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Abstract. Multi-robot path planning has evolved from research to real applications in warehouses and other domains; the
knowledge on this topic is reflected in the large amount of related research published in recent years on international journals. The
main focus of existing research relates to the generation of efficient routes, relying the collision detection to the local sensory
system and creating a solution based on local search methods. This approach implies the robots having a good sensory system and
also the computation capabilities to take decisions on the fly. In some controlled environments, such as virtual labs or industrial
plants, these restrictions overtake the actual needs as simpler robots are sufficient. Therefore, the multi-robot path planning must
solve the collisions beforehand. This study focuses on the generation of efficient collision-free multi-robot path planning solutions
for such controlled environments, extending our previous research. The proposal combines the optimization capabilities of the A*
algorithm with the search capabilities of co-evolutionary algorithms. The outcome is a set of routes, either from A* or from the
co-evolutionary process, that are collision-free; this set is generated in real-time and makes its implementation on edge-computing
devices feasible. Although further research is needed to reduce the computational time, the computational experiments performed
in this study confirm a good performance of the proposed approach in solving complex cases where well-known alternatives, such
as M* or WHCA, fail in finding suitable solutions.
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1. Introduction

Technological advances make the management of
logistic centers easier by using robots in the transporta-
tion tasks, either with homogeneous or heterogeneous
robots [1]; in this study, we restrict ourselves to this
latter category, with all the robots moving in the same
common space, with same type of movements and the
same speed. The problem of determining the best route
for each robot moving in a shared space without col-
lisions nor human intervention is known as collision
Free Multi-robot Path Planning (MPP). MPP has ap-
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plications in multiple fields such as intelligent labora-
tories [2,3], space exploration [4], warehouse manage-
ment [5], education [3], surveillance [6], manufactur-
ing [7], unmanned aerial vehicles [6,8–10], and many
others.

In a MPP problem, each robot moves from its ini-
tial point -either in a depot or in a free parking area-
to their current destination on a common workspace.
It has been shown that, although a NP-problem [11],
optimization techniques can solve it effectively [12,13].
The most cited algorithm used in single-robot path plan-
ning is A* [14], that is, A* determines the optimal
route for a robot from its initial position to its goal.
Since its introduction, several different alternative al-
gorithms have been proposed to cope with the MPP
problem: Collaborative A*, Hierarchical Collaborative
A* (HCA*) and Windowed HCA* [15], D*Lite [16],
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Field D* [17], ThetA* [18], M* [19,20], Operator De-
composition [21] and Independence Detection [22].
These algorithms determine the collisions, finding alter-
native routes by searching the graph representation of
the problem. Some of them calculate direct and linear
routes -without constraining to grid edges (i.e., ThetA*
or Field-D*), some others (D*Lite or Field D*, for in-
stance) avoid collisions on the fly by detecting them and
recalculating the routes; all of these approaches are, in
general, oriented towards autonomous robot navigation.
For a comparison of these algorithms with and without
meta-heuristics, please refer to [23–25].

A different alternative is proposed in [26], where a
construction of a mixed-split graph for every two con-
nected nodes is used; a new extended version of the
original graph is constructed by repeating this struc-
ture T times -with T the expected time of arrival- and
introducing extra edges representing whether a robot
stays in its node or moves to the next one. Then, a linear
programming algorithm is used to determine the route
for each robot. Finally, the constrain based search was
proposed in [27], with two abstraction layers: on the
high level, agents with collision free routes are found,
for each one searches on the low level are performed
until a feasible combination is determined.

Optimization metaheuristics have been found per-
forming similarly or better than classical methods for
the MPP problem [23]; in this study, a comparison
of different alternatives, including Genetic Algorithms
(GA), Differential Evolution (DE), Particle Swarm Op-
timization (PSO), Cuckoo Search, or the Dijkstra al-
gorithm, among others. In [28], Ant Colony Optimiza-
tion (ACO) has been reported for determining the op-
timal routes. An hybridization of PSO and Gray-Wolf
Optimization has been proposed in [29], relying the
collision detection to local resolutions using the robot
sensory system and local search. Similarly, the studies
in [30–32] split the problem in two: a centralized stage
determining the optimal routes for each robot and a
decentralized stage in charge of solving the collisions.
To do so, the authors in [30] proposed solving some
linear equations based on constraints related with the
robot goals, while in [31] the authors proposed to use
Lion Optimization for this decoupled task. In contrast,
DE was proposed as the main heuristic in [32].

PSO has not only been applied by itself to the MPP
problem, but also hybridized with other techniques,
such as differential perturbed velocity [33] or gravi-
tational search [34]. Authors in [35] solved the path
planning problem based on a two-step process: the first
makes use of Artificial Potential Fields (APF) to gen-

erate the initial feasible routes, and then, the second
stage uses of GA in order to optimize the paths and col-
lision avoidance. Similarly, [36] solves MPP problems
using APF and fuzzy inference systems. Not related
with metaheuristics but worth mentioning is the use of
Reinforcement Learning for MPP [37,38].

This study is restricted to grid-based problems, such
as warehouses or virtual remote labs, where the space
is represented by means of a grid and, mainly, the 4-
way connectivity rule [39]. Applied in this context,
Windowed Hierarchical Cooperative A* (WHCA*) has
been employed in solving the MPP using the number of
turns as heuristic for the A* algorithm [40]. On the other
hand, the capability of D*Lite to cope with a chang-
ing environment is used in [41] for solving a ware-
house MPP problem. The same problem is addressed
for a warehouse in [5], where a specific algorithm is
develop determining some intermediate points and join-
ing them with straight lines. A different proposal is
presented in [39,42], using the so-called DDM algo-
rithm (Diversified-path Database-driven Multi-robot
Path Planning) able to compute near-optimal solu-
tions to large-scale MPP. DDM follows the decoupled
paradigm and first creates a shortest path for each robot
from its initial vertex to goal vertex, ignoring other
robots. Then, a simulated execution is carried out. As
conflicts are detected, they are solved within local sub-
graphs with the help of the main heuristics. Similarly,
two coordinated layers are proposed in [43] for solving
the MPP problem in an industrial warehouse: one layer
focuses on the abstract representation of the problem,
and the second one focuses on determining the paths. A
very similar approach is reported in [44], dividing the
warehouse in sectors; a top layer determines the number
of vehicles in each sector, while A* with conflict-based
searching strategy is used in the path generation at the
lowest coordination level.

In this research, a metaheuristic based solution for
the MPP problem is proposed, enhancing our previ-
ous research results reported in [45]. The solution con-
struction is split in three stages: firstly, an A* initial
optimal route finding process is performed, followed
by an A*-based alternatives search, and finalizing with
a co-evolutionary optimization process that examines
and modifies the available pool of routes among all
the conflicting robots until a feasible solution is found.
This research solves the high computational cost issues
reported in the initial research, greatly improving the
performance and making it capable of solving problems
faster and with a significantly higher number of robots.

The structure of this documents is as follows. Sec-
tion 2 explains the proposal, remarking the differences
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Fig. 1. A simple example of a maze representation of a problem. The
path for the blue, yellow and green robots (colored squares) from their
starting points to their goals (colored circles) are LDDDDLLULLD-
DLLL, DRDD and DRRURRDRUURRRRRRR, correspondingly,
assuming (L)eft, (R)ight, (U)p and (D)own movements.

with the previous research. Next, Section 3 gives details
of the experimentation set up, while Section 4 shows
the results and discussion. Finally, Section 5 draws the
conclusions extracted from this study.

2. A collision free multi-robot path planning
proposal

This proposal focuses on MPP in grid-mapped envi-
ronments represented as {M, R, S, G}, where M is the
map of the environment stored as a 2D graph where the
robots are located in and including the obstacles, R is
the set of robots {r1, . . . , rN}. The initial and ending
locations of the robots (S = {s1, . . . , sN} and G = {g1,
. . . , gN}, respectively) are also given. The objective of
the problem is to provide a collision-free route for each
of the robots.

Let us denote by δ is the set of valid movement oper-
ations. A movement operation δi is one of the unitary
movements the robot can perform in a time unit; for
the purpose of this study, δ = {(H)alt, (U)p, (D)own,
(L)eft, (R)ight} are the available movements as ex-
plained in [39]. Figure 1 gives an example of a maze
with 3 robots (blue, green and yellow), their shortest
routes and the routes’ representation. The starting and
ending cells are denoted with a circle and a square, re-
spectively; the cell pattern is marked with a grid and
the obstacles are the black cells. As it can be seen, the
robots’ routes share some cells; if this sharing coincides
in time we get a collision. For the sake of simplicity,
we assume that there are no pending trajectories in de-
velopment, that is, there are no other robots already
moving in the scenario. Nevertheless, this can be easily
introduced as well, so the new routes could be com-
pletely compatible with those previously delivered and
in action.

To solve the MPP problem a three stages procedure
is proposed (see Fig. 2 and Algorithm 1): i) searching

Fig. 2. Block diagram of the proposed approach for solving the MPP.

for optimal path for each robot using A*, ii) searching
for alternative paths for robots with collisions using A*,
and iii) producing feasible paths using a co-evolutionary
algorithm.

Algorithm 1: General algorithm
for each robot r do

Calculate the A* route
end for
Detect collisions as explained in [15]
if There exist any collision then

Alternative path search
Co-evolutionary collision resolution

end if

Basically, the first stage runs the A* algorithm for
each robot, so an initial optimal set of routes is avail-
able; however, these routes might collide and alterna-
tives are searched in the remaining two stages. The next
subsections explain these two stages; a final subsection
is devoted to remark the differences with our previous
research.

2.1. Alternative paths search using A*

This stage is an iterative process that i) detects any
collision among the routes, and ii) searches for alter-
native A* routes for the robots when the collision cells
are considered static obstacles. This procedure is re-
peated at most a predefined maximum number of times
(nA, preset to 3), either finding a feasible solution or
generating a pool of A* routes for each robot suffer-
ing from collisions. Algorithm 2 shows how to find the
alternative routes for the colliding robots.
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The collision detection is performed in a similar fash-
ion as reported in [15] for the Cooperative A*, using a
reservation table. Thus, new A* routes are calculated
for those colliding robots by introducing the collision
point as an obstacle in their own map Mc

r, where c ∈
{1, . . . , nA}. Because the higher the value of nA the
higher the restrictions on the maps and the longer the
routes -even the new obstacles making an unfeasible
map-, the value of nA must be kept small. Interestingly,
the robot’s routes that do not report any collision are
considered final candidates; thus, they are kept in the
final solution.

Algorithm 2: Alternative path search
nA← 3
for r colliding robot do

for i in 1 to nA do
Detect collision points
Set collision points as obstacles and update temporary map
Determine A* route

end for
end for

2.2. Co-evolutionary algorithm for collision resolution

The co-evolutionary algorithm is the responsible of
finding new routes for those colliding persistent robots,
those whose (nA+ 1) routes from previous stages still
keep colliding with other robots. In this research we
propose to use a co-evolutionary algorithm for this pur-
pose because we can evolve the routes from each col-
liding robot independently; furthermore, the robots can
collaborate with the others by sharing their collection of
routes. Robots for which a successful route was found
in the previous stage are kept constant and no modifi-
cations to their routes are introduced.

Although it would be much faster if we select one
colliding robot -that of smallest number of collisions- to
be also kept constant and finding routes for the remain-
ing ones, we decided against it because cross-collisions
might lead to introduce more heuristics in the selection
of the optimal robot to be kept fixed. Given that the low
convergence speed of co-evolutionary algorithms, we
chose to avoid this stage introducing all colliding robot
in the process.

The next subsections describe the co-evolutionary
design, the co-evolutionary evaluation, and the co-
evolutionary process.

2.2.1. The co-evolutionary design
In a co-evolutionary algorithm we keep several pop-

ulations that evolve independently, sharing their effort
to obtain a valid final global solution. In this study, a
population P r keeps a collection of size Lr of the most

plausible routes for the colliding robot r. Besides, an in-
dividual in the population represents a route for a robot,
with its initial sr and final gr positions plus a character
string describing the path as a sequence of movements
δri ∈ δ, as shown in Fig. 1. During the evolutionary
process only the data concerning the movements can be
modified.

The initial population for robot r (P r
0 ) includes the

nA routes calculated in the previous stages, plus Lr −
nA extra routes generated by applying the mutation
operator to one of the already included routes in P r

0 .
The co-evolutionary scheme makes use of elitism, so

the best K individuals from population P r
t−1 are copied

into the next generation P r
t the population at time t

for robot r. P r
t is completed to size Lr using a tourna-

ment selection -with probability p set to 0.35- plus the
mutation operator. For the purpose of this research, we
experimented with the problem in Fig. 1 to set the prob-
ability of mutation, finding that this parameter needs
to be higher the better, making the optimization more
an individual replacement evolutionary process with an
elite population which actually makes sense with the
proposal of finding more new alternatives. The algo-
rithm for the generation of the new population is shown
in Algorithm 3.

Algorithm 3: Generation of a population
Select the best individuals to keep as the elite subpopulation
while next population is not complete do

Select the parent individual for evolution using tournament
Apply mutation to the parent individual resulting a new indi-

vidual
if the new individual is valid then

Introduce it in the new population
end if

end while

The mutation operator performs a minor modifica-
tion on an existing route in the population, generating
a new route; the process is illustrated in Figs 3 and
4. The mutation operator randomly selects a Mutation
Start Point (MSP). Then, a movement δrMSP must be
randomly chosen from the five valid movements in δ:
up (U), down (D), left (L), right (R), or halt (H). The
selected operation will be introduced into the route at
the MSP. If the chosen operation halt (H), the new route
is already a valid route, and the mutation operator is
terminated (Fig. 3).

However, if the selected operation is one of the other
four movements, a second point called Mutation End
Point (MEP) must be selected -which must be after the
MSP- where the parent and the offspring paths merges
again. The offspring, then, runs parallel to the parent
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Fig. 3. Mutation operation when the HALT movement is in-
troduced. The route goes from RRRRRUURRDRRUUUUR to
RHRRRRUURRDRRUUUUR.

Fig. 4. Mutation operation when two movements are introduced.
The route changes from RRRRRUURRDRRUUUUR to RURRRD
RUURRDRRUUUUR.

Fig. 5. Mutation operation when only one movement is intro-
duced. The route changes from RRRRRUURRDRRUUUUR to
RURRRRURRDRRUUUUR.

one until the proximity to the MEP. If the two routes
(parent and offspring) differs at the MEP in a single cell,
the needed movement from δ is introduced in offspring
route so both routes merge; this is reflected in Fig. 4.
For the remaining cases, the mutated and original paths
merge before MEP and no extra movement is required,
as shown in Fig. 5.

It is worth noticing that in this research we restrict
the MSP to be chosen among the movements before a
collision occurs, which reduces the search space. The
same can be reasoned for the MEP, so it also must be
before the collision occurs.

Finally, the mutation operator considers a different
probability for each movement in δ. In this sense, the

HALT movement is more likely to reduce collisions;
thus, its selection probability is higher, specially when
two robots collide in a narrow passage: the optimal so-
lution for this collision could be for one of the robots to
stop and wait for the other to clear the corridor, resum-
ing its route just afterwards. Therefore, the probability
for the HALT movement is set to 0.6, while each of the
remaining movements -Left, Right, Up and Down- has a
0.1 probability of being chosen; these values have been
manually selected according to the hypothesis above
explained.

2.2.2. Co-evolutionary evaluation
There are two co-evolutionary evaluations: the local

co-evaluation, which is computed on each individual,
and the global evaluation, which is computed for each
robot population.

In the local co-evaluation, both the performance and
the validity of each individual are evaluated. On the
one hand, the performance is evaluated considering two
measurements: i) the estimated number of collisions
and ii) the length of the routes. While the latter, the
length of a route, is just measured as the number of
movements composing a path, the former measurement
is a bit more complex.

To calculate the estimated number of collisions,
firstly, Q routes are selected from each sub-population,
with Q taking a relatively small number -for example, 3
or 5; the probability of a route to be selected is propor-
tional to its local evaluation. The mean of the number of
collisions occurring in each of the possible combination
of routes, together with the collision-free routes repre-
sents the estimated number of collisions. This collision
counting is calculated similarly as for the initial A*
stage.

The routes in a population are sorted according to the
local co-evaluation, first using the estimated number of
collisions and, then, using the length of the path. This
design decision aims to promote finding collision-free
solutions rather than shorter paths. However, this can
be changed to either pursue shorter paths or even sort
according to Pareto non-dominance.

Besides, the global co-evaluation measures how
good the performance of a population is. Once the pop-
ulation is sorted, the best W individuals are selected
from each sub-population and an estimation of the num-
ber of collisions is obtained in the same way it was
done for the local co-evolution: with all the possible
combinations of routes, one per robot. W is a parameter
of the method that is also kept small, around 3 or 5.
The minimum number of collisions found so far rep-
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resents the global co-evolution evaluation; when this
value reaches 0 means that a solution to the problem
has been found.

2.2.3. The co-evolutionary process
Co-evolutionary algorithms [46–48] are proposed

for the evolution of the colliding paths in search of
the collision-free solutions for every robot. The co-
evolutionary algorithm is depicted in Algorithm 4,
where r refers to a colliding robot, nE is the defined
number of generations, P r

i is the sub-population at gen-
eration i for robot r. The parameters nA, Q and W
must be set using similar values to those suggested be-
fore. Parameters as the population size, the tournament
selection and the mutation probabilities must be given
as well.

Algorithm 4: The co-evolutionary algorithm
P r
0 ← Generate the initial population ∀r

Co-evaluate P r
0 locally

Co-evaluate P r
0 globally

i← 0
while i < nE and no optimal solution found, end with i = i+ 1
do

P r
i ← Generate next population

Co-evaluate P r
i locally using P r

i−1,∀r
Co-evaluate P r

i globally using P r
i , ∀r

end while

2.3. Differences with previous research

As mentioned before, this research represents a step
forward with respect to our previous study in [45]. Sev-
eral enhancements have been included, which have in-
troduced a great improvement in the performance -as
will be shown in the experimentation results-:

– A reduction in the number of A* routes, reducing
the second stage to the colliding robots.

– Enhancement in the mutation operator due to the
probabilities of the different movements.

– Reducing the search space with the constraints in
the MSP and MEP.

– Improvements in the individual representation and
co-evolutionary process.

With all these changes, the new solution shows as
more competitive than before and finding solutions
where other proposals fail as it will be shown in the
next section.

Table 1
Parameters used in the experimentation

Max iterations for A* 3
Max iteration for co-evolutive algorithm 100
Population size 10
Elite size 3
Number of robots for evaluation (Q) 2
Selection probability for Q individuals 0.5
Selection probability 0.35

The first parameter belongs to the general method,
while the remaining ones belongs to the co-
evolutionary algorithm. The size of the elite pop-
ulation kept from one generation to the next is
relatively small.

3. Experimentation setup

The goal of the experiments is to establish whether
the enhancements show better performance or not. To
do so, we compare our solution with the original one
in [45] -referred to as Kiadi2022. Moreover, we also
compare our proposal with some well-known algo-
rithms in the MPP problem domain: M* [19,20] and
WHCA [40]. M* has been chosen because it represents
an enhancement based on A*; WHCA has been selected
because of the specific application field where it was
developed for -warehouse MPP-.

The comparison replicates the two scenarios pro-
posed in [45]: the first one with a single room and fixed
obstacles; the second one with 4 connected rooms. In
both cases, the number of robots is varied to evaluate
the collision-avoidance capabilities and the time con-
sumption in finding a solution. In addition, a third sce-
nario is proposed with a warehouse facility extracted
from [41].

Figure 6 shows the first experimental scenario: a sin-
gle 10 × 30 tiles room with a pattern of fixed obstacles
similar to those presented in [49] but with a higher com-
plexity. For this scenario, the number of robots varies
from 3 to 15. Besides, Fig. 7 shows the second scenario,
with four 10 × 30 tiles rooms connected 2-by-2 by
means of 4 tiles long corridors. The rooms are free of
obstacles and the robots are randomly located on each
room. The goals for each robot are placed in a different
room to force the robots to go through corridors. Again,
the number of robots varies from 12 -3 robots per room-
to 24 (6 robots per room). Finally, Fig. 8 depicts a ware-
house scenario proposed in [41], where corridors are
for one robot at a time with the exception of the lower
area, where the picking stations are placed and up to
three robots can pass over it.

To compare the effectiveness of the solutions we in-
corporate the standard measurements [26]: i) the maxi-
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Fig. 6. Graphical representation of scenery 1 used on experimentation.

Fig. 7. Graphical representation of scenery 2 used on experimentation.

Fig. 8. Graphical representation of scenery 3 used on experimentation.

mum distance travelled by any single-robot, and ii) the
aggregated total distance. The total path-planning time
for the MPP algorithms will be registered as well. Up
to 10 runs of each algorithm and scenario will be run in
order to estimate the statistics of the performances. Dur-
ing the experimentation, the parameters in the Table 1
were used.

4. Results and discussions

As mentioned before, two well-known metrics have
been used: the execution time and the path length. Ta-
ble 2 shows the numerical values obtained for the ex-
ecution time metric, with gray cells for those methods
that were not able to find a suitable solution for the
corresponding scenario and number of robots. Interest-
ingly, for scenario 2 our method was the single one that
coped with the task satisfactorily.

Figure 9 graphically represents the execution cost of
each method according to the scenario and the number
of robots including the variance in the metric; as long as
only our method found solutions for the second scenario

Fig. 9. Comparative graphs of the evolution of the execution time
concerning the number of robots for each method. Scenario 1, 2 and
3 are shown at the upper, central and lower part, respectively. No
results for M* are included for scenario 3 because its runtime for 10
robots’ is far too large.

and Table 2 includes the standard deviation, the corre-
sponding figure is omitted. Probably, these results are
due to the lack of heuristic search in the other methods
as long as they are based on graph search. Interestingly,
even though our method has a longer computational
time in the first scenario, it can also obtain collision-free
routes for a larger number of robots.

No comparison can be made for the second scenario
because only our method found solutions for the con-



48 E. García et al. / Efficient multi-robot path planning using A* and coevolutionary algorithms

Table 2
Mean (MN) and standard deviation (SD) of the path-planning time in seconds needed for each method and each
scenario to obtain a solution according to the number of robots

Morteza2022 Improved Method WHCA M*
MN SD MN SD MN SD MN SD

Scenario 1
6 3.8313 1.4861 4.7479 3.5449 1.3750 0.0716 0.3547 0.0350
7 11.2127 5.4879 9.6416 4.3064 1.5720 0.0920 2.1953 0.0621
8 75.8119 41.5637 14.3116 8.0995 1.7850 0.1199 10.5602 0.2417
9 303.3389 203.8299 32.8010 12.7689 1.9555 0.0943 12.1997 0.1703
10 1255.6156 459.5965 59.7161 24.0424 2.1500 0.1301
11 3958.5166 1954.4560 95.2412 46.1279 2.5060 0.1897
12 121.2675 72.5481
13 198.7366 101.0648
14 271.5449 124.6219
15 571.3999 585.3738

Scenario 2
3 per room 41384.1716 14851.4483 0.3939 0.0663
4 per room 0.2327 0.0536
5 per room 0.4368 0.0162
6 per room 1.2399 0.0183

Scenario 3
10 0.1558 0.0106 2.4930 0.5859 658.9659 12.6328
15 0.1999 0.0524 3.8240 0.5994
20 0.1730 0.0121 4.6670 0.3375
25 0.1810 0.0160
30 0.2105 0.0081

Table 3
Max and aggregated length of the paths obtained from each method for each scenario
according to the number of robots

Improved Method WHCA M*
Max Aggregated Max Aggregated Max Aggregated

Scenario 1
6 55 363.9 32.0 116.0 32.0 116.0
7 56.4 377.1 32.0 141.0 32.0 134.0
8 57.2 438.5 32.0 161.0 32.0 154.0
9 60.5 389.1 32.0 178.0 32.0 171.0
10 59.2 444.5 36.0 214.0
11 68.9 414.7 41.0 260.8
12 63.1 426.1
13 79 437.8
14 78.4 469.8
15 90.8 486

Scenario 2
3 per room 77 736
4 per room 79 951
5 per room 79 1206
6 per room 79 1458

Scenario 3
10 62 399 62 390 62 387
15 62 536 62 541
20 62 639 62 651.6
25 62 808
30 62 946
35 62 1065
40 74 1276

sidered number of robots. It is clear that restricting the
passages between rooms with very narrow corridors
made the scenario so complex that only our proposal

was able to find solutions.
For the third scenario, which is the most reliable rep-

resentation of a warehouse environment, our method
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Fig. 10. Comparative graphs of the length of the paths concerning the
number of robots for each method. Scenario 1, 2 and 3 are depicted
at the upper, central and lower parts.

has the shortest execution time. The proposal in [45]
was directly dismissed due to its poor performance in
the previous scenarios. M* only found solutions for the
smallest number of robots while WHCA proposed solu-
tions for some number of robots, but in those cases the
computation time was higher than our proposal. As for
scenario 2, the problem of very restricted passageways
seems to burden the M* and the WHCA.

The second used metric, the length of the paths, is
included in Fig. 10 and Table 3. Figure 10 depicts the

Fig. 11. Differences in the behaviour for the first scenario between
the research in [45] and our research. In the upper part, the paths
obtained using [45]; and the lower part, the paths obtained using our
proposal.

Fig. 12. Differences in the behaviour for the first scenario between
the research in [45] and our research. In the upper part, the paths
obtained using [45]; and the lower part, the paths obtained using our
proposal.

Fig. 13. Example of the routes in the third scenario.
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boxplots of the length of the paths from the different
runs of the methods, while Table 3 includes i) the length
of the longest path and ii) the sum of the lengths of all
the paths of a solution. The same behaviour observed
for the calculation time in the three scenarios is also
present for this metric. In case of the first scenario, the
lengths obtained with M* or WHCA were shorter than
those obtained with our method, while the aggregated
length among all the robots were comparable among all
of them.

Several differences can be seen when analysing and
comparing the routes proposed in [45] and those ob-
tained in this research: in our method, keeping the
collision-free A* paths forces the colliding robots to
explore different alternatives and to make a better use of
the available space. This can be clearly seen in Fig. 11
and Fig. 12; these figures plots the path generated for
each robot using the two methods: the former corre-
sponds with the first scenario and 10 robots, the latter
with the second scenario and 3 robots per room. In the
first scenario, the variety in the routes introduced by
our approach is the one responsible of finding solutions
where other proposals fail; however, exploring the do-
main has a cost in computation time. For the second
scenario, the main difference is that the HALT operator
reduces the collisions without further exploration of the
space.

5. Conclusions

This study proposes a co-evolutionary algorithm with
several improvements to solve the multi-robot path
planning with collision avoidance, outperforming our
previous research in [45]. The enhancements include
i) keeping the collision-free robots’ A* routes, only
evolving routes for the colliding robots, ii) reducing the
search space by restricting the mutation points, and iii)
tuning the probabilities of the movements to be consid-
ered in the mutation operator.

To evaluate this proposal, an experimentation in three
different scenarios is proposed comparing our approach
against two state-of-the-art methods -M* and WHCA-
and also our previous research [45]. The obtained re-
sults show that our method is capable of finding solu-
tions where the other three methods fail; however, this
has a cost in computational time. The quality of the so-
lutions in terms of length are comparable for scenarios
such as warehouses.

Future research includes using different metaheuris-
tics for optimization to reduce the computational time,

which implies adapting them to the co-evolutionary
process. Moreover, the solution space can be reduced
by fixing some colliding robots -without collisions be-
tween them- and only finding routes for the remain-
ing colliding robots. This can be solved using a sort
of integer optimization to promote the A* alternatives.
Considering multi-objective techniques to evaluate each
route with the different metrics is still pending. These
developments must also consider newly proposed learn-
ing algorithms, such as Neural Dynamic Classifica-
tion algorithm [50], Dynamic Ensemble Learning Algo-
rithm [51], and Finite Element Machine for fast learn-
ing [52]; these techniques can be used in the improve-
ment of the metaheuristic design.
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