Information Services & Use 39 (2019) 361-367 361
DOI 10.3233/1SU-190067
10S Press

Opportunities for non-data scientists to apply
machine learning technology

Peter Ciuffetti*
Director of Product Development, ProQuest, USA

Abstract. This paper is based upon a presentation given at the NFAIS conference on Artificial Intelligence that was held
May 15-16, 2019 in Alexandria, VA, USA. In it, the author describes how ProQuest used AWS SageMaker to build a content
recommendation system. SageMaker is a product from Amazon Web Services (AWS) that brings machine learning capabilities
to a broad audience. Out-of-the-box algorithms can be deployed by users who are not career data scientists.

Keywords: Machine learning, artificial intelligence, SageMaker, recommendation engine, factorization machines, Netflix Prize,
Amazon Web Services, AWS, hyperparameter optimization

1. Introduction

SageMaker, launched in Nov, 2017, is a relatively-new offering from Amazon that is attempting to
bring machine learning capabilities to a broader audience of technologists. Out-of-the-box machine
learning algorithms can be deployed by users who are not career data scientists. And while some technical
proficiency is required, it’s not as daunting as you might think to build and deploy a solution to a problem
using machine learning technology.

While recommendation systems using machine learning are established concepts with advanced
applications already familiar to many users, it’s a relatively new concept that someone who is not a career
data scientist could actually construct a working system from off-the-shelf technologies. I describe this
emerging opportunity, which is of interest to many non-data scientists, and show what is possible to
achieve with ‘traditional’ application development skills.

2. My background

I received my computer degree a long time ago, when Artificial Intelligence (AI) was an active field of
academic study, but in an era when intelligent computing was mostly movie fiction. I started working in the
information industry in the early 1980’s as an application developer. My academic courses included the
requisite math that computer science majors took at that time, but I found very little of it was knowledge
required to solve the computing problems I was assigned in my early career. I soon forgot all of the
higher math I learned in my 20’s. I do not recall anyone at the time considering themselves to be a data
scientist. In the information industry, application developers need skills in what we would call information
architecture, but this is a separate skill set. I did not gain any real data science skills as the field emerged
later in my career.

“E-mail: pciuffetti@alexanderstreet.com.

0167-5265/19/$35.00 © 2019 — IOS Press and the authors.
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution
Non-Commercial License (CC BY-NC 4.0).

http://dx.doi.org/10.3233/ISU-190067
mailto:pciuffetti@alexanderstreet.com

362 P. Ciuffetti / Opportunities for non-data scientists to apply machine learning technology

I guess in retrospect that I'm probably the target persona for SageMaker. There are a lot of programmers
in my category.

3. Our use case - A recommendation engine

At Alexander Street, where I worked, we had built a ‘Related Items’ feature for any content viewed
by the users on our platform. I had built something similar at two prior companies. The related items
were computed using a “more like this” search engine algorithm which compares common index terms
and other attributes of the content with all the other content in the search engine, and is able to quickly
produce a ranked list of the items most like the content you are viewing. Links to the top related items
were displayed below the viewed item. In a database with good indexing a more-like-this approach can
work very well; the feature gets a lot of user engagement.

The main problem with a more-like-this algorithm is that its result can be rather static for a given
item of content. It does not take into account context or user behavior in determining the items in which
you yourself might be interested at that moment in time; it is not in any way a ‘learned’ response. User
expectations are of a more nuanced set of suggestions.

4. The rise of recommendation...

Many of us will have used Netflix or YouTube and in these systems the user often has to do very little
work to find titles of interest; usually just a bit of scrolling. In one blog post we learned that 75% of Netflix
views are from recommendations. If the user has to do a search to find a title of interest, it’s considered
by Netflix engineers to be somewhat of a failed experience. This is partially because doing a search on
your TV with your remote control is not easy, and also because Netflix has failed to predict what the user
might want now and place it among the items visible through scrolling.

The big players are setting the user expectations for how a repository of content should work. Netflix
and YouTube in terms of recommending videos, Google in terms of understanding your search, iTunes
and Spotify in what to listen to.

Vendors like us have all these challenges within our own small systems and a fraction of the data that
these big companies are collecting about user behavior and content correlations. As user expectations in a
video collection become more browse-oriented and less search-oriented, we felt if we didn’t introduce
quality recommendations into their immediate experience it was possible that our search page might
eventually become a ‘bounce’ page.

In another product announcement, JW Player (a popular video platform) claimed that their customers
saw a 35% average increase in number of video views when they activated their recommendation service,
and a 25% increase in the time spent watching.

Content providers in our industry will know that the usage trends are a major driver in what content
is collected by academic institutions. Institutions have to spend their limited collection development
resources wisely and declining usage can get a subscription to your product cancelled. My whole career
in product development in the information industry could be categorized as efforts to help users discover
the right content and use it. Increases like these in user engagement are not so easy to achieve. While our
intuition told us that a personalized recommendation system would be worth building and would help
with engagement, these reported benefits by others helped make the decision to proceed.

P. Ciuffetti / Opportunities for non-data scientists to apply machine learning technology 363

We launched a small project to make related items more personal and to present these recommendations
in other key moments in the user’s experience. Perhaps not surprisingly, our initial thinking on how to
achieve this centered around tweaks to the more-like-this algorithm. We had a bit of a blind spot. As we
had no data scientists on the project it did not initially occur to us that we could ditch the more-like-this
algorithm and replace it with a machine learning algorithm, even though we knew this is how the major
e-commerce sites were providing similar features.

One of our colleagues attended the annual AWS re:Invent conference in November 2017 and when
he came back he recommended to our team that we look into SageMaker which was announced at that
conference. I decided to do a prototype with it. I used the week between Christmas and New Year’s
which for me has been great time to try something new. That week provides a combination of no meeting
distractions and the annual self-improvement ritual that a new year inspires. In the next section I’ll describe
the basic features of SageMaker and then outline our approach, the challenges we faced, and some of what
we learned along the way.

5. About SageMaker

Amazon has been using machine learning algorithms behind the scenes of their web applications for
decades. And more recently they started providing building block APIs powered by machine learning,
for example in Amazon Lex (a tool for building conversation bots: see: https://aws.amazon.com/lex/)
and Amazon Rekognition (an image analysis tool: see: https://aws.amazon.com/rekognition/). With
SageMaker AWS have packaged several machine learning (ML) algorithms into an architecture and
Software Development Kit (SDK) that allows developers to build ML solutions using their own data
and code.

SageMaker comes with four main elements:

(1) SageMaker Notebooks provide a browser-based development environment using Jupyter

(2) The Training API submits your code and data to machine learning instances that build and test your
model.

(3) The Inference API deploys your model and provides a service endpoint for performing queries against
your model.

(4) GroundTruth [1] provides tools for improving the quality of your model training data.

There are three ways to use SageMaker:

(1) Develop an ML model using a provided algorithm
(2) Develop an ML model using your own algorithm
(3) Develop a model elsewhere and use SageMaker to run it in production

SageMaker achieves this flexibility with a simple architecture that packages your code into Docker
containers with predefined command-line scripts for doing training and inference. The architecture
permits arbitrary algorithms to be trained and deployed on allocated instances since any Docker container
built and deployed by the SageMaker SDK will respond to the same two basic commands: train and
inference.

SageMaker launched with ten supported algorithms and Amazon has since added several more.
Most ML programming on SageMaker is done in Python (see: https://www.python.org/), though other
languages like R (see: https://www.r-project.org/) are possible. Most of the programming examples are in

https://aws.amazon.com/lex/
https://aws.amazon.com/rekognition/
https://www.python.org/
https://www.r-project.org/

364 P. Ciuffetti / Opportunities for non-data scientists to apply machine learning technology

Python. The notebooks come with a directory of examples covering each supported algorithm and other
demonstrations of the SageMaker SDK.

6. The prototype week

I had two initial challenges getting started. One was that I had not done any Python programming,
but the examples helped provide a bit of a crash course. The second was that I was unsure as to how to
select an algorithm from among the supported ten. After a quick email to AWS support, I received back a
recommendation to try Factorization Machines. I explored this on the web and indeed the Steffen Rendle
paper that introduced this algorithm [2] talked about its use in a recommendation system.

More exploration into recommendation engines revealed stories about the Netflix Prize [3], a multi-
year effort with a $1M prize attached to it to improve the performance of CineMatch, Netflix’s recom-
mendation algorithm. Another helpful presentation was by Conor Duke [4], a Data Scientist at Boxever
(see: https://www.boxever.com/), who presented his project using Factorization Machines at a Python
conference in Ireland. This quick research gave me a sense of how data scientists approached the
problem.

To get started I needed some data. Like most vendors in our space we collect playback statistics for all
videos for use in COUNTER media reports. So I gathered all the playbacks for 2017 across the entire
user base of our video collections. This listed which titles were played, by institution, for the whole year.
I collapsed it into a single count by title by institution by date.

We had some unique differences from the other examples I researched. Our video catalog is apparently
quite a bit larger than Netflix’s was at the time of the Netflix Prize, about three times as large. Also, Netflix
had values for user ratings of videos to include in its model training. We had only the data on which videos
were watched. Our user activity is spread out among more distinct titles.

Next, I had to choose the question which I wanted my ML algorithm to predict an answer. In retrospect,
this turns out to be one of the more essential steps in the process. You need to choose a question for which
your data will support making a prediction. In the Netflix Prize, the solution had to predict the user’s rating
of a video. And one hundred thousand user ratings over seventeen thousand videos were provided. As a
surrogate for rating, I had the number of times a given title was watched at each institution. A popular title
might get watched one hundred or more times at a subscribing institution (most likely by different users).
My model’s prediction had to match that data. So my model was going to (at most) be able to predict
how many times an institution would want to watch a video. Like many patterns of use, there are a small
number of popular titles that get watched a lot. A wide middle of titles that get watched a few times. And
a long tail of videos that don’t get watched at all. The average number of times a video was watched was
about 2.1.

One of the things that didn’t quite sink in until later, was the importance of ‘negative’ data in your
training set. In a five-star rating system, you might watch a film and give it a single star. That probably
means you didn’t like it as opposed to a lukewarm indication of enjoyment. The Netflix Prize considered
low star ratings as a sign of dislike. And so it was important not to recommend videos in the same
category as the ones the users rated with one or two stars. To achieve this, a data scientist might potentially
normalize the rating into a binary recommend/don’t recommend value and to group the videos into these
two categories based on the ratings. Then the use of a binary classifier would discriminate which of the
videos to recommend. We had no source of negative data. We had to assume that if an institution watched
a video, they might want to watch others like it.

https://www.boxever.com/

P. Ciuffetti / Opportunities for non-data scientists to apply machine learning technology 365

Another choice you get to make is whether to run your model as a ‘binary classifier’ or as a ‘regressor’. A
binary classifier gives a yes/no answer to an inference query. A regressor will give you a range of floating-
point values between weak and strong. My assumption was that in order to predict the number of times
watched that I needed to use the regressor mode. My expectation was that whichever videos came out
with the strongest predicted watch counts, the top ‘n’ of these would be what the system would choose as
a recommendation.

For all the algorithms, you have to prepare your data in the format that the algorithm wants. The example
code showed that Factorization Machines wants what is called a ‘sparse matrix’, one that is ‘one-hot
encoded’. Most of the first two days on the prototype was spent getting my playback data into this format
using my non-existent python skills. In essence this matrix has a row for each interaction between a user
and a video. The row is a ‘“feature vector’. There is a column for every ‘feature’ with a ‘1’ in that cell if
the interaction ‘has’ that feature, and a ‘0’ if the interaction does not have that feature. A feature might
be something like all the directors of all the films in the data set. For example, there would be a column
indicating if the film was directed by Ken Burns. All the films he directed will have a ‘1’ in that column.
All the other films he did not direct will have a 0 in that column. You make a column for each director
and put the 1’s in the appropriate cell for each film they’ve directed. You repeat this layout for every other
piece of metadata you expose to the model training (I included subject, release date, publisher, and content
type). Some features are derived from the metadata about the film that was watched. Other features are
about the institution that watched it. After encoding your data this way, you end up with a very wide matrix
(my data had nearly one hundred thousand columns) and a very tall matrix (my training data had three
hundred and fifty thousand rows). Most of these cells are a zero (which is why it is called sparse).

At the end of each row (feature vector) you provide the model with a ‘label’. This is the value for that
interaction. In the Netflix Prize test data, this would contain the user’s rating for that video. In my data
set, it contained the number of times watched.

The next step is to divide your data into three distinct sets: training, test, and validation.

e The training set is what teaches your model about the patterns of usage among the different interactions.

e The test set is what you use to evaluate the model. In this set of data, you know the value that occurred
(i.e. this institution watched this video five times) and you ask the model to make a prediction for this
feature vector. And you measure how close the model gets to making the correct predictions for each
row in the test set.

e The validation set is used at the end to help you understand how the model will behave in the real world
and to make sure it’s not ‘overfitted’ to make the predictions represented by the test set only.

By day three I was successfully building models and deploying them and getting the deployed model
to produce a prediction. The predictions though were nowhere near the values contained in the test
set. A common computation to evaluate a model’s efficiency is Root Mean Square Error (RMS -
see: https://www.theanalysisfactor.com/assessing-the-fit-of-regression-models/). It is a measure of the
closeness of predicted-to-observed across all the tests done and its value is in the same units as the
predictions. A smaller RMSE score is better. My model’s RMSE in its initial test was a 4.0. Which means
(as I understand it) that the average prediction was generally four greater or lesser than the observed value.

I was not deterred. I used the fact that I had a couple pages of working python code to lift my spirits. I
realized that I needed to think more about my training data and understand perhaps a little more about what
Factorization Machines was doing with it. And there were (at the time) some undocumented parameters
on the algorithm (called ‘hyperparameters) that I had no idea what to use as settings.

https://www.theanalysisfactor.com/assessing-the-fit-of-regression-models/

366 P. Ciuffetti / Opportunities for non-data scientists to apply machine learning technology

One of the factors of my data was a very wide distribution of the values for ‘times watched’. Some
films were watched one thousand times or more whereas the Netflix Prize had a much smaller ratings
range of one to five. Looking at the predictions made, the model was generally unwilling to predict a
‘times watched’ that was much greater than the average (which was about 2.1). So I convinced myself
that if an institution watched it ten times or more, that was going to be my upper limit of popularity.
Anything greater than that, I made it a ten. I also realized I had to be more careful about including data
from each institution in both the training and test sets. My initial random distribution meant that the test
set might not have any tests for some of the institutions. So, I randomly selected some test data for each
institution. Finally, I had initially included the ‘month watched’ as one of the features in my vector. This
was an important feature of Netflix Prize results, but I convinced myself that Alexander Street video was
less sensitive to the day you were watching it and I removed this factor from the data set. This collapsed
the values to ‘by title, by institution’ and meant each ‘interaction” was more focused on the institution and
the video. With these and some tests where I varied the hyper parameters, I was able to get the RMSE
down to 2.5.

I spent day five writing python code to perform inference queries on the validation set and then output
the results into a table with video titles that I could review visually. I wanted to see how I would react
visually to the titles that got the highest predictions next to the data that was actually watched.

7. Observations and conclusions of the prototype

The model tended to put the predictions into buckets. Even though I was running it in ‘regressor’ mode,
the model assigned thousands of videos the same prediction score. By increasing numfactors (one of
the hyperparameters in the algorithm) I was able to increase the number of buckets. The documentation
advised against making it ‘too high’ because then my model would be ‘overfitted’ (meaning it would
describe the training data more precisely, but not necessarily in a way that described real world phenomena
more accurately, those that contributed to actual video watching preferences). High settings for numfactors
still left me with hundreds if not thousands of videos getting the same high score for a given set of
recommendations for an institution. How was I going to select which of these to actually show to the
user? Factorization Machines, like most ML algorithms I guess, is trying to detect patterns in the data. If
your data is a pattern-less snowstorm of white noise the algorithm won’t be able to derive an ability to
make predictions about where a new piece of data fits into the snow. If there are pockets of dense activity
spread in various places, then its better able to detect the phenomena that cause some videos to be more
popular to some users. I needed to make sure my training data had more ‘relevant’ features.

To help solve the bucketing problem, I decided that I would only make inference queries for unwatched
videos that were in the same subjects of the videos you already watched. This greatly reduced the number
of inference queries that I had to perform. But is also introduces a certain bias. This system would therefore
be incapable of recommending something from a related field of study that you hadn’t previously explored.
It places an undue emphasis on subject tagging; many videos are justifiably about subjects with which they
are not tagged.

When I evaluated the recommendations visually, I generally accessed that the recommendations were
of high-quality titles, with generally good usage, that were very related to the videos you had watched.
That is, it was uncovering front list material that your institution had not watched. While I was concerned
that it might not dig deep enough into the ‘long tail’ to pull out hidden gems, there was no harm in it
recommending the excellent popular films.

P. Ciuffetti / Opportunities for non-data scientists to apply machine learning technology 367

When I shared these conclusions with the team, we agreed that this was a successful prototype and
steered our implementation plans in the direction of using SageMaker.

8. Some learning along the way

Fast forward to the present. The recommender is now implemented in our platform and is placing the
recommendations into the user experience where formerly there were hand-selected ‘featured titles’ that
tended to remain static.

To get from the prototype to a production quality deploy, our small team did get the guidance and help
of data scientists at ProQuest and Amazon. This did improve the quality of the solution quite a bit. And
while I stand by my initial assertion that a non-data scientist could have achieved acceptable results, it
certainly helped to have access to their expertise and made the development go faster.

We learned about Hyperparameter Optimization (HPO) [5] which takes away much of the guesswork
about setting the parameters to your algorithms under test. HPO builds a series of models with different
parameter values, tests each one, and then adjusts the parameters up or down while it detects a convergence
on the best predictions coming out of the model.

We also learned how to try different algorithms on the same training data and to choose an algorithm
based on its performance. This included bringing in new algorithms that were not part of the pre-installed
algorithms.

We also operationalized the process of bringing in new usage data and content metadata, updating the
models and the recommendations.

There is increasing competition in this space, with Google, Microsoft, IBM and others offering solutions
that might be a better fit for you. It’s a fast-moving field with more models and algorithms being packaged
behind APIs that don’t require you to bring your own data. It’s becoming increasingly likely that you
could exploit machine learning solutions in an application without having to touch model training and
evaluation. It’s a great time to get ML solutions into your apps and build a core of expertise around it.

About the Author

Pete Ciuffetti is currently Director of Product Development at ProQuest. He has also held technical
positions at information industry firms since 1984 including SilverPlatter, HW Wilson, Credo Reference
and Alexander Street. Email: pciuffetti@alexanderstreet.com.

References

[1] Amazon SageMaker GroundTruth, see: https://aws.amazon.com/sagemaker/groundtruth/, accessed September 28, 2019.

[2] S. Rendle, Factorization machines, in: Proceedings of the 2010 IEEE International Conference on Data Mining :pp. 995—
1000. Available at: https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf, accessed September 28, 2019.

[3] Netflix Prize, Wikipedia, see: https://en.wikipedia.org/wiki/Netflix_Prize#targetText=On%20September%2021%2C%20
2009%2C%20the,for%20predicting%?20ratings%20by%2010.06%25, accessed September 28, 2019.

[4] C. Duke, Building a Social Network Content Recommendation Service Using Factorisation Machines, YouTube, available
at: https://www.youtube.com/watch?v=91ifSPf1Y 50, accessed September 28, 2019.

[5] Hyperparameter Optimization, Wikipedia, https://en.wikipedia.org/wiki/Hyperparameter_optimization, accessed Septem-
ber 28, 2019.

mailto:pciuffetti@alexanderstreet.com
https://aws.amazon.com/sagemaker/groundtruth/
https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://en.wikipedia.org/wiki/Netflix_Prize##targetText=On%20September%2021%2C
https://en.wikipedia.org/wiki/Netflix_Prize#targetText=On{%}20September{%}2021{%}2C{%}202009{%}2C{%}20the,for{%}20predicting{%}20ratings{%}20by{%}2010.06{%}25
https://en.wikipedia.org/wiki/Netflix_Prize#targetText=On{%}20September{%}2021{%}2C{%}202009{%}2C{%}20the,for{%}20predicting{%}20ratings{%}20by{%}2010.06{%}25
https://www.youtube.com/watch?v=9lifSPf1Y5o
https://en.wikipedia.org/wiki/Hyperparameter_optimization

