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Abstract. In this paper, we introduce the concept of circular Pythagorean fuzzy set (value)
(C-PFS(V)) as a new generalization of both circular intuitionistic fuzzy sets (C-IFSs) proposed by
Atannassov and Pythagorean fuzzy sets (PFSs) proposed by Yager. A circular Pythagorean fuzzy
set is represented by a circle that represents the membership degree and the non-membership degree
and whose centre consists of non-negative real numbers μ and ν with the condition μ2 + ν2 � 1.
A C-PFS models the fuzziness of the uncertain information more properly thanks to its structure
that allows modelling the information with points of a circle of a certain centre and a radius. There-
fore, a C-PFS lets decision makers to evaluate objects in a larger and more flexible region and thus
more sensitive decisions can be made. After defining the concept of C-PFS we define some fun-
damental set operations between C-PFSs and propose some algebraic operations between C-PFVs
via general triangular norms and triangular conorms. By utilizing these algebraic operations, we
introduce some weighted aggregation operators to transform input values represented by C-PFVs
to a single output value. Then to determine the degree of similarity between C-PFVs we define a
cosine similarity measure based on radius. Furthermore, we develop a method to transform a col-
lection of Pythagorean fuzzy values to a C-PFS. Finally, a method is given to solve multi-criteria
decision making problems in circular Pythagorean fuzzy environment and the proposed method is
practiced to a problem about selecting the best photovoltaic cell from the literature. We also study
the comparison analysis and time complexity of the proposed method.
Key words: circular Pythagorean fuzzy set, aggregation operators, multi-criteria decision making.

1. Introduction

The concept of fuzzy set (FS) was developed by utilizing a function (called membership
function) assigning a value between zero and one as the membership degrees of the ele-
ments to deal with ambiguity in real-life problems. Since the FS theory proposed by Zadeh
(1965) succeeded to handle various types of uncertainty, it has been studied in detail by
many researchers to model uncertainty. Later, the concept of intuitionistic fuzzy set (IFS),
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Fig. 1. Citation graph of the PFSs.

which is an extension of the concept of FS, was proposed by Atanassov (1986) via mem-
bership functions and non-membership functions. The theory of IFS plays an important
role in many research areas such as pattern recognition, multi-criteria decision making
(MCDM), data mining, classification, clustering and medical diagnosis. Many aggrega-
tion operators and information measures (similarity, distance and entropy measures) have
been developed for IFSs. Particularly, various generalizations of aggregation operators
and information measures for IFSs (see, e.g. Beliakov et al., 2011; Boltürk and Kahra-
man, 2022; Garg and Arora, 2021; Olgun et al., 2021b; Verma and Sharma, 2013; Wan
and Dong, 2014) have been defined via particular types of triangular norms (t-norms) and
triangular conorms (t-conorms).

The concept of Pythagorean fuzzy set (PFS), first introduced by Atanassov (1999)
as IFS of type 2, has become a significant tool in MCDM, as illustrated in Fig. 1, and as
acknowledged by Yager (2013a, 2013b) in subsequent research. A PFS is characterized via
a membership function and a non-membership function such that the sum of the squares of
these non-negative functions is less than 1. Moreover, a PFS has a quadratic form, which
means a PFS expands the range of the change of membership degree and non-membership
degree to the unit circle and so is more capable than an IFS in depicting uncertainty. Yager
(2013a), Yager and Abbasov (2013) proposed some aggregation operators for PFSs. After
that, Peng et al. (2017) presented the axiomatic definitions of distance measure, similarity
measure and entropy measure for PFSs. Further studies on MCDM with fuzzy sets and
aggregation operators can be found in Beliakov et al. (2007), Biswas and Sarkar (2018),
Garg (2016), Garg and Arora (2021), Grabisch et al. (2009), Kahraman (2008), Olgun et
al. (2019), Olgun et al. (2021a), Yeni and Özçelik (2019), Ünver et al. (2022a), Ünver et
al. (2022b), Ye et al. (2022), Yolcu et al. (2021), Zhang and Xu (2014), Zeng et al. (2018).

Many types of fuzzy sets study with points, pairs of points or triples of points from the
closed interval [0, 1] that makes the decision process stricter since they require decision
makers (DMs) to assign precise numbers. To overcome such a strict modelling, Atanassov
(2020) proposed the concept of circular intuitionistic fuzzy set (C-IFSs). A C-IFS is rep-
resented by a circle standing for the uncertainty of the membership and non-membership
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Fig. 2. The improvement of circular fuzzy set theory.

functions. That is, the membership and the non-membership of each element to a C-IFS
are shown as a circle whose centre is a pair of non-negative real numbers with the condition
that the sum of them is less than 1. With the help of C-IFSs, the change of membership de-
gree and non-membership degree can be handled more sensitively to express uncertainty.
Therefore, various types of MCDM methods have been carried to circular intuitionistic
fuzzy environment (see e.g. Atanassov and Marinov, 2021; Kahraman and Alkan, 2021;
Kahraman and Otay, 2022). In this paper, we carry the idea of representing membership
degree and non-membership degree as circle to the Pythagorean fuzzy environment by
introducing the concept of circular Pythagorean fuzzy set (C-PFS). In this new fuzzy set
notion, the membership and non-membership degrees of an element to a FS are repre-
sented by circles with centre (μA(x), νA(x)) instead of numbers and with a more flexible
condition μ2

A(x) + ν2
A(x) � 1. In this manner, we extend not only the concept of the

PFS, but also the concept of the C-IFS (see Fig. 2). Thus the decision making process
becomes more sensitive since DMs can attain circles with certain properties instead of
precise numbers. Figure 2 illustrates the improvement of circular fuzzy sets.

Some main contributions of the present paper can be given as follows.

• This paper introduces the concepts of C-PFS and circular Pythagorean fuzzy value
(C-PFV).

• A method is developed to transform a collection of Pythagorean fuzzy values (PFVs)
to a C-PFV. In this way, multi-criteria group decision making (MCGDM) problem can
be relieved.
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• The membership and non-membership of an element to a C-PFS are represented by
circles. Thanks to its structure, a more sensitive modelling can be done in MCDM
theory in the continuous environment.

• Some algebraic operations are defined for C-PFVs via t-norms and t-conorms. With the
help of these operations, some weighted arithmetic and geometric aggregation operators
are provided. These aggregation operators are used in MCDM and MCGDM.

The rest of this paper is organized as follows. In Section 2, we recall some basic con-
cepts. In Section 3, we introduce the concept of C-PFS(V) as new generalization of both
C-IFSs and PFSs. We also define some fundamental set theoretic operations for C-PFSs.
Then we introduce some algebraic operations for C-PFVs via continuous Archimedean
t-norms and t-conorms. In Section 4, we propose some weighted aggregation operators
for C-PFVs by utilizing these algebraic operations. In Section 5, motivated by a cosine
similarity measure defined for PFVs in Wei and Wei (2018), we define a cosine similar-
ity measure for C-PFVs to determine the degree of similarity between C-PFVs. Using
the proposed similarity measure and the aggregation operators we provide an MCDM
method in circular Pythagorean fuzzy environment. We also apply the proposed method
to an MCDM problem from Zhang (2016) that deals with selecting the best photovoltaic
cell (also known as solar cell). We compare the results of the proposed method with the
existing result and calculate the time complexity of the MCDM method. In Section 6, we
conclude the paper.

2. Preliminaries

Atanassov (1986) introduced the concept of IFS by taking into account the non-
membership functions with a membership functions of FSs. Throughout this section we
assume that X = {x1, . . . , xn} is a finite set.

Definition 1 (Atanassov, 1986). An IFS A in X is defined by

A = {〈
x, μA(x), νA(x)

〉 : x ∈ X
}
,

where μA, νA : X → [0, 1] are functions with the condition

μA + νA � 1

that are called the membership function and the non-membership function, respectively.

The concept of PFS proposed by Yager (2013a, 2013b) which is a generalization of
IFS.

Definition 2 (Yager 2013a, 2013b). A PFS A in X is defined by

A = {〈
x, μA(x), νA(x)

〉 : x ∈ X
}
,
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where μA, νA : X → [0, 1] are functions with the condition

μ2
A + ν2

A � 1

that are called the membership function and the non-membership function, respectively.
Let μα, να ∈ [0, 1] such that μ2

α + ν2
α � 1. Then the pair α = 〈μα, να〉 is called a

Pythagorean fuzzy value (PFV).

Schweizer and Sklar (1983) introduced the concepts of t-norm and t-conorm by mo-
tivating the concept of probabilistic metric spaces proposed by Menger (1942). These
concepts have important roles in statistics and decision making. Algebraically, t-norms
and t-conorms are binary operations defined on the closed unit interval.

Definition 3 (Klement et al., 2002; Schweizer and Sklar, 1983). A t-norm is a function
T : [0, 1] × [0, 1] → [0, 1] that satisfies the following conditions:

(T1) T (x, 1) = x for all x ∈ [0, 1] (border condition),
(T2) T (x, y) = T (y, x) for all x, y ∈ [0, 1] (commutativity),
(T3) T (x, T (y, z)) = T (T (x, y), z) for all x, y, z ∈ [0, 1] (associativity),
(T4) T (x, y) � T (x′, y′) whenever x � x′ and y � y′ for all x, x′, y, y′ ∈ [0, 1]

(monotonicity).

Definition 4 (Klement et al., 2002; Schweizer and Sklar, 1983). A t-conorm is a function
S : [0, 1] × [0, 1] → [0, 1] that satisfies the following conditions:

(S1) S(x, 0) = x for all x ∈ [0, 1] (border condition),
(S2) S(x, y) = S(y, x) for all x, y ∈ [0, 1] (commutativity),
(S3) S(x, S(y, z)) = S(S(x, y), z) for all x, y, z ∈ [0, 1] (associativity),
(S4) S(x, y) � S(x′, y′) whenever x � x′ and y � y′ for all x, x′, y, y′ ∈ [0, 1] (mono-

tonicity).

Definition 5 (Klement et al. 2002, 2004a). A strictly decreasing function g : [0, 1] →
[0,∞] with g(1) = 0 is called the additive generator of a t-norm T if we have T (x, y) =
g−1(g(x) + g(y)) for all (x, y) ∈ [0, 1] × [0, 1].

Next, we need the concept of fuzzy complement to find the additive generator of a dual
t-conorm on [0, 1].

Definition 6 (Yager 2013a, 2013b; Yang et al., 2019). A fuzzy complement is a function
N : [0, 1] → [0, 1] satisfying the following conditions:

(N1) N(0) = 1 and N(1) = 0 (boundary conditions),
(N2) N(x) � N(y) whenever x � y for all x, y ∈ [0, 1] (monotonicity),
(N3) Continuity,
(N4) N(N(x)) = x for all x ∈ [0, 1] (involution).
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The function N : [0, 1] → [0, 1] defined by N(a) = (1 − ap)1/p, where p ∈ (0,∞)

(Yager 2013a, 2013b) is a fuzzy complement. When p = 2, N becomes the Pythagorean
fuzzy complement N(a) = √

1 − a2.

Definition 7 (Klir and Yuan, 1995; Yang et al., 2019). Let T be a t-norm and let S be a
t-conorm on [0, 1]. If T (x, y) = N(S(N(x),N(y))) and S(x, y) = N(T (N(x),N(y))),
then T and S are called dual with respect to a fuzzy complement N .

Remark 1. Let T be a t-norm on [0, 1]. Then the dual t-conorm S with respect to the
Pythagorean fuzzy complement N is

S(x, y) =
√

1 − T 2
(√

1 − x2,

√
1 − y2

)
.

Note that T is an Archimedean t-norm if and only if T (x, x) < x for all x ∈ (0, 1)

and S is an Archimedean t-conorm if and only if S(x, x) > x for all x ∈ (0, 1) (Klement
et al. 2002, 2004a). Klement et al. (2004b) proved that continuous Archimedean t-norms
have representations via their additive generators in the following theorem.

Theorem 1 (Klement et al., 2004b). Let T be a t-norm on [0, 1]. The following statements
are equivalent:

(i) T is a continuous Archimedean t-norm.
(ii) T has a continuous additive generator, i.e. there is a continuous, strictly decreasing

function g : [0, 1] → [0,∞] with t (1) = 0 such that T (x, y) = g−1(g(x) + g(y))

for all (x, y) ∈ [0, 1] × [0, 1].

3. Circular Pythagorean Fuzzy Sets

The notion of C-IFS was introduced by Atanassov (2020) as an extension of the notion of
IFS. Throughout this paper we assume that X = {x1, . . . , xn} is a finite set.

Definition 8 (Atanassov, 2020). Let r ∈ [0, 1]. A circular C-IFS Ar in X is defined by

Ar = {〈
x, μA(x), νA(x); r

〉 : x ∈ X
}
,

where μA, νA : X → [0, 1] are functions such that

μA + νA � 1.

r is the radius of the circle around the point (μA(x), νA(x)) on the plane. This circle
represents the membership degree and non-membership degree of x ∈ X.
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Remark 2. Since each IFS A has the form

A = A0 = {〈
x, μA(x), νA(x); 0

〉 : x ∈ X
}
,

any IFS can be considered as a C-IFS. Hence, the notion of C-IFS is a generalization of
the notion of IFS.

Next, we introduce the concept of C-PFS that is a new extension of the concepts of
C-IFS and PFS. C-PFSs allow decision makers to express uncertainty via membership and
non-membership degrees represented by a circle in a more extended environment. Thus,
more sensitive evaluations can be made in decision making process.

Definition 9. Let r ∈ [0, 1]. A C-PFS Ar in X is defined by

Ar = {〈
x, μA(x), νA(x); r

〉 : x ∈ X
}
,

where μA, νA : X → [0, 1] are functions such that

μ2
A + ν2

A � 1.

r is the radius of the circle around the point (μA(x), νA(x)) on the plane. This circle
represents the membership degree and non-membership degree of x ∈ X.

Example 1. Let X = {x1, x2, x3}. An example of a C-PFS on X can be given by

A0.2 = {〈x1, 0.3, 0.8; 0.2〉, 〈x2, 0.1, 0.9; 0.2〉, 〈x3, 0.5, 0.6; 0.2〉}.
Definition 10. Let μα, να ∈ [0, 1], such that μ2

α + ν2
α � 1 and rα ∈ [0, 1]. Then the

triple α = 〈μα, να; rα〉 is called a C-PFV.

A C-PFS can be considered as a collection of C-PFVs. Figure 3 shows some examples
of C-PFVs and Fig. 4 shows that the concept of C-PFS generalizes the concept of C-IFS.

Remark 3. Since each PFS A has the form

A = A0 = {〈
x, μA(x), νA(x); 0

〉 : x ∈ X
}
,

any PFS is also a C-PFS but the converse is not true in general. Consider the C-PFS A0.2

given in Example 1. Since 0.3 + 0.8 = 1.1 > 1, it is not a C-IFS.

Now we can define some set operations among C-PFSs.

Definition 11. Let

Ar = {〈
x, μA(x), νA(x); r

〉 : x ∈ X
}
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Fig. 3. Geometric representation of C-PFSs.

Fig. 4. Comparison of the spaces of C-IFS and C-PFS.

and

Bs = {〈
x, μB(x), νB(x); s

〉 : x ∈ X
}

be two C-PFSs in X. Some set operations among C-PFSs are defined as follows:

a) Ar ⊂ Bs if and only if r � s and

μA(x) � μB(x) and νA(x) � νB(x), for any x ∈ X.
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b) Ar = Bs if and only if r = s and

μA(x) = μB(x) and νA(x) = νB(x), for any x ∈ X.

c) The complement Ac
r of Ar is defined by Ac

r = {〈x, νA(x), μA(x); r〉 : x ∈ X}.
d) The union of Ar and Bs with respect to maximum and minimum is defined by

Ar ∪min Bs = {〈
x, max

(
μA(x), μB(x)

)
, min

(
νA(x), νB(x)

); min(r, s)
〉 : x ∈ X

}
and

Ar ∪max Bs = {〈
x, max

(
μA(x), μB(x)

)
, min

(
νA(x), νB(x)

); max(r, s)
〉 : x ∈ X

}
,

respectively.
e) The intersection of Ar and Bs with respect to maximum and minimum is defined by

Ar ∩min Bs = {〈
x, min

(
μA(x), μB(x)

)
, max

(
νA(x), νB(x)

); min(r, s)
〉 : x ∈ X

}
and

Ar ∩max Bs = {〈
x, min

(
μA(x), μB(x)

)
, max

(
νA(x), νB(x)

); max(r, s)
〉 : x ∈ X

}
,

respectively.

Example 2. Let X = {x1, x2, x3}. Consider the C-PFSs given with

A0.2 = {〈x1, 0.3, 0.8; 0.2〉, 〈x2, 0.1, 0.9; 0.2〉, 〈x3, 0.5, 0.6; 0.2〉}
and

B0.6 = {〈x1, 0.7, 0.5; 0.6〉, 〈x2, 0.2, 0.5; 0.6〉, 〈x3, 0.6, 0.3; 0.6〉}.
Then A0.2 ⊂ B0.6. On the other hand,

Ac
0.2 = {〈x1, 0.8, 0.3; 0.2〉, 〈x2, 0.9, 0.1; 0.2〉, 〈x3, 0.6, 0.5; 0.2〉},

A0.2 ∪min B0.6 = {〈x1, 0.7, 0.5; 0.2〉, 〈x2, 0.2, 0.5; 0.2〉, 〈x3, 0.6, 0.3; 0.2〉},
A0.2 ∪max B0.6 = {〈x1, 0.7, 0.5; 0.6〉, 〈x2, 0.2, 0.5; 0.6〉, 〈x3, 0.6, 0.3; 0.6〉},
A0.2 ∩min B0.6 = {〈x1, 0.3, 0.8; 0.2〉, 〈x2, 0.1, 0.9; 0.2〉, 〈x3, 0.5, 0.6; 0.2〉},

and

A0.2 ∩max B0.6 = {〈x1, 0.3, 0.8; 0.6〉, 〈x2, 0.1, 0.9; 0.6〉, 〈x3, 0.5, 0.6; 0.6〉}.
The following theorem shows that De Morgan’s rules are available for C-PFSs.
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Theorem 2. Let

Ar = {〈
x, μA(x), νA(x); r

〉 : x ∈ X
}

and

Bs = {〈
x, μB(x), νB(x); s

〉 : x ∈ X
}

be two C-PFSs in X. Then we have:

1) (Ar ∪min Bs)
c = Ari

c ∩min Bsi
c;

2) (Ar ∪max Bs)
c = Ari

c ∩max Bsi
c;

3) (Ar ∩min Bs)
c = Ari

c ∪min Bsi
c;

4) (Ar ∩max Bs)
c = Ari

c ∪max Bsi
c.

Proof. The proof is trivial from Definition 11.

Now we develop a method to convert collections of PFVs to a C-PFV which is a useful
method in group decision making.

Proposition 1. Let {〈μ1, ν1〉, 〈μ2, ν2〉, . . . , 〈μk, νk〉} be a collection of PFVs. Then

〈μ, ν; r〉

is a C-PFV where

μ =
√∑k

j=1 μ2
j

k
,

ν =
√∑k

j=1 ν2
j

k

and

r = min
{

max
1�j�k

√
(μ − μj )2 + (ν − νj )2, 1

}
.

Proof. We have

μ2 + ν2 =
(√∑k

j=1 μ2
j

k

′

,

)2

+
(√∑k

j=1 ν2
j

k

)2

=
∑k

j=1 μ2
,j

ki

+
∑k

j=1 ν2
j

ki

=
∑k

j=1(μ
2
,j + ν2

,j )

k
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Fig. 5. The PFVs and C-PFVs in Example 3.

�
∑k

j=1 1

k

= 1.

Furthermore, it is clear that 0 � r � 1. Therefore, Ar = 〈μ, ν; r〉 is a C-PFV.

Example 3. We present the following collections of PFVs:
{〈0.3, 0.8〉, 〈0.4, 0.6〉, 〈0.5, 0.7〉, 〈0.4, 0.8〉},
{〈0.2, 0.3〉, 〈0.1, 0.4〉, 〈0.2, 0.5〉, 〈0.1, 0.6〉},

and
{〈0.9, 0.2〉, 〈0.8, 0.3〉, 〈0.8, 0.2〉, 〈0.7, 0.5〉}.

By applying Proposition 1, we derive the corresponding C-PFVs, respectively:

〈0.41, 0.73; 0.13〉,
〈0.16, 0.46; 0.17〉

and

〈0.8, 0.32; 0.2〉.

We visualize this transformations in Fig. 5.

Now we define some algebraic operations for C-PFVs.

Definition 12. Let α = 〈μα, να; rα〉 and β = 〈μβ, νβ; rβ〉 be two C-PFVs. Some alge-
braic operations among C-PFVs are defined as follows:
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a) α ⊕min β =
〈√

μ2
α + μ2

β − μ2
αμ2

β, ν1ν2; min(rα, rβ)
〉
,

b) α ⊕max β =
〈√

μ2
α + μ2

β − μ2
αμ2

β, ν1ν2; max(rα, rβ)
〉
,

c) α ⊗min β =
〈
μαμβ,

√
ν2
α + ν2

β − ν2
αν2

β; min(rα, rβ)
〉
,

d) α ⊗max β =
〈
μαμβ,

√
ν2
α + ν2

β − ν2
αν2

β; max(rα, rβ)
〉
.

Algebraic operations among C-PFVs in Definition 12 can be extended by using general
t-norms and t-conorms.

Definition 13. Let α = 〈μα, να; rα〉 and β = 〈μβ, νβ; rβ〉 be two C-PFVs. Assume
that T , S are dual t-norm and t-conorm with respect to the Pythagorean fuzzy comple-
ment N(a) = √

1 − a2, respectively, and Q is a t-norm or a t-conorm. General algebraic
operations among C-PFVs are defined as follows:

a) α ⊕Q β = 〈S(μα, μβ), T (να, νβ); Q(rα, rβ)〉,
b) α ⊗Q β = 〈T (μα, μβ), S(να, νβ); Q(rα, rβ)〉.

It is clear that with a particular choice of S, T and Q the operations given in Defini-
tion 12 are obtained from the operations defined in Definition 13.

We now show that the sum and the product of two C-PFVs are also C-PFVs with the
following proposition.

Proposition 2. Let α and β be two C-PFVs. Assume that T , S are dual t-norm and t-
conorm with respect to Pythagorean fuzzy complement N(a) = √

1 − a2, respectively,
and Q is a t-norm or a t-conorm. Then α ⊕Q β and α ⊗Q β are also C-PFVs.

Proof. We know that the dual t-conorm S with respect to the Pythagorean fuzzy com-

plement N is S(x, y) =
√

1 − T 2(
√

1 − x2,
√

1 − y2 ) from Remark 1. Since μα �√
1 − ν2

α and T is increasing, it is obtained that

T 2(μα, μβ) + S2(να, νβ) = T 2(μα, μβ) +
(√

1 − T 2
(√

1 − ν2
α,

√
1 − ν2

β

))2

= T 2(μα, μβ) + 1 − T 2
(√

1 − ν2
α,

√
1 − ν2

β

)
� T 2

(√
1 − ν2

α,

√
1 − ν2

β

)
+ 1 − T 2

(√
1 − ν2

α,

√
1 − ν2

β

)
= 1.

Moreover, since the domain of Q is the unit closed interval we conclude that α ⊗Q β is a C-PFV.
Similarly, it can be shown that α ⊕Q β is also a C-PFV.

Klement et al. (2004b) showed that continuous Archimedean t-norms and t-conorms
can be expressed with their additive generators. Thus, some algebraic operations among
C-PFVs can be defined using additive generators of strict Archimedean t-norms and t-
conorms.
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Definition 14. Let α = 〈μα, να; rα〉 and β = 〈μβ, νβ; rβ〉 be two C-PFVs and let λ > 0.
Assume that g : [0, 1] → [0,∞] is the additive generator of a continuous Archimedean
t-norm and h(t) = g(

√
1 − t2) and q : [0, 1] → [0,∞] is the additive generator of a

continuous Archimedean t-norm or t-conorm. Some algebraic operations among C-PFVs
are defined as follows:

a) α ⊕q β = 〈
h−1(h(μα) + h(μβ)), g−1(g(να) + g(νβ)); q−1(q(rα) + q(rβ))

〉
,

b) α ⊗q β = 〈
g−1(g(μα) + g(μβ)), h−1(h(να) + h(νβ)); q−1(q(rα) + q(rβ))

〉
,

c) λqα = 〈
h−1(λh(μα)), g−1(λg(να)); q−1(λq(rα))

〉
,

d) αλq = 〈
g−1(λg(μα)), h−1(λh(να)); q−1(λq(rα))

〉
.

The following proposition confirms that multiplication by constant and power of C-
PFVs are also C-PFVs.

Proposition 3. Let α = 〈μα, να; rα〉 and β = 〈μβ, νβ; rβ〉 be two C-PFVs and let λ > 0.
Assume that g : [0, 1] → [0,∞] is the additive generator of a continuous Archimedean
t-norm and h(t) = g(

√
1 − t2) and q : [0, 1] → [0,∞] is the additive generator of a

continuous Archimedean t-norm or t-conorm. Then α ⊕q β, α ⊗q β, λqα and αλq are
C-PFVs.

Proof. It is clear from Proposition 2 that α ⊕q β and α ⊗q β are C-PFVs. We know that
h−1(t) = √

1 − [g−1(t)]2 and g(t) = h(
√

1 − t2). Since μα �
√

1 − ν2
α and h, h−1 are

increasing, we have

0 �
[
h−1(λh(μα)

)]2 + [
g−1(λg(να)

)]2

�
[
h−1(λh

(√
1 − ν2

α

))]2 + [
g−1(λg(να)

)]2

= 1 − [
g−1(λh

(√
1 − ν2

α

)]2 + [
g−1(λg(να)

)]2

= 1 − [
g−1(λg(να)

)]2 + [
g−1(λg(να)

)]2

= 1.

Moreover, since the range of q−1 is the unit closed interval, we conclude that λqα is a
C-PFV. In a similar way, it can be shown that αλq is also a C-PFV.

Example 4. Let g, h, q, p : [0, 1] → [0,∞] defined by g(t) = − log t2, h(t) =
− log(1 − t2), q(t) = − log t2 and p(t) = − log(1 − t2) and λ > 0. Then we obtain
the algebraic operators

a) α ⊕q β =
〈√

μ2
α + μ2

β − μ2
αμ2

β, νανβ; rαrβ

〉
,

b) α ⊕p β =
〈√

μ2
α + μ2

β − μ2
αμ2

β, νανβ;
√

r2
α + r2

β − r2
αr2

β

〉
,

c) α ⊗q β =
〈
μαμβ,

√
ν2
α + ν2

β − ν2
αν2

β; rαrβ

〉
,
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d) α ⊗p β =
〈
μαμβ,

√
ν2
α + ν2

β − ν2
αν2

β;
√

r2
α + r2

β − r2
αr2

β

〉
,

e) λqα =
〈√

1 − (1 − μ2
α)λ, νλ

α; rλ
α

〉
,

f) λpα =
〈√

1 − (1 − μ2
α)λ, νλ

α;√1 − (1 − r2
α)λ

〉
,

g) αλq =
〈
μλ

α,
√

1 − (1 − ν2
α)λ; rλ

α

〉
,

h) αλp =
〈
μλ

α,
√

1 − (1 − ν2
α)λ;√1 − (1 − r2

α)λ
〉
.

The following theorem gives some basic properties of algebraic operations.

Theorem 3. Let α = 〈μα, να; rα〉, β = 〈μβ, νβ; rβ〉 and θ = 〈μθ, νθ ; rθ 〉 be C-PFVs and
let λ, γ > 0. Assume that g : [0, 1] → [0,∞] is the additive generator of a continuous
Archimedean t-norm and h(t) = g(

√
1 − t2) and q : [0, 1] → [0,∞] is the additive

generator of a continuous Archimedean t-norm or t-conorm. We have

i) α ⊕q β = β ⊕q α,
ii) α ⊗q β = β ⊗q α,

iii) (α ⊕q β) ⊕q θ = α ⊕q (β ⊕q θ),
iv) (α ⊗q β) ⊗q θ = α ⊗q (β ⊗q θ),
v) λq(α ⊕q β) = λqα ⊕q λqβ,

vi) (λq + γq)α = λqα ⊕q γqα,
vii) (α ⊗q β)λq = αλq ⊗q βλq ,
viii) αλq ⊗q αγq = αλq+γq .

Proof. (i) and (ii) are trivial.

iii) We obtain

(α ⊕q β) ⊕q θ

= 〈
h−1(h(μα) + h(μβ)

)
, g−1(g(να) + g(νβ)

); q−1(q(rα) + q(rβ)
)〉 ⊕q

〈μθ , νθ ; rθ 〉
= 〈

h−1(h
(
h−1(h(μα) + h(μβ)

) + h(μθ )
)
, g−1(g

(
g−1(g(να)

+ g(νβ)
) + g(νθ )

); q−1(q
(
q−1(q(rα) + q(rβ)

) + q(rθ )
)〉

= 〈
h−1(h(μα) + h(μβ) + h(μθ )

)
, g−1(g(να) + g(νβ) + g(νθ )

);
q−1(q(rα) + q(rβ) + q(rθ )

)〉
= 〈

h−1(h(μα) + h
(
h−1(h(μβ) + h(μθ )

)))
, g−1(g(να)

+ g
(
g−1(g(νβ) + g(νθ )

))); q−1(q(rα) + q
(
q−1(q(rβ) + q(rθ )

)))〉
= 〈μα, να; rα〉 ⊕q

〈
h−1(h(μβ) + h(μθ )

)
, g−1(g(νβ) + g(νθ )

);
q−1(q(rβ) + q(rθ )

)〉
= α ⊕q (β ⊕q θ).
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iv) It is obtained that

(α ⊗q β) ⊗q θ

= 〈
g−1(g(μα) + g(μβ)

)
, h−1(h(να) + h(νβ)

); q−1(q(rα) + q(rβ)
)〉 ⊗q

〈μθ , νθ ; rθ 〉
= 〈

g−1(g
(
g−1(g(μα) + g(μβ)

) + g(μθ )
)
, h−1(h

(
h−1(h(να) + h(νβ)

)
+ h(νθ )

); q−1(q
(
q−1(q(rα) + q(rβ)

) + q(rθ )
)〉

= 〈
g−1(g(μα) + g(μβ) + g(μθ )

)
, h−1(h(να) + h(νβ) + h(νθ )

);
q−1(q(rα) + q(rβ) + q(rθ )

)〉
= 〈

g−1(g(μα) + g
(
g−1(g(μβ) + g(μθ )

)))
, h−1(h(να)

+ h
(
h−1(h(νβ) + h(νθ )

))); q−1(q(rα) + q
(
q−1(q(rβ) + q(rθ )

)))〉
= 〈μα, να; rα〉 ⊗q

〈
g−1(g(μβ) + g(μθ )

)
, h−1(h(νβ) + h(νθ )

);
q−1(q(rβ) + q(rθ )

)〉
= α ⊗q (β ⊗q θ).

v) We get

λq(α ⊕q β)

= λq

〈
h−1(h(μα) + h(μβ)

)
, g−1(g(να) + g(νβ)

); q−1(q(rα) + q(rβ)
)〉

= 〈
h−1(λh

(
h−1(h(μα) + h(μβ)

)))
, g−1(λg

(
g−1(g(να) + g(νβ)

)));
q−1(λq

(
q−1(q(rα) + q(rβ)

)))〉
= 〈

h−1(λh(μα) + λh(μβ)
)
, g−1(λg(να) + λg(νβ)

);
q−1(λq(rα) + λq(rβ)

)〉
= 〈

h−1(h(h−1(λh(μα)
)) + h

(
h−1(λh(μβ)

)))
, g−1(g

(
g−1(λg(να)

)
+ g

(
g−1(λg(νβ)

))); q−1(q(q−1(λq(rα)
)) + q

(
q−1(λq(rβ)

)))〉
= 〈

h−1(h(μλα) + h(μλβ)
)
, g−1(g(νλα) + g(νλβ)

);
q−1(q(rλα) + λq(sλβ)

)〉
= λqα ⊕q λqβ.

vi) It is clear that

(λq + γq)α

= 〈
h−1((λ + γ )h(μα)

)
, g−1((λ + γ )g(να)

); q−1((λ + γ )q(rα)
)〉

= 〈
h−1(λh(μα) + γ h(μα)

)
, g−1(λg(να) + γg(να)

);
q−1(λq(rα) + γ q(rα)

)〉
= 〈

h−1(h(h−1(λh(μα)
)) + h

(
h−1(γ h(μα)

)))
, g−1(g(g−1(λg(να)

))
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+ g
(
g−1(γg(να)

))); q−1(q(q−1(λq(rα)
)) + q

(
q−1(γ q(rα)

)))〉
= 〈

h−1(h(μλqα) + h(μγqα)
)
, g−1(g(νλqα) + g(νγqα)

);
q−1(q(rλqα) + q(rγqα)

)〉
= λqα ⊕q γqα.

vii) We have

(α ⊗q β)λq

= 〈
g−1(λg(μα⊗qβ)

)
, h−1(λh(να⊗qβ)

); q−1(λq(rα⊗qβ)
)〉

= 〈
g−1(λg

(
g−1(g(μα) + g(μβ)

)))
, h−1(λh

(
h−1(h(να) + h(νβ)

)));
q−1(λq

(
q−1(q(rα) + q(rβ)

)))〉
= 〈

g−1(λg(μα) + λg(μβ)
)
, h−1(λh(να) + λh(νβ)

);
q−1(λq(rα) + λq(rβ)

)〉
= 〈

g−1(g(g−1(λg(μα)
)) + g

(
g−1(λg(μβ)

)))
, h−1(h

(
h−1(λh(να)

))
+ h

(
h−1(λh(νβ)

)); q−1(q
(
q−1(λq(rα)

)) + q
(
q−1(λq(rβ)

))〉
= 〈

g−1(g(μαλq ) + g(μβλq )
)
, h−1(h(ναλq ) + h(νβλq )

);
q−1(q(rαλq ) + q(rβλq )

〉
= αλq ⊗q βλq .

viii) We have

α
λq+γq
r

= 〈
g−1((λ + γ )g(μα)

)
, h−1((λ + γ )h(να)

); q−1((λ + γ )q(rα)
)〉

= 〈
g−1(λg(μα) + γg(μα)

)
, h−1(λh(να) + γ h(να)

);
q−1(λq(rα) + γ q(rα)

)〉
= 〈

g−1(g(g−1(λg(μα)
)) + g

(
g−1(γg(μα)

)))
, h−1(h(h−1(λh(να)

))
+ h

(
h−1(γ h(να)

))); q−1(q(q−1(λq(rα)
)) + q

(
q−1(γ q(rα)

)))〉
= 〈

g−1(g(μαλ) + g(μαγ )
)
, h−1(h(ναλ) + h(ναγ )

); q−1(q(rαλ) + q(rαγ )
)〉

= α
λq
r ⊗q α

γq
r .

4. Aggregation Operators for C-PFVs

Aggregation operators (see e.g. Beliakov et al., 2007; Grabisch et al., 2009; Klement et al.,
2002) have an important role while transforming input values represented by fuzzy values
to a single output value. In this section, we introduce a weighted arithmetic aggregation
operator and a weighted geometric aggregation operator for C-PFVs by using algebraic
operations given in Section 3.
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4.1. Weighted Arithmetic Aggregation Operators

Definition 15. Let {αi = 〈μαi
, ναi

, ; rαi
〉 : i = 1, . . . , n} be a collection of C-PFVs.

Assume that g : [0, 1] → [0,∞] is the additive generator of a continuous Archimedean
t-norm and h(t) = g(

√
1 − t2) and q : [0, 1] → [0,∞] is the additive generator of a

continuous Archimedean t-norm or a t-conorm. Then a weighted arithmetic aggregation
operator CPWAq is defined by

CPWAq(α1, . . . , αn) := (q)

n⊕
i=1

wiq, αi,

where 0 � wi � 1 for any i = 1, . . . , n with
∑n

i=1 wi = 1.

Theorem 4. Let {αi = 〈μαi
, ναi

, ; ri〉 : i = 1, . . . , n} be a collection of C-PFVs. Assume
that g : [0, 1] → [0,∞] is the additive generator of a continuous Archimedean t-norm
and h(t) = g(

√
1 − t2) and q : [0, 1] → [0,∞] is the additive generator of a continuous

Archimedean t-norm or a t-conorm. Then CPWAq(α1, . . . , αn) is a C-PFV and we have

CPWAq(α1, . . . , αn)

=
〈
h−1

( n∑
i=1

wih(μαi
)

)
, g−1

( n∑
i=1

wig(ναi
)

)
; q−1

( n∑
i=1

wiq(rαi
)

)〉
,

where 0 � wi � 1 for any i = 1, . . . , n with
∑n

i=1 wi = 1.

Proof. It is seen from Proposition 3 that CPWAq(α1, . . . , αn) is a C-PFV. By utilizing
mathematical induction it can be seen that the second part is also true. If n = 2, we have

CPWAq(α1, α2)

= w1qα1 ⊕q w2qα2

= 〈
h−1(h(μw1qα1) + h(μw2qα2)

)
, g−1(g(νw1qα1) + g(νw2qα2)

);
q−1(q(rw1qα1) + q(rw2qα2)

)〉
= 〈

h−1(h(h−1(w1h(μα1)
)) + h

(
h−1(w1h(μα1)

)))
,

g−1(g(g−1(w1g(να1)
)) + g

(
g−1(w2g(να2)

)));
q−1(q

(
q−1(w1q(rα1)

)) + q
(
q−1(w2q(rα2)

))〉
= 〈

h−1(w1h(μα1) + w2h(μα2)
)
, g−1(w1g(να1) + w2g(να2)

);
q−1(w1q(rα1) + w2g(rα2)

)〉
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=
〈
h−1

( 2∑
j=1

wjh(μαj
)

)
, g−1

( 2∑
j=1

wjg(ναj
)

)
;

q−1
( 2∑

j=1

wjq(rαj
)

)〉
.

Now assume that the expression

An−1 = CPWAq(α1, . . . , αn−1)

=
〈
h−1

(n−1∑
j=1

wjh(μαj
)

)
, g−1

(n−1∑
j=1

wjg(ναj
)

)
; q−1

(n−1∑
j=1

wjq(rαj
)

)〉
.

is valid. Then we have

CPWAq(α1, . . . , αn)

= An−1 ⊕q wnqαn

=
〈
h−1

(n−1∑
j=1

wjh(μαj
)

)
, g−1

(n−1∑
j=1

wjg(ναj
)

)
; q−1

(n−1∑
j=1

wjq(rαj
)

)〉
⊕q

〈
h−1(wn(μαn)

)
, g−1(wng(ναn)

); q−1
(
wnq(rαn)

)〉
=
〈
h−1

(
h

(
h−1

(n−1∑
j=1

wjh(μαj
)

))
+ h

(
h−1(wnh(μαn)

)))
,

g−1
(

g

(
g−1

(n−1∑
j=1

wjg(ναj
)

))
+ g

(
g−1(wng(ναn)

)));

q−1
(

q

(
q−1

(n−1∑
j=1

wjq(ναj
)

))
+ q

(
q−1(wnq(ναn)

)))〉

=
〈
h−1

(n−1∑
j=1

wjh(μαj
) + wnh(μαn)

)
, g−1

(n−1∑
j=1

wjg(ναj
) + wng(ναn)

)
;

q−1
(n−1∑

j=1

wjq(rαj
) + wnq(rαn)

)〉

=
〈
h−1

( n∑
i=1

wih(μαi
)

)
, g−1

( n∑
i=1

wig(ναi
)

)
; q−1

( n∑
i=1

wiq(rαi
)

)〉
.

Thus, the proof is completed.

Remark 4. Let g, h, q, p : [0, 1] → [0,∞] be functions defined by g(t) = − log t2,
h(t) = − log(1−t2), q(t) = − log t2 and p(t) = − log(1−t2). Then we obtain Algebraic
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weighted arithmetic aggregation operators as particular cases of the aggregation operators
given in Definition 15 as follows:

CPWAA
q (α1, . . . , αn) =

〈√√√√1 −
n∏

i=1

(
1 − μ2

αi

)wi ,

n∏
i=1

νwi
αi

;
n∏

i=1

rwi
αi

〉
,

and

CPWAA
p (α1, . . . , αn) =

〈√√√√1 −
n∏

i=1

(
1 − μ2

αi

)wi ,

n∏
i=1

νwi
αi

;
√√√√1 −

n∏
i=1

(
1 − r2

αi

)wi

〉
.

4.2. Weighted Geometric Aggregation Operators

Definition 16. Let {αi = 〈μαi
, ναi

, ; rαi
〉 : i = 1, . . . , n} be a collection of C-PFVs.

Assume that g : [0, 1] → [0,∞] is the additive generator of a continuous Archimedean
t-norm and h(t) = g(

√
1 − t2) and q : [0, 1] → [0,∞] is the additive generator of a

continuous Archimedean t-norm or a t-conorm. Then a weighted geometric aggregation
operator CPWGq is defined by

CPWGq(α1, . . . , αn) := (q)

n⊗
i=1

α
wiq

i ,

where 0 � wi � 1 for any i = 1, . . . , n with
∑n

i=1 wi = 1.

Theorem 5. Let {αi = 〈μαi
, ναi

, ; rαi
〉 : i = 1, . . . , n} be a collection of C-PFVs. Assume

that g : [0, 1] → [0,∞] is the additive generator of a continuous Archimedean t-norm
and h(t) = g(

√
1 − t2) and q : [0, 1] → [0,∞] is the additive generator of a continuous

Archimedean t-norm or a t-conorm. Then

CPWGq(α1, . . . , αn)

=
〈
g−1

( n∑
i=1

wig(μαi
)

)
, h−1

( n∑
i=1

wih(ναi
)

)
; q−1

( n∑
i=1

wiq(rαi
)

)〉
,

where 0 � wi � 1 for any i = 1, . . . , n with
∑n

i=1 wi = 1.

Proof. It can be proved similar to Theorem 4.

Remark 5. Let g, h, q, p : [0, 1] → [0,∞] be functions defined by g(t) = − log t2,
h(t) = − log(1−t2), q(t) = − log t2 and p(t) = − log(1−t2). Then we obtain Algebraic
weighted geometric aggregation operators as particular cases of the aggregation operators
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given in Definition 16 as follows:

CPWGA
q (α1, . . . , αn) =

〈
n∏

i=1

μwi
αi

,

√√√√1 −
n∏

i=1

(
1 − ν2

αi

)wi ;
n∏

i=1

rwi
αi

〉
,

and

CPWGA
p (α1, . . . , αn) =

〈
n∏

i=1

μwi
αi

,

√√√√1 −
n∏

i=1

(
1 − ν2

αi

)wi ;
√√√√1 −

n∏
i=1

(
1 − r2

αi

)wi

〉
.

5. An Application of C-PFVs to an MCDM Problem

In this section, we define a similarity measure for C-PFVs. Then using this similarity
measure and the proposed aggregation operators we propose an MCDM method in circular
Pythagorean fuzzy environment. Then we solve a real world decision problem from Zhang
(2016) that deals with selecting the best photovoltaic cell by utilizing the proposed method.

5.1. A Similarity Measure for C-PFVs

Similarity measures have an important role in the determination of the degree of simi-
larity between two objects. Particularly, similarity measures for PFVs or PFSs have been
investigated and developed by researchers since they are important tools for decision mak-
ing, image processing, pattern recognition, classification and some other real life areas.
Motivated by the cosine similarity measure for PFVs defined in Wei and Wei (2018), we
give the following similarity measure for C-PFVs.

Definition 17. Let α = 〈μα, να; rα〉 and β = 〈μβ, νβ; rβ〉 be two C-PFVs. The cosine
similarity measure CSM is defined by

CSM(α, β) = 1

2

(
μ2

αμ2
β + ν2

αν2
β√

μ4
α + ν4

α

√
μ4

β + ν4
β

+ 1 − |rα − rβ |
)

.

Theorem 6. Let α = 〈μα, να; rα〉 and β = 〈μβ, νβ; rβ〉 be two C-PFVs. The cosine
similarity measure CSM based on radius satisfies the following properties:

i) 0 � CSM(α, β) � 1,
ii) CSM(α, β) = CSM(β, α),

iii) If α = β, then CSM(α, β) = 1.

Proof. i) It is clear that 0 � 1 − |rα − rβ | � 1. On the other hand, the expression

μ2
αμ2

β + ν2
αν2

β√
μ4

α + ν4
α

√
μ4

β + ν4
β
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is the cosine value of a certain angle in [0, π
2 ] specified by α and β. So it is in the unit

closed interval. Thus, we have 0 � CSM(α, β) � 1.
The proof of (ii) and (iii) is trivial from the definition of CSM.

5.2. An MCDM Method

In this sub-section, an MCDM method is proposed in the circular Pythagorean fuzzy en-
vironment. The proposed method is applied to an MCDM problem adapted from Zhang
(2016) to show the efficiency of this method in next sub-section. We can present steps of
the proposed method as follows:

Step 1: Consider a set of k alternatives as A = {A1, . . . , Ak} evaluated by an expert with
respect to a set of j criteria as C = {C1, . . . , Cj }.
Step 2: The expert expresses the evaluation results of alternatives as C-PFVs according
to each criterion and determines the weight vector.

Step 3: If there exists a cost criterion, then the complement operation is taken to the values
of this criterion.

Step 4: Using proposed weighted aggregation operators, evaluation results expressed as
C-PFVs for each alternatives are transformed to a value expressed as C-PFVs.

Step 5: The cosine similarity measure CSM between aggregated value of each alternative
and positive ideal alternative 〈1, 0; 1〉 are calculated.

Step 6: Alternatives are ranked so that the maximum similarity value is the best alterna-
tive.

5.3. Evaluation of the Problem of Selecting Photovoltaic Cells

Due to the scarcity of non-renewable energies and their harmful effects on the environ-
ment, the importance of renewable energy sources has increased gradually for supplying
plentiful and clean energy. One of the current renewable energy sources is photovoltaic
cell, which has almost no negative effects on the environment and is enormously pro-
ductive. A photovoltaic cell, also known as a solar cell, is an energy generating device
that converts solar energy into electricity because of the photovoltaic effect, which is a
conversion discovered by Becquerel (1839). Choosing the best photovoltaic cell has an
important role to increase production, to reduce costs and to confer high maturity and re-
liability. There are many types of photovoltaic cells. The aim of this section is to solve an
MCDM problem adapted from Zhang (2016) about selecting the best photovoltaic cell.
In Socorro García-Cascales et al. (2012), the photovoltaic cells forms the alternatives of
MCDM problem and these alternatives are the following:

A1: Photovoltaic cells with crystalline silicon (mono-crystalline and poly-crystalline),
A2: Photovoltaic cells with inorganic thin layer (amorphous silicon),
A3: Photovoltaic cells with inorganic thin layer (cadmium telluride/cadmium sulfide and

copper indium gallium diselenide/cadmium sulfide),
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Table 1
Pythagorean fuzzy group decision matrix.

Experts Alternatives C1 C2 C3 C4 C5

E1 A1 〈0.8, 0.4〉 〈0.8, 0.6〉 〈0.6, 0.7〉 〈0.8, 0.3〉 〈0.6, 0.5〉
A2 〈0.5, 0.7〉 〈0.9, 0.2〉 〈0.8, 0.5〉 〈0.6, 0.3〉 〈0.5, 0.6〉
A3 〈0.4, 0.3〉 〈0.3, 0.7〉 〈0.7, 0.4〉 〈0.4, 0.6〉 〈0.5, 0.4〉
A4 〈0.6, 0.6〉 〈0.7, 0.5〉 〈0.7, 0.2〉 〈0.6, 0.4〉 〈0.7, 0.3〉
A5 〈0.7, 0.5〉 〈0.6, 0.4〉 〈0.9, 0.3〉 〈0.7, 0.6〉 〈0.7, 0.1〉

E2 A1 〈0.9, 0.3〉 〈0.7, 0.6〉 〈0.5, 0.8〉 〈0.6, 0.3〉 〈0.6, 0.3〉
A2 〈0.4, 0.7〉 〈0.9, 0.2〉 〈0.8, 0.1〉 〈0.5, 0.3〉 〈0.5, 0.3〉
A3 〈0.6, 0.3〉 〈0.7, 0.7〉 〈0.7, 0.6〉 〈0.4, 0.4〉 〈0.3, 0.4〉
A4 〈0.8, 0.4〉 〈0.7, 0.5〉 〈0.6, 0.2〉 〈0.7, 0.4〉 〈0.7, 0.4〉
A5 〈0.7, 0.2〉 〈0.8, 0.2〉 〈0.8, 0.4〉 〈0.6, 0.6〉 〈0.6, 0.6〉

E3 A1 〈0.8, 0.6〉 〈0.7, 0.6〉 〈0.5, 0.8〉 〈0.5, 0.5〉 〈0.6, 0.1〉
A2 〈0.5, 0.6〉 〈0.9, 0.2〉 〈0.8, 0.1〉 〈0.5, 0.3〉 〈0.4, 0.3〉
A3 〈0.7, 0.4〉 〈0.7, 0.5〉 〈0.6, 0.1〉 〈0.9, 0.2〉 〈0.5, 0.6〉
A4 〈0.9, 0.2〉 〈0.5, 0.6〉 〈0.6, 0.2〉 〈0.6, 0.1〉 〈0.7, 0.4〉
A5 〈0.6, 0.1〉 〈0.8, 0.2〉 〈0.9, 0.2〉 〈0.5, 0.6〉 〈0.6, 0.4〉

A4: Photovoltaic cells with advanced III–V thin layer with tracking systems for solar
concentration, and

A5: Photovoltaic cells with advanced, low cost, thin layers (organic and hybrid cells).

After viewing the photovoltaic cells determined as alternatives in the study, the cri-
teria considered for the assessment of MCDM are the following: (1) C1 (manufacturing
cost), (2) C2 (efficiency in energy conversion), (3) C3 (market share), (4) C4 (emissions
of greenhouse gases generated during the manufacturing process), and (5) C5 (energy
payback time). It is noted that the criteria C2 and C3 are the benefit criteria, and others are
the cost criteria. According to these five criteria, three experts specializing in photovoltaic
systems and technologies evaluate these five available photovoltaic cells. The weight vec-
tor of the criteria determined by experts is w = (0.2, 0.4, 0.1, 0.1, 0.2), and the weight
vector of experts is fully unknown (see, Socorro García-Cascales et al., 2012).

Now let us consider this problem with the method developed in the present paper.
Steps 1–2 are already conducted. Table 1 is the decision matrix taken from Socorro García-
Cascales et al. (2012).

Step 3: Since C1, C4 and C5 are the cost criteria, we take the complement of these values.
Thus we obtain Pythagorean fuzzy group normalized decision matrix shown in Table 2.
As this decision matrix consists of PFVs we need to convert these values to C-PFVs.
For this purpose we use Proposition 1. For example, according to the C1 criterion of the
A1 alternative, the evaluation results of the experts are 〈0.4, 0.8〉, 〈0.3, 0.9〉, 〈0.6, 0.8〉,
respectively. From Proposition 1, it is seen that the arithmetic average of the evaluation
results is 〈0.45, 0.83〉 and the radius is 0.16. In this way, we attain the arithmetic average
of Pythagorean fuzzy decision matrix given in Table 3 and maximum radius lengths based
on decision matrix listed in Table 4. With C-PFVs the circular Pythagorean fuzzy decision
matrix is shown in Table 5.
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Table 2
Pythagorean fuzzy group normalized decision matrix.

Experts Alternatives C1 C2 C3 C4 C5

E1 A1 〈0.4, 0.8〉 〈0.8, 0.6〉 〈0.6, 0.7〉 〈0.3, 0.8〉 〈0.5, 0.6〉
A2 〈0.7, 0.5〉 〈0.9, 0.2〉 〈0.8, 0.5〉 〈0.3, 0.6〉 〈0.6, 0.5〉
A3 〈0.3, 0.4〉 〈0.3, 0.7〉 〈0.7, 0.4〉 〈0.6, 0.4〉 〈0.4, 0.5〉
A4 〈0.6, 0.6〉 〈0.7, 0.5〉 〈0.7, 0.2〉 〈0.4, 0.6〉 〈0.3, 0.7〉
A5 〈0.5, 0.7〉 〈0.6, 0.4〉 〈0.9, 0.3〉 〈0.6, 0.7〉 〈0.1, 0.7〉

E2 A1 〈0.3, 0.9〉 〈0.7, 0.6〉 〈0.5, 0.8〉 〈0.3, 0.6〉 〈0.3, 0.6〉
A2 〈0.7, 0.4〉 〈0.9, 0.2〉 〈0.8, 0.1〉 〈0.3, 0.5〉 〈0.3, 0.5〉
A3 〈0.3, 0.6〉 〈0.7, 0.7〉 〈0.7, 0.6〉 〈0.4, 0.4〉 〈0.4, 0.3〉
A4 〈0.4, 0.8〉 〈0.7, 0.5〉 〈0.6, 0.2〉 〈0.4, 0.7〉 〈0.4, 0.7〉
A5 〈0.2, 0.7〉 〈0.8, 0.2〉 〈0.8, 0.4〉 〈0.6, 0.6〉 〈0.6, 0.6〉

E3 A1 〈0.6, 0.8〉 〈0.7, 0.6〉 〈0.5, 0.8〉 〈0.5, 0.5〉 〈0.1, 0.6〉
A2 〈0.6, 0.5〉 〈0.9, 0.2〉 〈0.8, 0.1〉 〈0.3, 0.5〉 〈0.3, 0.4〉
A3 〈0.4, 0.7〉 〈0.7, 0.5〉 〈0.6, 0.1〉 〈0.2, 0.9〉 〈0.6, 0.5〉
A4 〈0.2, 0.9〉 〈0.5, 0.6〉 〈0.6, 0.2〉 〈0.1, 0.6〉 〈0.4, 0.7〉
A5 〈0.1, 0.6〉 〈0.8, 0.2〉 〈0.9, 0.2〉 〈0.6, 0.5〉 〈0.4, 0.6〉

Table 3
Arithmetic average of Pythagorean fuzzy decision matrix.

Alternatives C1 C2 C3 C4 C5

A1 〈0.45, 0.83〉 〈0.73, 0.6〉 〈0.54, 0.77〉 〈0.38, 0.64〉 〈0.34, 0.6〉
A2 〈0.67, 0.47〉 〈0.9, 0.2〉 〈0.8, 0.3〉 〈0.3, 0.54〉 〈0.42, 0.47〉
A3 〈0.34, 0.58〉 〈0.6, 0.64〉 〈0.67, 0.42〉 〈0.43, 0.61〉 〈0.48, 0.44〉
A4 〈0.43, 0.78〉 〈0.64, 0.54〉 〈0.63, 0.2〉 〈0.33, 0.64〉 〈0.37, 0.7〉
A5 〈0.32, 0.67〉 〈0.74, 0.28〉 〈0.87, 0.31〉 〈0.6, 0.6〉 〈0.42, 0.64〉

Table 4
Maximum radius lengths based on decision matrices.

Alternatives C1 C2 C3 C4 C5

A1 0.16 0.07 0.09 0.19 0.24
A2 0.08 0.0 0.2 0.06 0.18
A3 0.18 0.3 0.33 0.37 0.16
A4 0.26 0.15 0.07 0.23 0.07
A5 0.23 0.18 0.12 0.1 0.32

Table 5
Circular Pythagorean fuzzy decision matrix.

C1 C2 C3 C4 C5

A1 〈0.45, 0.83; 0.16〉 〈0.73, 0.6; 0.07〉 〈0.54, 0.77; 0.09〉 〈0.38, 0.64; 0.19〉 〈0.34, 0.6; 0.24〉
A2 〈0.67, 0.47; 0.08〉 〈0.9, 0.2; 0.0〉 〈0.8, 0.3; 0.2〉 〈0.3, 0.54; 0.06〉 〈0.42, 0.47; 0.18〉
A3 〈0.34, 0.58; 0.18〉 〈0.6, 0.64; 0.3〉 〈0.67, 0.42; 0.33〉 〈0.43, 0.61; 0.37〉 〈0.48, 0.44; 0.16〉
A4 〈0.43, 0.78; 0.26〉 〈0.64, 0.54; 0.15〉 〈0.63, 0.2; 0.07〉 〈0.33, 0.64; 0.23〉 〈0.37, 0.7; 0.07〉
A5 〈0.32, 0.67; 0.23〉 〈0.74, 0.28; 0.18〉 〈0.87, 0.31; 0.12〉 〈0.6, 0.6; 0.1〉 〈0.42, 0.64; 0.32〉
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Table 6
Aggregated circular Pythagorean fuzzy decision matrix.

Alternatives CPWAA
q CPWAA

p CPWGA
q CPWGA

P

A1 〈0.59, 0.66; 0.11〉 〈0.59, 0.66; 0.13〉 〈0.52, 0.69; 0.11〉 〈0.52, 0.69; 0.13〉
A2 〈0.78, 0.32; 0.0〉 〈0.78, 0.32; 0.11〉 〈0.65, 0.38; 0.0〉 〈0.65, 0.38; 0.11〉
A3 〈0.53, 0.55; 0.25〉 〈0.53, 0.55; 0.27〉 〈0.5, 0.57; 0.25〉 〈0.5, 0.57; 0.27〉
A4 〈0.54, 0.56; 0.14〉 〈0.54, 0.56; 0.17〉 〈0.49, 0.63; 0.14〉 〈0.49, 0.63; 0.17〉
A5 〈0.66, 0.43; 0.18〉 〈0.66, 0.43; 0.22〉 〈0.56, 0.52; 0.18〉 〈0.56, 0.52; 0.22〉

Table 7
The results of similarity measure between positive ideal alternative and alternatives.

CSM(A1, A+) CSM(A2, A+) CSM(A3, A+) CSM(A4, A+) CSM(A5, A+)

CPWAA
q 0.325 0.493 0.465 0.411 0.555

CPWAA
p 0.377 0.548 0.475 0.425 0.571

CPWGA
q 0.301 0.473 0.429 0.328 0.468

CPWGA
P

0.311 0.528 0.439 0.343 0.488

Step 4: The decision matrix expressed with C-PFVs for each alternatives are aggregated
by utilizing aggregation operators CPWAA

q , CPWAA
p , CPWGA

q and CPWGA
p defined via

g(t) = − log t2, h(t) = − log(1 − t2), q(t) = − log t2 and p(t) = − log(1 − t2) in
Remark 4 and Remark 5. Aggregated circular Pythagorean fuzzy decision matrix for each
aggregation operators is shown in Table 6.

Step 5: The cosine similarity measure CSM defined in Definiton 17 is used to measure
how each aggregated C-PFV and positive ideal alternative are related or close to each
other. The results of similarity measure between positive ideal alternative and alternatives
is shown in Table 7.

Step 6: With respect to the aggregation operators CPWAA
q and CPWAA

p , we get the ranking
A1 ≺ A4 ≺ A3 ≺ A2 ≺ A5 and with respect to the aggregation operators CPWGA

q and
CPWGA

p , we get the ranking A1 ≺ A4 ≺ A3 ≺ A5 ≺ A2. The steps of the proposed
method are visualized in Fig. 6.

5.4. Comparative Analysis

The best alternative remains same with the literature when the aggregation operators
CPWGA

q and CPWGA
p are used. On the other hand, the orders of best and second best

alternative interchange when the aggregation operators CPWAA
q and CPWAA

p are used.
The worst alternative is totally consistent with the literature. The comparison of the other
methods proposed to solve this MCDM problem and the method we propose is shown in
Table 8 and illustrated in Fig. 7.
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Fig. 6. Application of the proposed method to MCDM.

Table 8
The comparison of the other methods and proposed method.

Methods Ranking order Best Alternative

Zhang (2016) A1 ≺ A3 ≺ A4 ≺ A5 ≺ A2 A2
Biswas and Sarkar (2018) A1 ≺ A4 ≺ A3 ≺ A5 ≺ A2 A2
Biswas and Sarkar (2019) A1 ≺ A3 ≺ A4 ≺ A5 ≺ A2 A2
Proposed Method (CPWAA

q ) A1 ≺ A4 ≺ A3 ≺ A2 ≺ A5 A5
Proposed Method (CPWAA

p ) A1 ≺ A4 ≺ A3 ≺ A2 ≺ A5 A5
Proposed Method (CPWGA

q ) A1 ≺ A4 ≺ A3 ≺ A5 ≺ A2 A2
Proposed Method (CPWGA

p ) A1 ≺ A4 ≺ A3 ≺ A5 ≺ A2 A2

5.5. Time Complexity of the Proposed MCDM Method

In this section, we investigate the time complexity of the MCDM method given in Sec-
tion 5.2. We assume that m experts assign PFVs to create the decision matrix as in the
problem solved in Sub-section 5.3. Essentially, the time complexity that depends on the
number of times of multiplication, exponential, summation as in Chang (1996) and Junior
et al. (2014) is evaluated. Consider a MCDM problem with n alternatives, k criteria and
m experts. In Step 2, we need k + 2knm operations, in Step 3, we need nk(10m + 6)

operations, in Step 4, we need n(8k + 2) operations if we utilize the aggregation operator
CPWAA

q , we need n(10k + 4) operations if we utilize the aggregation operator CPWAA
p ,

we need n(8k + 2) operations if we utilize the aggregation operator CPWGA
q and we need

n(10k + 4) operations if we utilize the aggregation operator CPWGA
p . In Step 5, we need

23n operations. Therefore, the time complexity is

Comp(k, n; m) = k + 2kn(6m + 7) + 25n
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Fig. 7. The column chart comparison of other methods and the proposed method.

Fig. 8. Time complexity of the proposed MCDM method.

for the aggregation operators CPWAA
q and CPWGA

q ,

Comp(k, n; m) = k + 4kn(3m + 4) + 27n

for the aggregation operators CPWAA
p and CPWGA

p . Obviously, the bi-variate functions
gq, gp : [2,∞) → R defined by g

q
m(x, y) = x +2xy(6m+7)+25y and g

p
m(x, y) = x +

4xy(3m+4)+27y assume global minimum at point (2, 2) for any fixed positive integer m.
Figure 8 visualizes the change of the time complexity with respect to the change in the
numbers of the criteria, the alternatives and the experts for CPWAA

q , CPWAA
p , CPWGA

q

and CPWGA
p .

6. Conclusion

The main goal of this paper is to introduce the concept of C-PFS represented by a circle
whose radius is r and whose centre consists of a pair with the condition that the sum of the
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square of the components is less than one. In such a fuzzy set, the membership degree and
the non-membership degree are represented by a circle. Thus, a C-PFS is a generalization
of both C-IFSs and PFSs. C-PFSs allow decision makers or experts to evaluate objects
in a larger and more flexible region compared to both C-IFSs and PFSs. Therefore, the
change of membership degree and non-membership degree can be handled to express un-
certainty with the help of C-PFSs. In this way, more sensitive decisions can be made. In
this paper, a method is developed to transform PFVs to a C-PFV. Also, some fundamental
set theoretic operations for C-PFSs are given and some algebraic operations for C-PFVs
via continuous Archimedean t-norms and t-conorms are introduced. Then with the help
of these algebraic operations some weighted aggregation operators for C-PFVs are pre-
sented. Inspired by a cosine similarity measure defined between PFVs, we give a cosine
similarity measure based on radius to determine the degree of similarity between C-PFVs.
Finally, by utilizing the concepts mentioned above we propose an MCDM method in cir-
cular Pythagorean fuzzy environment and we apply the proposed method to an MCDM
problem from the literature about selecting the best photovoltaic cell (also known as solar
cell). We compare the results of the proposed method with the existing results and cal-
culate the time complexity of the MCDM method. In the future studies, different kind of
aggregation operators and similarity measures can be investigated. Also, while transform-
ing PFVs to a C-PFV, other aggregation tool as fuzzy integrals or aggregation operators
can be used. Moreover, the proposed method can be used to solve MCDM problems such
as classification, pattern recognition, data mining, clustering and medical diagnosis.
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