators of 13.3% (due to the detection errors of the
previous algorithm based on detection and filtering by
blobs), which was a drastic reduction and gave a new
manual intervention rate of only 0.6%.

Future developments will work on integrating the
Spoke measurement algorithm into the neural network
architecture itself to make the most of these systems’
parallel processing power, which allows more accurate
measurements in complex scenes.



L. Ruiz et al. / Improving the competitiveness of aircraft manufacturing automated processes 351

Funding

This publication has been carried out within the
frame-work of Project “Nuevas Uniones de estructuras
aeronáuticas”, reference number IDI-20180754. This
project has been supported by the Spanish Ministry of
Science and Technology and the Centre for Industrial
Technological Development (CDTI).

References

[1] Deloitte. 2022 Aerospace and defense industry outlook. 2022.
[2] Devlieg R. Expanding the use of robotics in airframe assembly

via accurate robot technology. SAE Int J Aerospace. 2010;
3(1): 198-203.

[3] Barbosa G, Aroca R. Advances of Industry 4.0 concepts on
aircraft construction: an overview of trends. J Steel Struct
Constr. 2017; 3: 125.

[4] Crandall DJ. Artificial intelligence and manufacturing. Smart
Factories: Issues of Information Governance. 2019; 10-6.

[5] Gramegna N, Corte ED, Cocco M, Bonollo F, Grosselle F,
editors. Innovative and integrated technologies for the develop-
ment of aeronautic components. TMS Annual Meeting. 2010.

[6] Ahmad HM, Rahimi A. Deep learning methods for object de-
tection in smart manufacturing: A survey. Journal of Manufac-
turing Systems. 2022; 64: 181-96.

[7] Kotsiopoulos T, Sarigiannidis P, Ioannidis D, Tzovaras D.
Machine Learning and Deep Learning in smart manufacturing:
The Smart Grid paradigm. Computer Science Review. 2021;
40: 100341.

[8] Yang J, Li S, Wang Z, Dong H, Wang J, Tang S. Using deep
learning to detect defects in manufacturing: a comprehensive
survey and current challenges. Materials. 2020; 13(24): 5755.

[9] Bordel B, Alcarria R, Robles T. Recognizing human activi-
ties in Industry 4.0 scenarios through an analysis-modeling-
recognition algorithm and context labels. Integrated Computer-
Aided Engineering. 2022; 29(1): 83-103.

[10] Bordel B, Alcarria R, Robles T. Lightweight encryption for
short-range wireless biometric authentication systems in In-
dustry 4.0. Integrated Computer-Aided Engineering. 2022;
29(2): 153-73.

[11] Roda-Sanchez L, Olivares T, Garrido-Hidalgo C, De La Vara
JL, Fernandez-Caballero A. Human-robot interaction in Indus-
try 4.0 based on an Internet of Things real-time gesture control
system. Integrated Computer-Aided Engineering. 2021; 28(2):
159-75.

[12] Bauer JM, Bas G, Durakbasa NM, Kopacek P, editors.
Development Trends in Automation and Metrology. IFAC-
PapersOnLine. 2015.

[13] Mei Z, Maropoulos PG. Review of the application of flex-
ible, measurement-assisted assembly technology in aircraft
manufacturing. Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture. 2014;
228(10): 1185-97.

[14] Barbedo JGA. A Review on the Use of Computer Vision and
Artificial Intelligence for Fish Recognition, Monitoring, and
Management. Fishes. 2022; 7(6).

[15] Malik K, Robertson C, Roberts SA, Remmel TK, Long JA.
Computer vision models for comparing spatial patterns: under-
standing spatial scale. International Journal of Geographical
Information Science. 2023; 37(1): 1-35.

[16] Silva JL, Bordalo R, Pissarra J, de Palacios P. Computer
Vision-Based Wood Identification: A Review. Forests. 2022;
13(12).

[17] Zhang Y, Lin W. Computer-vision-based differential remesh-
ing for updating the geometry of finite element model.
Computer-Aided Civil and Infrastructure Engineering. 2022;
37(2): 185-203.

[18] Ngeljaratan L, Moustafa MA, Pekcan G. A compressive sens-
ing method for processing and improving vision-based target-
tracking signals for structural health monitoring. Computer-
Aided Civil and Infrastructure Engineering. 2021; 36(9): 1203-
23.

[19] Sajedi SO, Liang X. Uncertainty-assisted deep vision structural
health monitoring. Computer-Aided Civil and Infrastructure
Engineering. 2021; 36(2): 126-42.

[20] Ma Z, Choi J, Soh H. Real-time structural displacement esti-
mation by fusing asynchronous acceleration and computer vi-
sion measurements. Computer-Aided Civil and Infrastructure
Engineering. 2022; 37(6): 688-703.

[21] Mileski YR, Souza AJ, Amorim HJ. Development of a com-
puter vision-based system for part referencing in CNC ma-
chining centers. Journal of the Brazilian Society of Mechanical
Sciences and Engineering. 2022; 44(6): 243.

[22] Sinha A, Aneesh RP, Nazneen NS, editors. Eye Tumour De-
tection Using Deep Learning. Proceedings of 2021 IEEE 7th
International Conference on Bio Signals, Images and Instru-
mentation, ICBSII 2021. 2021.

[23] Huan L, Li W, Yujian Q, editors. Vehicle Logo Retrieval
Based on Hough Transform and Deep Learning. In: Proceed-
ings – 2017 IEEE International Conference on Computer Vi-
sion Workshops, ICCVW 2017. 2017.

[24] Liang Q, Long J, Nan Y, Coppola G, Zou K, Zhang D, et
al. Angle aided circle detection based on randomized Hough
transform and its application in welding spots detection. Math-
ematical Biosciences and Engineering. 2019; 16(3): 1244-57.

[25] Ercan MF, Qiankun AL, Sakai SS, Miyazaki T, editors. Circle
detection in images: A deep learning approach. In: 2020 Global
Oceans 2020: Singapore - US Gulf Coast. 2020.

[26] Mekhalfi ML, Nicolo C, Bazi Y, Rahhal MMA, Alsharif NA,
Maghayreh EA. Contrasting YOLOv5, Transformer, and Effi-
cientDet Detectors for Crop Circle Detection in Desert. IEEE
Geoscience and Remote Sensing Letters. 2022; 19.

[27] Xia X, Liang H, Rongfeng Y, Kun Y, editors. Oil Tank Ex-
traction in High-Resolution Remote Sensing Images Based on
Deep Learning. In: International Conference on Geoinformat-
ics. 2018.

[28] Zalpour M, Akbarizadeh G, Alaei-Sheini N. A new approach
for oil tank detection using deep learning features with control
false alarm rate in high-resolution satellite imagery. Interna-
tional Journal of Remote Sensing. 2020; 41(6): 2239-62.

[29] Zhu Y, Moayed Z, Bollard-Breen B, Doshi A, Ramond JB,
Klette R, editors. Detection of Fairy Circles in UAV Images
Using Deep Learning. In: Proceedings of AVSS 2018 – 2018
15th IEEE International Conference on Advanced Video and
Signal-Based Surveillance. 2019.

[30] Qin P, Wang L, Lv H, editors. Optic disc and cup segmentation
based on deep learning. In: Proceedings of 2019 IEEE 3rd
Information Technology, Networking, Electronic and Automa-
tion Control Conference, ITNEC 2019. 2019.

[31] Judt D, Lawson C, Van Heerden ASJ. Rapid design of air-
craft fuel quantity indication systems via multi-objective evo-
lutionary algorithms. Integrated Computer-Aided Engineering.
2021; 28(2): 141-58.

[32] Martins GB, Papa JP, Adeli H. Deep learning techniques for



352 L. Ruiz et al. / Improving the competitiveness of aircraft manufacturing automated processes

recommender systems based on collaborative filtering. Expert
Systems. 2020; 37(6): e12647.

[33] Girshick R, editor. Fast R-CNN. In: 2015 IEEE International
Conference on Computer Vision (ICCV). 2015 December 7-
13.

[34] Girshick R, Donahue J, Darrell T, Malik J, editors. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In: Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition.
2014.

[35] He K, Zhang X, Ren S, Sun J, editors. Deep Residual Learning
for Image Recognition. In: 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) 2016 June 27-
30.

[36] Lin TY, Goyal P, Girshick R, He K, Dollár P, editors. Focal
Loss for Dense Object Detection. In: 2017 IEEE International
Conference on Computer Vision (ICCV) 2017 October 22-29.

[37] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-
Y, et al., editors. SSD: Single Shot MultiBox Detector. In:
Computer Vision – ECCV 2016. Cham: Springer International
Publishing; 2016.

[38] Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look
Once: Unified, Real-Time Object Detection. 2016.

[39] Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence.
2017; 39(6): 1137-49.

[40] Simonyan K, Zisserman A. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint
arXiv:14091556. 2014.

[41] Wang C-Y, Bochkovskiy A, Liao H-YM. YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv preprint arXiv:220702696. 2022.

[42] Hassanpour A, Moradikia M, Adeli H, Khayami SR, Sham-
sinejadbabaki P. A novel end-to-end deep learning scheme for
classifying multi-class motor imagery electroencephalography
signals. Expert Systems. 2019; 36(6): e12494.

[43] Tan M, Pang R, Le QV, editors. EfficientDet: Scalable and
Efficient Object Detection. In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) 2020 June
13-19.

[44] Cai Z, Fan Q, Feris R, Vasconcelos N. A Unified Multi-scale
Deep Convolutional Neural Network for Fast Object Detection.
2016.

[45] Macias-Garcia E, Galeana-Perez D, Medrano-Hermosillo J,
Bayro-Corrochano E. Multi-stage deep learning perception
system for mobile robots. Integrated Computer-Aided Engi-
neering. 2021; 28(2): 191-205

[46] Benamara NK, Val-Calvo M, Álvarez-Sánchez JR, Díaz-
Morcillo A, Ferrández-Vicente JM, Fernández-Jover E, et al.
Real-time facial expression recognition using smoothed deep
neural network ensemble. Integrated Computer-Aided Engi-
neering. 2021; 28(1): 97-111.
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