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Abstract. This paper focuses on games on augmenting systems with a coalition structure that can
be seen as an extension of games with a coalition structure and games on augmenting systems. Con-
sidering the player payoffs, the quasi-Owen value is defined. To show the rationality of this payoff
index, five representative axiomatic systems are established. The population monotonic allocation
scheme (PMAS) and the core are introduced. Moreover, the relationships between the PMAS and
quasi-Owen value as well as the core and quasi-Owen value are discussed. Finally, an illustrative
example is given to show the concrete application of the new payoff indices.
Key words: cooperative game with a coalition structure, augmenting system, axiomatic system,
quasi-Owen value.

1. Introduction

In some cooperative situations, the players join in coalitions that form a partition or coali-
tional structure of the set of players to get more payoffs or to gain the competitive ad-
vantage. Aumann and Dreze (1974) first established a model of games with a coalition
structure, where the coalitions are independent with each other. Different from the co-
operative model in reference (Aumann and Dreze, 1974; Owen, 1977) introduced games
with a coalitional structure where the probability of cooperation among coalitions is con-
sidered and defined the Owen value for this type of games, which is an extension of the
Shapley value (Peleg, 1986). Following the idea of the Banzhaf value, Owen (1978) further
proposed the Banzhaf-Owen value for games with a coalitional structure. Later, Alonso-
Meijde and Fiestras-Janeiro (2002) noted that the Banzhaf-Owen value dissatisfies the
symmetry in quotient games and gave another solution concept for games with a coali-
tion structure, which is known as the symmetric Banzhaf value. Meanwhile, the axiomatic
systems of the Owen value are studied in references (Hart and Kurz, 1983; Peleg, 1989;
Hamiache, 1999; Khmelnitskaya and Yanovskaya, 2007; Albizuri, 2008; Lorenzo-Freire,
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2019; Hu, 2021), and the axiomatic characterizations of the Banzhaf-Owen coalition value
are discussed in the literature (Amer et al., 2002; Alonso-Meijide et al., 2007; Lorenzo-
Freire, 2017).

Different from games with a coalitional structure (Aumann and Dreze, 1974; Owen,
1977), due to political, economic and/or other reasons, not all coalitions can be formed in
some cooperation. People usually call such games as games under precedence constraints.
Myerson (1977) first considered this situation and introduced games with communication
structures using graph theory. Then, the Shapley value for this type of games is researched.
Faigle and Kern (1992) discussed a special type of games under precedence constraints
that satisfies the offered order relationship and closes under union and intersection and
discussed the axiomatic system of the given Shapley value using hierarchical strength.
Following the work of Edelman and Jamison (1985), Bilbao (1998) introduced games on
convex geometries. Further, Bilbao (1998) and Bilbao and Edelman (2000) studied the
characterizations of the Shapley value for games on convex geometries using chain axiom
and hierarchical strength, respectively. Bilbao et al. (1998, 1999) researched the Banzhaf
value and the core of games on convex geometries. Later, Bilbao et al. (2001, 2002) dis-
cussed another special kind of games under precedence constraints, which is named as
games on matroids. Considering the player payoffs, the authors researched the Shapley
value for two cases of games on matroids. Algaba et al. (2003) presented games on anti-
matroids and researched the Shapley value for this kind of games. Recently, Bilbao (2003)
proposed the concept of games on augmenting systems and discussed the relationship be-
tween augmenting system, antimatroid and convex geometry. Then, the author introduced
the Shapley value and the Banzhaf value for games on augmenting systems. Further, Bil-
bao and Ordonez (2009) researched two axiomatic systems of the Shapley value for games
on augmenting systems using hierarchical strength and chain axiom. Algaba et al. (2010)
proposed the α value for games on augmenting systems by generalizing the Myerson value
for graph games and the Shapley value for games with permission structures. Wang et al.
(2022) provided a new axiomatization of the α value for games on augmenting systems
in view of marginality. In addition, Meng et al. (2023) studied the profit allocation on
a four-echelon supply chain from the perspective of cooperative games on augmenting
systems.

In general, games with a coalition structure are formed by the players’ internal fac-
tor for obtaining more payoffs, while games under precedence constraints are due to the
external factor as listed above. Considering these two aspects simultaneously, Meng and
Zhang (2012) introduced games on convex geometries with a coalition structure, where
all feasible coalitions in each union and in the coalition structure both form a convex ge-
ometry. After that, Meng and Zhang (2012) and Meng et al. (2015) studied three payoff
indices for this type of cooperative games. However, as Meng et al. (2015) noted the ap-
plication of convex geometries has limitations. Recently, Meng et al. (2016) introduced
games on augmenting systems with a coalition structure, where all subsets of the coalition
structure and those of each union both form an augmenting system. Then, the authors de-
fined the augmenting symmetric Banzhaf coalitional value that is used as the payoff index
of the players. However, this payoff index does not satisfy the efficiency, which is one of
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the most important properties of indices. To address this issue, this paper defines another
payoff index for games on augmenting systems with a coalition structure: the quasi-Owen
value, which can be seen as an extension of the Owen value (Owen, 1977). Then, we build
five axiomatic systems to show its rationality. The first two axiomatic systems are based
on linearity, the third one uses strong monotonicity, the fourth one employs the potential
function, and the last one adopts the balanced contributions. Then, the concepts of the
population monotonic allocation scheme (PMAS) and the core of games on augmenting
systems with a coalition structure are introduced. Further, the relationship between the
quasi-Owen value and the core is discussed, and the sufficient conditions for the quasi-
Owen value to be a PMAS are provided.

The rest of this paper is organized as follows: In Section 2, some notations and ba-
sic definitions that will be used in the following sections are reviewed. In Section 3, the
concept of games on augmenting systems with a coalition structure is introduced, and the
quasi-Owen value is defined. Meanwhile, five axiomatic systems are built, each of which
can be used to prove the existence and uniqueness of the quasi-Owen value. In Section 4,
the core and the PMAS for games on augmenting systems with a coalition structure are
introduced, and the relationships between them and the quasi-Owen value are studied.
In Section 5, a numerical example is provided to concretely illustrate the application of
the new indices. The conclusion is made in the last section.

2. Some Basic Concepts

Let N = {1, 2, . . . , n} be the finite player set. The cardinality of any coalition S ⊆ N

is denoted by the corresponding lower case s. As we know, the coalitional values of a
cooperative game can be seen as a fuzzy measure, and the unique proofs of some payoff
functions are based on the Möbius transformation. Thus, let us first review the expression
of fuzzy measures using the Möbius transformation.

Let f : {0, 1}n → � be a pseudo-Boolean function. Grabisch (1997) noted that any
fuzzy measure μ can be seen as a particular case of the pseudo-Boolean function and put
under a multilinear polynomial with n variables:

μ(A) =
∑
T ⊆N

[
aT

∏
i∈T

yi

]
, ∀A ⊆ N, (1)

where aT ∈ �, y = (y1, y2, . . . , yn) ∈ {0, 1}n, and yi = 1 if and only if i ∈ A.
The set of coefficients aT with T ⊆ N corresponds to the Möbius transformation,

denoted by aT = ∑
S⊆T (−1)|T \S|μ(S). Because the transformation is inversible, μ can

be recovered from aT by μ(A) = ∑
B⊆A aB .

2.1. Games with a Coalition Structure

For the finite set N = {1, 2, . . . , n}, a coalition structure � on N is a partition of N ,
i.e. � = {B1, B2, . . . , Bm} is a coalition structure if it satisfies

⋃
1�h�m Bh = N and
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Bh ∩ Bl = ∅ for all h, l ∈ M = {1, 2, . . . , m} with h 	= l, denoted by (N, �). We
also assume Bk 	= ∅ for all k ∈ M . Each Bk ∈ � is called a “union”. There are two
trivial coalition structures: � = {N} and � = {{1}, {2}, . . . , {n}}, where each union is a
singleton.

Let L(N,�) = {
S

∣∣ S = ⋃
l∈R⊆M\{k} Bl ∪ T , ∀T ⊆ Bk, ∀k ∈ M

}
. A game with a

coalition structure is a set function v : L(N,�) → �+ such that v(∅) = 0. By G(N,�),
we denote the set of all games with a coalition structure. The restriction of � to S is
�|S = {T ∈ L(N,�) : T ⊆ S} for any S ∈ L(N,�). In order to denote simply, we will
omit braces for singleton, e.g. writing ∅, i, k instead of {∅}, {i} and {k} for any {i} ⊆ N

and any {k} ⊆ M .
Let v ∈ G(N,�), Owen (1977) defined the following Owen value:

ψi(N, v, �)

=
∑

R⊆M\k

∑
i∈S⊆Bk

r!(m − r − 1)!
m!

(s − 1)!(bk − s)!
bk!

(
v(Q ∪ S) − v

(
(Q ∪ S)\i)),

∀i ∈ N, (2)

where Q = ⋃
l∈R Bl , m and r denote the cardinalities of M and R, respectively.

Definition 1 (Alonso-Meijde and Fiestras-Janeiro, 2002). Let v ∈ G(N,�), if vB(R) =
v(

⋃
r∈R Br) for any R ⊆ M , then vB is said to be a quotient game on (N, �), where �

and M as given above, denoted by (M, vB).

2.2. Games on Augmenting Systems

A set system on N is a pair of (N,F ), where F ⊆ 2N is a family of subsets.

Definition 2 (Bilbao, 2003). An augmenting system is a set system (N,F ) with the
following properties:

A1: ∅ ∈ F ;
A2: If S, T ∈ F with S ∩ T 	= ∅, then S ∪ T ∈ F ;
A3: If S, T ∈ F with S ⊆ T then there is i ∈ T \S such that S ∪ i ∈ F .

It is noteworthy that when A2 is defined as: if S, T ∈ F , then S ∩ T ∈ F . (N,F ) is a
convex geometry system (Bilbao, 2003). Further, when we delete the condition S∩T 	= ∅

in A2, then (N,F ) is an antimatroid system (Bilbao, 2003).

Because the power set of N is an augmenting system, traditional games are also games
on augmenting systems. When N = ⋃

S∈F S, then the augmenting system (N,F ) is
normal. Bilbao and Ordonez (2009) introduced the following concepts:

A compatible ordering of an augmenting system (N,F ), as the total ordering of N ,
is given by i1 < i2 < · · · < in such that {i1, i2, . . . , ij } ∈ F for all j = 1, 2, . . . , n.
A compatible ordering of (N,F ) corresponds to a maximal chain in F . The set of all
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maximal chains in F is denoted by Ch(F ). Given an element i ∈ N and a compatible
ordering C ∈ Ch(F ), let C(i) be the maximal chain C with i being the last element.
For a set S ∈ F , let S∗ = {i ∈ N\S : S ∪ i ∈ F }. The restriction of F to S is
F |S = {T ∈ F : T ⊆ S} for any S ∈ F .

Similar to Faigle and Kern (1992), Bilbao and Ordonez (2009) introduced the Shapley
value for games on augmenting systems as:

φi(N, v,F ) =
∑

{S∈F :i∈S∗}

c(S)c(S ∪ i, N)

c(N)

(
v(S ∪ i) − v(S)

)
, ∀i ∈ N, (3)

where the set function v : (N,F ) → �+ is a game on augmenting systems such that
v(∅) = 0, c(N) = |Ch(F )| is the total number of maximal chains in F , c(S) = c(∅, S)

and c(N) = c(∅, N) are the numbers of maximal chains from ∅ to S and from ∅ to N ,
respectively, and c(S ∪ i, N) is the number of maximal chains from S ∪ i to N .

3. Games on Augmenting Systems with a Coalition Structure

In this section, we discuss cooperative games on augmenting systems with a coalition
structure, which can be seen as an extension of games with a coalition structure (Owen,
1977, 1978) and games on convex geometries with a coalition structure (Meng and Zhang,
2012; Meng et al., 2015).

3.1. The Concept of Games on Augmenting Systems with a Coalition Structure

Similar to the concept of augmenting system on N , Meng et al. (2016) gave the concept
of augmenting systems on M = {1, 2, . . . , m} for � = {B1, B2, . . . , Bm}, namely, an
augmenting system on M is a set system (M,FM) with the following properties:

M1: ∅ ∈ FM ;
M2: If K,H ∈ FM with K ∩ H 	= ∅, then K ∪ H ∈ FM ;
M3: If K,H ∈ FM with K ⊆ H , then there is l ∈ H\K , such that K ∪ l ∈ FM .

The number of maximal chains from R to K is denoted by c(R,K), and c(R) is the
number of maximal chains from ∅ to R.

From Definition 2, one can check when the domain of N is restricted to Bk , we get an
augmenting system (Bk,FBk

), where FBk
⊆ 2Bk is a family of subsets that satisfies the

conditions given in Definition 2. Augmenting systems with a coalition structure mean that
the subsets of M = {1, 2, . . . , m} and those of each Bk ∈ � (k ∈ M) form an augmenting
system, respectively, denoted by (N, �,F ). Let

L(N,�,F ) =
{
S

∣∣∣ S =
⋃

l∈R∈FM,k∈R∗
Bl ∪ T , ∀T ∈ FBk

, ∀k ∈ M

}
(4)

with R∗ = {k ∈ M\R : R ∪ k ∈ FM}, which denotes the set of formed coalitions.
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Definition 3. A game on augmenting system with a coalition structure is a set function
v : L(N,�,F ) → �+ such that v(∅) = 0.

Let G(N,�,F ) be the set of all games on augmenting systems with a coalition struc-
ture. Without special explanation, for any (N, �,F ), we always assume Bk ∈ FBk

for
any k ∈ M and M ∈ FM , namely, the augment systems on each union and on the coalition
structure are normal.

For (N, �,F ) with N ∈ F , following the works of Faigle and Kern (1992) and Bilbao
and Ordonez (2009), Meng et al. (2016) defined the hierarchical strength h

Bk

S (i) of i ∈ S

for the coalition S ∈ FBk
as follows:

h
Bk

S (i) = |{C ∈ Ch(FBk
) : S ⊆ C(i)}|

c(Bk)
, (5)

where Ch(FBk
) is the set of all maximal chains in FBk

, c(Bk) = |Ch(FBk
)| is the number

of maximal chains in FBk
, and h

Bk

S (i) is the average number of maximal chains in which
the player i ∈ S is the last member of S in the chain (Bilbao and Ordonez, 2009).

Similarly, we define the hierarchical strength hM
R (k) of k ∈ R for the coalition R ∈

FM as follows:

hM
R (k) = |{C ∈ Ch(FM) : R ⊆ C(k)}|

c(M)
, (6)

where C(k) = {k is the last element in R ∈ FM}, Ch(FM) is the set of all maximal
chains in FM , and c(M) = |Ch(FM)| is the total number of maximal chains in FM .

Example 1. Let N = {1, 2, 3, 4, 5}, and � = {B1, B2} be a coalition structure on N ,
where B1 = {1, 2, 3} and B2 = {4, 5}. If FB1 = {∅, {1}, {3}, {1, 2}, {2, 3}, B1}, FB2 =
{∅, {4}, {5}, B2} and FM = {∅, {2},M}, then it is an augmenting system with a coalition
structure, where

L(N,�,F ) = {
∅, {4}, {5}, {4, 5}, {1, 4, 5}, {3, 4, 5}, {1, 2, 4, 5}, {2, 3, 4, 5},

{1, 2, 3, 4, 5}}.
Then, we have h

B1
S (3) = 1/2 for S = {3}, and we get hM

R (2) = 1 for R = {2}.
Because {1, 3} /∈ FB1 , one can check that FB1 is not an antimatroid. Further, FB1 is

not a convex geometry for {1, 2} ∩ {2, 3} /∈ FB1 .

Definition 4. Let v ∈ G(N,�,F ). T ∈ L(N,�,F ) is said to be a carrier if v(S∩T ) =
v(S) for any S ∈ L(N,�,F ).

Because v is defined on L(N,�,F ), the value v(S ∩ T ) can be any real number
for S ∩ T /∈ L(N,�,F ). In this case, we assume that v(S ∩ T ) = v(S) for defining
the concept of carrier. For instance, in Example 1, if T = {1, 2} and S = {2, 3}, then
S ∩ T = {2} /∈ FB1 ∈ L(N,�,F ). In this case, we consider v(2) = v(2, 3), where v(2)

is not real existence for {2} being a virtual coalition. Note that when in the above case, we
adopt this process.
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3.2. The Quasi-Owen Value

Similar to Owen (1977) and Bilbao and Ordonez (2009), the quasi-Owen value for games
on augmenting systems with a coalition structure is expressed as:

ϕi(N, �, v,F ) =
∑

{R∈FM :k∈R∗}

∑
{S∈FBk

:i∈S∗}

c(R)c(R ∪ k,M)

c(M)

c(S)c(S ∪ i, Bk)

c(Bk)

× (
v(Q ∪ S ∪ i) − v(Q ∪ S)

)
, ∀i ∈ N, (7)

where R∗ = {k ∈ M\R : R ∪ k ∈ FM}, S∗ = {i ∈ Bk\S : S ∪ i ∈ FBk
} and Q =⋃

l∈R Bl .
From R ∈ FM , we know that Q = ⋃

l∈R Bl can be formed. When there is only one
union in M , then the quasi-Owen value degenerates to the Shapley value for games on
augmenting systems. When we restrict the domain of (N, �,F ) in the setting of (N, �),
then the quasi-Owen value degenerates to the Owen value. In summary, the quasi-Owen
value is an extension of the Owen value, which is used for games on augmenting systems
with a coalition structure.

For any T ∈ L(N,�,F )\∅, we define the unanimity game uT as

uT (S) =
{

1, T ⊆ S ∈ L(N, �,F ),

0, otherwise.

Lemma 1 (Meng et al., 2016). Let v ∈ G(N,�,F ), then there is a unique set of coef-
ficients {cT : ∅ 	= T ∈ L(N,�,F )} such that v = ∑

∅ 	=T ∈L(N,�,F ) cT uT . Moreover,

cT =
∑

{H∈FM :H⊆R}
(−1)r−h

( ∑
{D∈FBk :D⊆A}

(−1)a−dv(Q ∪ D)

)
, (8)

where T = A
⋃

l∈R∈FM,k∈R∗ Bl , A ∈ FBk
\∅ and Q = ⋃

l∈H Bl , r and h denote the
cardinalities of R and H , respectively.

Let f be a solution on G(N,�,F ). To show the axiomatic systems of the augmenting
symmetric Banzhaf coalitional value, Meng et al. (2016) introduced the following two
properties:

• Linearity (L). Let v1, v2 ∈ G(N,�,F ) and α, β ∈ �, then

f (N,�, αv1 + βv2,F ) = αf (N,�, v1,F ) + βf (N,�, v2,F ). (9)

• Hierarchical strength in coalitions (HSC). Let v ∈ G(N,�,F ). For any T ∈
L(N,�,F ), without loss of generality, suppose T = S

⋃
l∈R∈FM,k∈R∗ Bl such that

S ∈ FBk
\∅. For all i, j ∈ S,

h
Bk

S (j)fi(N, �, uT ,F ) = h
Bk

S (i)fj (N, �, uT ,F ). (10)
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Similar to the axiomatizations of the Owen value (Owen, 1977) and the Shapley value
for games on augmenting systems (Bilbao and Ordonez, 2009), we introduce the fol-
lowing two properties:

• Efficiency (EFF-1). Let v ∈ G(N,�,F ). If T is a carrier, then v(T ) = ∑
i∈T fi(N,

�, v,F ).
• Hierarchical strength on unions (HSU). Let v ∈ G(N,�,F ). For any H ∈ FM and

all k, p ∈ H ,

hM
H (k)

∑
j∈Bp

fj (N, �, uT ,F ) = hM
H (p)

∑
i∈Bk

fi(N, �, uT ,F ), (11)

where T ∈ L(N,�,F ) with
⋃

l∈H Bl ∈ T .

Remark 1. If there is only one coalition in �, then hierarchical strength in coalitions
degenerates to hierarchical strength for games on augmenting system. If all subsets of M

and those of each Bk ∈ � are both feasible, then hierarchical strength in coalitions and
hierarchical strength on unions degenerate to symmetry in the unions and symmetry in
the quotient games for games with a coalition structure, respectively. It is noteworthy that
hierarchical strength on unions defined in Meng et al. (2016) is different from the above
one.

Next, we apply the above listed axioms to show the existence and uniqueness of the
quasi-Owen value. First, let us consider the following lemma:

Lemma 2. Let v ∈ G(N,�,F ). Then, the quasi-Owen value defined on the unanimity
game uT can be expressed as:

ϕi(N, �, uT ,F ) =
{

hM
R (k)h

Bk

S (i), if i ∈ S,

0, otherwise,
(12)

where T = S
⋃

l∈R∈FM,k∈R∗ Bl and S ∈ FBk
\∅.

Proof. From the expression of the quasi-Owen value, we have

ϕi(N, �, uT ,F )

= 1

c(M)

∑
H∈Ch(FM)

(
1

c(Bk)

∑
C∈Ch(FBk

)

(
uT

(
Q ∪ C(i)

) − uT

((
Q ∪ C(i)

)\i))).

(13)

Case (1): If T 	⊂ Q ∪ C(i), then uT (Q ∪ C(i)) − uT ((Q ∪ C(i))\i) = 0.

Case (2): If T ⊆ Q∪C(i) and i /∈ S, then T ⊆ Q∪C(i) implies T ⊆ (Q∪C(i))\i, and
uT (Q ∪ C(i)) − uT ((Q ∪ C(i))\i) = 0.



Quasi-Owen Value for Games on Augmenting Systems with a Coalition Structure 643

Case (3): If T ⊆ Q ∪ C(i) and i ∈ S, we derive uT (Q ∪ C(i)) − uT ((Q ∪ C(i))\i) = 1.
Thus, for every chain C ∈ Ch(FBk

) and H ∈ Ch(FM), we obtain

(uT )Bk

(
C(i)

) − (uT )Bk

(
C(i)\i) = uS

(
C(i)

) − uS

(
C(i)\i) = 1 (14)

and

uB
T

(
H(k)

) − uB
T

(
H(k)\k) = uR′

(
H(k)

) − uR′
(
H(k)\k) = 1, (15)

where S ⊆ C(i), R′ ⊆ H(k), R′ = R ∪ k and uR′(H) =
{

1, R′ ⊆ H,

0, otherwise.
Thus,

uT

(
Q ∪ C(i)

) − uT

((
Q ∪ C(i)

)\i)
= (

uS

(
C(i)

) − uS

(
C(i)\i))(uR′

(
H(k)

) − uR′
(
H(k)\k))

. (16)

We get ϕi(N, �, uT ,F ) = hM
R (k)h

Bk

S (i). The result is obtained.

Theorem 1. There is a unique solution f defined on G(N,�, F ) that satisfies L, EFF-1,
HSC and HSU.

Proof. Existence. From Eq. (7), we know that L holds.
From Definition 4 and Eq. (7), we have ϕi(N, v, �,F ) = 0 for any i ∈ N\T . When

i ∈ T , let vQ(S) = v(Q ∪ S) − v(Q) for any S ∈ FBk
, then

∑
i∈T

ϕi(N, v, �,F )

=
∑
i∈N

ϕi(N, v, �,F )

=
∑
i∈N

∑
{R∈FM :k∈R∗}

∑
{S∈FBk

:i∈S∗∧i∈Bk}

c(R)c(R ∪ k,M)

c(M)

c(S)c(S ∪ i, Bk)

c(Bk)

× (
v(Q ∪ S ∪ i) − v(Q ∪ S)

)
=

∑
i∈N

∑
{R∈FM :k∈R∗}

∑
{S∈FBk

:i∈S∗∧i∈Bk}

c(R)c(R ∪ k,M)

c(M)

c(S)c(S ∪ i, Bk)

c(Bk)

× (
vQ(S ∪ i) − vQ(S)

)
=

∑
k∈M

∑
{R∈FM :k∈R∗}

c(R)c(R ∪ k,M)

c(M)

∑
i∈Bk

∑
{S∈FBk

:i∈S∗}

c(S)c(S ∪ i, Bk)

c(Bk)

× (
vQ(S ∪ i) − vQ(S)

)
=

∑
k∈M

∑
{R∈FM :k∈R∗}

c(R)c(R ∪ k,M)

c(M)
vQ(Bk)
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=
∑
k∈M

∑
{R∈FM :k∈R∗}

c(R)c(R ∪ k,M)

c(M)

(
vB(R ∪ k) − vB(R)

)
= vB(M) = v(N) = v(T ).

Thus, EFF-1 holds.
From Lemma 2, we get HSC.
Further, according to Lemma 2 we have

ϕi(N, �, uT ,F ) = hM
H (k)h

Bk

S (i) (17)

and

ϕj (N, �, uT ,F ) = hM
H (p)h

BP

E (j). (18)

From EFF-1, we obtain

∑
i∈Bk

ϕi(N, �, uT ,F ) =
∑
i∈Bk

hM
H (k)h

Bk

S (i) = hM
H (k) (19)

and

∑
j∈Bp

ϕj (N, �, uT ,F ) =
∑
j∈Bp

hM
H (p)h

BP

E (j) = hM
H (p). (20)

Thus, HSU holds.
Uniqueness. From Lemma 1 and L, we only need to prove the uniqueness of Eq. (7)

on uT for any T ∈ L(N,�,F ) with T 	= ∅. Let M ′ = {k ∈ M : Bk ∩ T 	= ∅} and
B ′

k = Bk ∩ T for any k ∈ M , define the unanimity quotient game uB
T on � as follows:

uB
T (R) =

{
1, M ′ ⊆ R,

0, otherwise, (21)

where R ⊆ M .
Let f be a solution on (N, �, uT ,F ) that satisfies the above axioms. From EFF-1

and HSU, we have

∑
i∈Bk

fi(N, uT , �,F ) =
{

0, k /∈ M ′,
hM

M ′(k), k ∈ M ′. (22)

For any k ∈ M ′, from HSC we get

h
Bk

B ′
k

(j)fi(N, �, uT ,F ) = h
Bk

B ′
k

(i)fj (N, �, uT ,F ). (23)
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From
∑

i∈B ′
k
h

Bk

B ′
k

(i) = 1, we derive

fi(N, �, uT ,F ) =
{

0, i ∈ Bk\B ′
k,

hM
M ′(k)h

Bk

B ′
k

(i), i ∈ B ′
k.

(24)

According to Lemma 2, we know that f and ϕ coincide on uT .

Similar to Bilbao and Ordonez (2009), we define the identify game for G(N,�,F ) to
research another axiomatization of the quasi-Shapley value. For any S ∈ L(N,�,F )\∅,
the identify game δS : L(N,�,F ) → � is defined as:

δS(T ) =
{

1, S = T ,

0, otherwise. (25)

Using the identify game, we offer the following axiom which is an extension of Chain
axiom for games on augmenting systems (Bilbao and Ordonez, 2009).

• Chain axiom in coalitions (CAC). Let v ∈ G(N,�,F ). For any T ∈ L(N,�,F ),
without loss of generality, suppose that T = S

⋃
l∈R∈FM,k∈R∗ Bl , where S ∈ FBk

\∅.
Then, for all i, j ∈ exS, we have

c(S\i)fj (N, �, δS,F ) = c(S\j)fi(N, �, δS,F ). (26)

From Eq. (7), one can easily check that the quasi-Owen value can be equivalently ex-
pressed as:

ϕi(N, �, v,F )

=
∑

{R∈FM :k∈R∗}

∑
{S∈FBk

:i∈exS∧i∈Bk}

c(R)c(R ∪ k,M)

c(M)

c(S\i)c(S, Bk)

c(Bk)

× (
v(Q ∪ S) − v

(
(Q ∪ S)\i)). ∀i ∈ N, (27)

where exS = {i ∈ S : S\i ∈ FBk
}.

Theorem 2. There is a unique solution f defined on G(N,�, F ) that satisfies L, EFF-1,
CAC and HSU.

Proof. From uS = ∑
S⊆T δT for any S ∈ L(N,�,F )\∅ and Theorem 1, one can easily

derive the conclusion.

Next, let us consider another axiomatization of the quasi-Owen value. Young (1985)
proposed a characterization of the Shapley value using strong monotonicity. According to
Young (1985), we propose strong monotonicity in the framework of games on augmenting
systems with a coalition structure.

• Strong monotonicity (SM). Let v,w ∈ G(N,�,F ). If v(S ∪ i) − v(S) � w(S ∪ i) −
w(S) for any S ∈ L(N,�,F )\∅ with i ∈ S∗, then fi(N, �, v,F ) � fi(N, �,w,F ).
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Theorem 3. There is a unique solution f defined on G(N,�, F ) that satisfies EFF-1,
HSC, HSU and SM .

Proof. From Theorem 1 and Eq. (7), it is easy to conclude that ϕ satisfies these properties.
Next, let us consider the uniqueness. From Lemma 1, for any v ∈ G(N,�,F ) it can be
uniquely expressed as:

v =
∑

∅ 	=T ∈L(N,�,F )

cT uT . (28)

Let I be the minimum number of non-zero terms in some expression for v in (5). As in
Young (1985), the theorem is proved using induction on I .

(I) If cT = 0 for all T ∈ L(N,�,F )\∅, it is easy to derive fi(N, �, v,F ) = 0 for
any i ∈ N .

(II) If there is one T ∈ L(N,�,F )\∅ such that cT 	= 0, we get v = cT uT . From
EFF-1, HSC and HSU, we derive

fi(N, �, cT uT ,F ) =
{

0, i ∈ Bk\B ′
k,

cT hM
M ′(k)h

Bk

B ′
k

(i), i ∈ B ′
k,

(29)

where M ′ and B ′ as shown in Theorem 1.
(III) Assume that f is unique whenever the index of v is at most I . Let v have the index

I + 1 with the following expression:

v =
I+1∑
r=1

cTr uTr , (30)

where Tr ∈ L(N,�,F )\∅ such that cTr 	= 0.

Let T = ⋂I+1
r=1 Tr , for any i ∈ N\T we construct the game

w =
∑

r:(Tr )i 	=0

cTr uTr . (31)

Then, the index of w is at most I , Because v(S ∪ i) − v(S) = w(S ∪ i) − w(S) for all
S ∈ L(N,�,F ) with i ∈ S∗ and i ∈ N\T . According to induction and SM , we have

fi(N, �,w,F ) = fi(N, �, v,F ) =
{

0, otherwise,∑
r:(Tr )i 	=0 cTr h

M
MTr

(k)h
Bk

Bk
Tr

(i), i ∈ Bk∗
Tr

,

(32)

where MTr = {k ∈ M : Bk ∩ TTr 	= ∅} and Bk
Tr

= Bk ∩ TTr for any k ∈ M .



Quasi-Owen Value for Games on Augmenting Systems with a Coalition Structure 647

On the other hand, for any i ∈ T , by EFF-1, HSC and HSU we obtain

fi(N, �, v,F ) =
I+1∑
r=1

cTr h
M
MTr

(k)h
Bk

Bk
Tr

(i). (33)

The conclusion is obtained.

Next, we will give another two axiomatic systems to characterize the quasi-Owen value
from the perspective of the potential function and balanced contributions, respectively.

Hart and Mas-Colell (1989) first introduced the concept of the potential function. Later,
Winter (1992) extended the potential function to games with a coalition structure, by
which an axiomatic system of the Owen value (Owen, 1977) was characterized. Now, we
define the potential function for games on augmenting systems with a coalition structure
to characterize the quasi-Owen value.

Definition 5. Let v ∈ G(N,�,F ). Given a function P : G(N,�,F ) → �m, where
P k(∅, �, v,F ) = 0. Let � = {B1, B2, . . . , Bm}. The marginal contribution of player i

to G(N,�, v,F ) is

DiP (N,�, v,F ) = P(N,�, v,F ) − P
(
N\i, �∣∣

N\i , v,F
∣∣
N\i

)
, (34)

P is said to be a potential function for the game G(N,�, v,F ) if it satisfies
∑
i∈Bk

DiP (N,�, v,F ) = DkP
(
M, vB,FM

)
(35)

for all k ∈ M , and
∑
i∈N

DiP (N,�, v,F ) = v(N). (36)

Using the potential function for games on augmenting systems with a coalition structure,
we offer the following theorem for the quasi-Owen value.

Theorem 4. There is a unique potential function P for the game G(N,�, v,F ). More-
over, for any v ∈ G(N,�,F ) and any i ∈ N , DiP (N,�, v,F ) = ϕi(N, �, v,F ),
where ϕ is the quasi-Owen value.

Proof. Existence. For any Bk ∈ � and any T ∈ L(N,�,F ), let

dT (Bk) =
{

cT

m′b′
k

, Bk ∩ T 	= ∅,

0, Bk ∩ T = ∅,
(37)

where m′ and b′
k are the cardinalities of M ′ = {k ∈ M : Bk ∩ T 	= ∅} and B ′

k = Bk ∩ T ,
k ∈ M , respectively, and cT as shown in Eq. (28).
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Let

P(N,�, v,F )

=
( ∑

∅ 	=T ∈L(N,�,F )

dT (B1),
∑

∅ 	=T ∈L(N,�,F )

dT (B2), . . . ,
∑

∅ 	=T ∈L(N,�,F )

dT (Bm)

)
.

Without loss of generality, suppose that i ∈ Bk for any i ∈ T , we have

DiP (N,�, v,F ) =
∑

∅ 	=T ∈L(N,�,F )

dT (Bk) −
∑

∅ 	=T ∈L(N,�,F )

dT (Bk\i)

=
∑

∅ 	=T ∈L(N,�,F )

dT (Bk) = ϕi(N, �, v,F ). (38)

From ϕk(M, vB,FM) = ∑
i∈Bk

ϕi(N, �, v,F ), we have

DkP
(
M, vB,FM

) = ϕk

(
M, vB,FM

)
=

∑
i∈Bk

ϕi(N, �, v,F ) =
∑
i∈Bk

DiP (N,�, v,F ). (39)

From Eq. (38) and EFF-2, P satisfies Eq. (36). Therefore, P is a potential function.
Uniqueness. Note that Eq. (35) can be written as

P(N,�, v,F ) = 1

bk

(
DkP

(
M, vB,FM

) +
∑
i∈Bk

P
(
N\i, �∣∣

N\i , v,F
∣∣
N\i

))
, (40)

where bk is the cardinality of Bk .
When there is only one union in the coalition structure, we can conclude that there is

the Hart-Mas-Colell potential function (Hart and Mas-Colell, 1989) which is known to
be unique. By Eq. (35) and Eq. (36), we further derive that P defined on (M, vB,FM)

is unique. Then, we can obtain the uniqueness of P(N,�, v,F ) recursively according to
Eq. (40) with the initial condition P(∅, �, v,F ) = 0.

Different to EFF-1, which is defined in view of carrier, we define the following EFF-2
which will be used in the following two axiomatic systems.

• Efficiency (EFF-2). Let v ∈ G(N,�,F ), then v(N) = ∑
i∈N fi(N, �, v,F ).

Next, we consider the last axiomatic system of the quasi-Owen value. Myerson (1980)
proposed a characterization of the Myerson value using Balanced contributions. Later,
Zou et al. (2020) presented the Intracoalitional quasi-balanced contributions with re-
spect to α and Coalitional quasi-balanced contributions with respect to α to characterize
the α-Egalitarian Owen value for cooperative games with a coalition structure. Now, we
propose Intra-coalitional balanced contributions and Coalitional balanced contributions
for games on augmenting system with a coalition structure as:
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• Intra-coalitional balanced contributions (IBC). Let v ∈ G(N,�,F ). For any T ∈
L(N,�,F ), without loss of generality, suppose that T = S

⋃
l∈R∈FM,k∈R∗ Bl , where

S ∈ FBk
\∅. Then

fi(N, �, v,F ) − fi

(
N\j, �∣∣

N\j , v,F
∣∣
N\j

)
= fj (N, �, v,F ) − fj

(
N\i, �∣∣

N\i , v,F
∣∣
N\i

)
(41)

for all i, j ∈ S ∈ FBk
such that i 	= j .

• Coalitional balanced contributions (CBC). Let v ∈ G(N,�,F ), then∑
i∈Bk

fi(N, �, v,F ) −
∑
i∈Bk

fi

(
N\Bl, �

∣∣
N\Bl

, v,F
∣∣
N\Bl

)
=

∑
i∈Bl

fi(N, �, v,F ) −
∑
i∈Bl

fi

(
N\Bk, �

∣∣
N\Bk

, v,F
∣∣
N\Bk

)
(42)

for all k, l ∈ R ∈ FM such that k 	= l.

Theorem 5. There is a unique solution f defined on G(N,�,F ) that satisfies EFF-2,
IBC, and CBC, which equals to ϕ.

Proof. Existence. Obviously, ϕ satisfies EFF-2. From Theorem 4, we know that
ϕi(N, �, v,F ) = DiP (N,�, v,F ), where P is the unique potential function for the
game v ∈ G(N,�,F ). Therefore, for any T ∈ L(N,�,F ), without loss of generality,
suppose that T = S

⋃
l∈R∈FM,k∈R∗ Bl , where S ∈ FBk

\∅. Then,

ϕi(N, �, v,F ) − ϕj (N, �, v,F ) = DiP (N,�, v,F ) − DjP (N,�, v,F )

= P j (N\j, �, v,F ) − P j
(
N\i, �∣∣

N\i , v,F
∣∣
N\i

)
= P j

(
N\j, �∣∣

N\j , v,F
∣∣
N\j

) − P j
(
N\ij, �∣∣

N\ij , v,F
∣∣
N\ij

)
+ P j

(
N\ij, �∣∣

N\ij , v,F
∣∣
N\ij

) − P j
(
N\i, �∣∣

N\i , v,F
∣∣
N\i

)
= ϕi

(
N\j, �∣∣

N\j , v,F
∣∣
N\j

) − ϕj

(
N\i, �∣∣

N\i , v,F
∣∣
N\i

)
for all i, j ∈ S ∈ FBk

such that i 	= j .
Thus, IBC holds.
Similarly, one can show that CBC is true.
To prove uniqueness, we just need to show that f admits a potential function. Let

v ∈ G(N,�,F ). For any T ∈ L(N,�,F ), without loss of generality, suppose that
T = S

⋃
l∈R Bl , where S ∈ FBk

and R ∈ FM\k. When t = 1 with t being the cardinality
of T , by EFF-2 we have fi(T , �|T , v, F |T ) = v(i) = DiP (T , �|T , v, F |T ), where P

is the unique potential function for the game G(N,�, v,F ). By induction, when t � n−1
(n � 2), for any i ∈ S, we have

fi

(
T , �

∣∣
T
, v,F

∣∣
T

) = DiP
(
T , �

∣∣
T
, v,F

∣∣
T

)
= P

(
T , �

∣∣
T
, v,FT

) − P
(
T \i, �∣∣

T \i , v,F
∣∣
T \i

)
. (43)
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By Eq. (43), we derive

∑
i∈S

fi

(
T , �

∣∣
T
, v,FT

) =
∑
i∈Bk

fi

(
T , �

∣∣
T
, v,FT

) =
∑
i∈Bk

DiP
(
T , �

∣∣
T
, v,F

∣∣
T

)
.

(44)

From the definition of the potential function and Eq. (44), we get∑
i∈Bk

fi

(
T , �

∣∣
T
, v,FT

) = DkP
(
R ∪ k, vB,FM

∣∣
R∪k

)
. (45)

Next, we prove the conclusion is true when t = n. By CBC, we obtain∑
i∈Bk

fi(N, �, v,F ) −
∑
i∈Bk

fi

(
N\Bl, �

∣∣
N\Bl

, v,F
∣∣
N\Bl

)
=

∑
i∈Bl

fi(N, �, v,F ) −
∑
i∈Bl

fi

(
N\Bk, �

∣∣
N\Bk

, v,F
∣∣
N\Bk

)
.

By Eq. (45), we derive∑
i∈Bk

fi(N, �, v,F ) − DkP
(
M\l, vB, FM

∣∣
M\l

)
=

∑
i∈Bl

fi(N, �, v,F ) − DlP
(
M\k, vB,FM

∣∣
M\k

)

by which we get∑
i∈Bk

fi(N, �, v,F ) + P
(
M\k, vB,FM

∣∣
M\k

)

= 1

m

( ∑
l∈M

∑
i∈Bl

fi(N, �, v,F ) +
∑
l∈M

P
(
M\l, vB,FM

∣∣
M\l

))
.

According to EFF-2, we derive∑
i∈Bk

fi(N, �, v,F ) + P
(
M\k, vB,FM

∣∣
M\k

)

= 1

m

(
v(N) +

∑
l∈M

P
(
M\l, vB,FM

∣∣
M\l

))
.

From the concept of the potential function, we obtain∑
i∈Bk

fi(N, �, v,F ) = P
(
M, vB,FM

) − P
(
M\k, vB,FM

∣∣
M\k

)
= DkP

(
M, vB,FM

)
. (46)
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By IBC, we get

fi(N, �, v,F ) − fj (N, �, v,F )

= fi

(
N\j, �∣∣

N\j , v,F
∣∣
N\j

) − fj

(
N\i, �∣∣

N\i , v,F
∣∣
N\i

)
= P

(
N\j, �∣∣

N\j , v,F
∣∣
N\j

) − P
(
N\i, �∣∣

N\i , v,F
∣∣
N\i

)
for all i, j ∈ S ∈ FBk

.
Then,

fi(N, �, v,F ) − 1

bk

∑
j∈Bk

fj (N, �, v,F )

= 1

bk

∑
j∈Bk

P
(
N\j, �∣∣

N\j , v,F
∣∣
N\j

) − P
(
N\i, �∣∣

N\i , v,F
∣∣
N\i

)
, (47)

where bk is the cardinality of Bk .
From Eq. (46), we have

fi(N, �, v,F ) + P
(
N\i, �∣∣

N\i , v,F
∣∣
N\i

)
= 1

bk

(
DkP

(
M, vB,FM

) +
∑
j∈Bk

P
(
N\j, �∣∣

N\j , v,F
∣∣
N\j

))
. (48)

By Eq. (40), we know that the right hand side of Eq. (48) equals to P(N,�, v,F ). Thus,
Eq. (43) is true for t = n. Theorem 4 shows that the conclusion is obtained.

In this subsection, we focus on the axioms of the quasi-Owen value and give five ax-
iomatic systems. These axiomatic systems can be divided into two categories in view of
the axiom of linearity. The first two are based on linearity, while other three suggest al-
ternative foundations of the quasi-Owen value without linearity. It is noteworthy that we
can similarly build other axiomatic systems.

4. The Core and the PMASs

In this section, we introduce the core and the PMAS for games on augmenting systems
with a coalition structure. Further, the relationship between the quasi-Owen value and the
core is discussed, and the conditions for the quasi-Owen value to be a PMAS are given.

4.1. The Concept of the Core

In a similar way to the core of games with a coalition structure (Pulido and Sánchez-
Soriano, 2009), the definition of the core of games on augmenting systems with a coalition
structure is defined as:
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Definition 6. Let v ∈ G(N,�,F ). The core C(N,�, v,F ) of v is defined as:

C(N,�, v,F ) =
{
x ∈ �n

∣∣∣∑
i∈N

xi = v(N),
∑
i∈S

xi � v(S),∀S ∈ L(N,�,F )

}
.

(49)

Now, we investigate some properties of the core, which are extended from reference
(Pulido and Sánchez-Soriano, 2009). First, we introduce the concept of reduced games
for games on augmenting systems with a coalition structure.

Definition 7. Let v ∈ G(N,�,F ), and let x be a corresponding solution. For any S ∈
L(N,�,F ), the reduced game G(S, �|S , vx

S, F |S) is defined as:

vx
S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, T = ∅

v(N) − x(N\T ), T = S

max
{
v(T ∪ R) − x(R) : R ⊆ N\S, T ∪ R ∈ L(N,�,F )

}
,

T ∈ F |S\{∅, S},
(50)

where x(R) = ∑
i∈R xi , v(N) − x(N\T ) = x(T ) and vx

N = v.

From reduced games, we further offer the following concepts of the coalitional reduced
game property (C-RGP) and the coalitional converse reduced game property (C-CRGP).

Definition 8. Let v ∈ G(N,�,F ), S ∈ L(N,�,F )\∅ and σ be a solution. If x ∈
σ(N,�, v,F ) implies x|S ∈ σ(S, �|S , vx

S, F |S), then the solution σ satisfies C-RGP.
Further, if x|S ∈ σ(S, �|S , vx

S, F |S) means x ∈ σ(N,�, v,F ), then the solution σ

satisfies C-CRGP, where x|S denotes the restriction of x to the coalition S.

Lemma 3. Let v ∈ G(N,�,F ). The core C(N,�, v,F ) satisfies C-RGP.

Proof. Let S ∈ L(N,�,F )\∅. For any x ∈ C(N,�, v,F ) and any T ∈ F |S , if T = S,
then

vx
S(T ) = v(N) − x(N\T ) = x(T ) = x(S).

Otherwise,

vx
S(T ) − x(T ) = max

{
v(T ∪ R) − x(R) : R ⊆ N\S, T ∪ R ∈ L(N,�,F )

} − x(T )

= max
{
v(T ∪ R) − x(T ∪ R) : R ⊆ N\S, T ∪ R ∈ L(N,�,F )

}
� 0.

Hence, vx
S(T ) � x(T ). Therefore, the conclusion is true.
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Next, we show that the core satisfies C-CRGP. To do this, let us consider the following
lemma.

Definition 9. If for any k ∈ M and any i ∈ Bk , we have k ∈ FM and i ∈ FBk
, then we

call (N,�,F ) an atomic augmenting system with a coalition structure.

Lemma 4. Let (N, �,F ) be an atomic augmenting system with a coalition structure. For
any S ∈ L(N,�,F )\{N,∅} and any j ∈ N\S such that S ∪ j ∈ L(N,�,F ), there is
a player i ∈ S such that {i, j} ∈ L(N,�,F ).

Proof. From the assumption, we have S ∪ j ∈ L(N,�,F ). Since (N,�,F ) is atomic,
we have j ∈ L(N,�,F ). Then, there is a chain from j to S∪j . In this chain, there is a set
{i, j} ∈ L(N,�,F ) such that {j} ⊆ {i, j} ⊆ S ∪ j . Therefore, i ∈ S, which concludes
the proof.

According to Lemma 4, we offer the following proof of C-CRGP.

Lemma 5. Let v ∈ G(N,�,F ), (N, �,F ) be an atomic augmenting system with a
coalition structure, and x be a solution. If x|S ∈ σ(S, �|S , vx

S, F |S) for all S ∈
L(N,�,F ) with s = 2, then x ∈ σ(N,�, v,F ), where s is the cardinality of S.

Proof. If n � 2, the statement obviously holds. Assume that n � 3. We show that the
statement still holds for all S ∈ L(N,�,F ) with s = 2. Let

∑
i∈N xi = x(N) = v(N)

such that x|S ∈ C(S, �|S , vx
S, F |S) for all S ∈ L(N,�,F ) with s = 2. From

S ∈ L(N,�,F )\{N,∅} and Lemma 4, we know that there are two players i ∈ S

and j ∈ N\S such that {i, j} ∈ L(N,�,F ). Since (N, �,F ) is atomic and x|{i,j} ∈
C({i, j}, �|{i,j} , vx

{i,j}, F |{i,j}), we have vx
{i,j}(i) − xi � 0. Then,

vx
{i,j}(i) − xi = max

{
v(i ∪ R) − x(R) : R ⊆ N\{i, j}, R ∪ i ∈ L(N,�,F )

} − xi

= max
{
v(R ∪ i) − x(R ∪ i) : R ⊆ N\{i, j}, R ∪ i ∈ L(N,�,F )

}
� v(S) − x(S).

Therefore, v(S) � x(S).

The following corollary is immediate from Lemma 5, which shows that the core of
v ∈ G(N,�,F ) satisfies the C-CRGP when (N,�,F ) is atomic.

Corollary 1. Let v ∈ G(N,�,F ), and (N, �,F ) be an atomic augmenting system with
a coalition structure. Then, the core C(N,�, v,F ) satisfies C-CRGP.

To build the axiomatic system of the core C(N,�, v,F ), we further review the prop-
erty of the individual rationality (IR): Let v ∈ G(N,�,F ) and x be a solution. If
xi � v(i) for any i ∈ L(N,�,F ), then the solution x owns IR.
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From the above analysis, one can check that the core of games on atomic augmenting
systems with a coalition structure satisfies: EFF-2, IR, C-RGP and C-CRGP. In fact,
these four properties can characterize the core of games on atomic augmenting systems
with a coalition structure.

Theorem 6. Let v ∈ G(N,�,F ). If (N, �,F ) is an atomic augmenting system with a
coalition structure, then the core C(N,�, v,F ) is the unique solution on v that satisfies
EFF-2, IR, C-RGP and C-CRGP.

Proof. The proof of Theorem 6 is similar to that of Theorem 5.14 in Peleg (1986), hence
it is omitted.

Remark 2. If there is only one coalition in �, then C-RGP and C-CRGP degenerate to
the reduced game property (RGP) and the converse reduced game property (CRGP) for
games on augmenting system, respectively. If all subsets of M and those of each Bk ∈ �

are both feasible, then C-RGP and C-CRGP degenerate to the corresponding properties
for traditional games with a coalition structure, respectively.

Similar to the Owen value for games with a coalition structure, we can prove that the
quasi-Owen value for games on augmenting systems with a coalition structure belongs
to the core. Based on the work of Pulido and Sánchez-Soriano (2009), we first give the
following definition of quasi coalitional strong-convex games.

Definition 10. Let v ∈ G(N,�,F ). It is said to be quasi coalitional strong-convex if
v(S)+v(T ) � v(S ∪T )+v(S ∩T ) for any S, T ∈ L(N,�,F ) such that S ∪T , S ∩T ∈
L(N,�,F ).

Following the work of Pulido and Sánchez-Soriano (2009), one can conclude that the
quasi Owen value belongs to the core of quasi coalitional strong-convex games. However,
as the next example shows, even if the game v ∈ G(N, v, �,F ) is not quasi coalitional
strong-convex, the quasi Owen value may still belong to the core.

Example 2. Let N = {1, 2, 3, 4, 5} be the player set, and � = {B1, B2} be a coalition
structure on N , where B1 = {1, 2, 3} and B2 = {4, 5}. If FB1 = {∅, {1}, {3}, {1, 2},
{2, 3}, B1}, FB2 = {∅, {4}, {5}, B2} and FM = {∅, {1}, {2},M}, then it is an augmenting
system with a coalition structure, where

L(N,�,F ) = {
∅, {1}, {3}, {4}, {5}, {4, 5}, {1, 2}, {2, 3}, {1, 2, 3}, {1, 4, 5},

{3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 5}, {1, 2, 4, 5},
{2, 3, 4, 5}, {1, 2, 3, 4, 5}}.

Further, the values of the coalitions are v(1, 2) = v(1, 2, 3) = v(2, 3, 4, 5) = 1,
v(1, 4, 5) = v(1, 2, 3, 4) = v(1, 2, 3, 5) = v(1, 2, 4, 5) = 1, v(N) = 3, and v(S) = 0
for other coalitions in S ∈ L(N, v,F ).
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Notice that this game is not quasi coalitional strong-convex as v(1, 2) + v(1, 4, 5) >

v(1, 2, 4, 5) + v(1). However, one can easily check that the quasi Owen value
ϕ(N, v, �,F ) = ( 5

4 , 1
2 , 1

4 , 1
2 , 1

2

)
is an element in the core according to Definition 6.

To fill this gap, we relax the condition and consider the convexity of the coalitions in the
same chain.

Definition 11. Let v ∈ G(N,�,F ). It is said to be a quasi-chain coalitional convex
game if for each k ∈ R∗ such that R ∈ FM ,

v

(
(S ∪ T ) ∪

⋃
l∈R

Bl

)
+ v

(
(S ∩ T ) ∪

⋃
l∈R

Bl

)
� v

(
S ∪

⋃
l∈R

Bl

)
+ v

(
T ∪

⋃
l∈R

Bl

)

for any S, T ∈ FBk
such that S ⊆ T .

According to Definition 11, one can easily check that the game offered in Example 2
is a quasi-chain coalitional convex. By Definitions 10 and 11, one can conclude that quasi
coalitional strong-convex game is quasi-chain coalitional convex game. Similar to classi-
cal case, we derive the following theorem.

Theorem 7. Let v ∈ G(N,�,F ). If v is quasi-chain coalitional convex, then (ϕi(N,

�, v,F ))i∈N ∈ C(N,�, v,F ).

Proof. For any S ∈ L(N,�,F ), without loss of generality, suppose that S = T ∪⋃
kl∈H Bkl

, where T ∈ FBkp
, H ∈ FM , and kp ∈ H ∗. Then, there is a compat-

ible ordering from ∅ to H ∪ kp and a compatible ordering from ∅ to T . Assume
that {∅, {k1}, {k1, k2}, . . . , H,H ∪ kp,H ∪ kp ∪ kq, . . . ,M} ∈ Ch(M) and

{
∅, {ikp

1 },
{ikp

1 , i
kp

2 }, . . . , T , T ∪ {ikp

j }, . . . , {ikp

1 , i
kp

2 , . . . , i
kp

bkp
}} ∈ Ch(Bkp ), where bkp is the car-

dinality of coalition Bkp .
{
∅, {ikl

1 }, {ikl

1 , i
kl

2 }, . . . , {ikl

1 , i
kl

2 , . . . , i
kl

bkl
}} ∈ Ch(Bkl

) for any
kl ∈ M\kp. Let

x
i
k1
1

= v
(
i
k1
1

)
,

x
i
k1
2

= v
(
i
k1
1 , i

k1
2

) − v
(
i
k1
1

)
,

. . . ,

x
i
k1
bk1

= v(Bk1) − v
(
Bk1\ik1

bk1

)
,

x
i
k1
bk1

+1
= v

(
Bk1 ∪ i

k2
1

) − v(Bk1),

. . . ,

xn = v(N) − v
(
N\ikm

bkm

)
.

It is obvious that
∑

i∈N xi = v(N).
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If T 	= Bkp , then N\S = (Bkp\T ) ∪ ⋃
kl∈M\H Bkl

= {
i
kp

j , i
kp

j+1, . . . , i
kp

bkp

} ∪⋃
kl∈M\H Bkl

, where Bkp\T = {
i
kp

j , i
kp

j+1, . . . , i
kp

bkp

}
. Let Q = (T ∪ i

kp

j ) ∪ ⋃
kl∈H Bkl

,

then S∪Q = S∪i
kp

j and S∩Q = Q\ikp

j . From the quasi-chain coalitional chain convexity

of v, we get
∑

i∈S xi − v(S) �
∑

i∈S∪i
kp
j

xi − v(S ∪ i
kp

j ).

If T = Bkp , then N\S = ⋃
kl∈M\H Bkl

. Let Q = ⋃
kl∈H∪kp

Bkl
∪ i

kq

1 , where i
kq

1 ∈
FBkq

. Since kq ∈ (H ∪ kp)∗, by the quasi-chain coalitional chain convexity of v, we get∑
i∈S xi − v(S) �

∑
i∈S∪i

kq
1

xi − v(S ∪ i
kq

1 ).
By recursive relation, we get

∑
i∈S xi −v(S) �

∑
i∈N xi −v(N) = 0. Thus, (xi)i∈N ∈

C(N, v, �,F ). From Eq. (7), we know that (ϕi(N, �, v,F ))i∈N is a convex combination
of c(M)

∑
k∈M c(Bk)! elements in C(N, v, �,F ). Since C(N, v, �,F ) is a convex set,

we get (ϕi(N, �, v,F ))i∈N ∈ C(N,�, v,F ).

The above theorem shows that when games on augmenting systems with a coalition
structure are convex, there is no player who can make his own payoff larger than the quasi-
Owen value without reducing other players’ payoff. Hence, there are no incentive to devi-
ate from this allocation scheme.

4.2. The Concept of PMASs

Inspired by Sprumont (1990) who first introduced and studied the concept of PMASs
for traditional cooperative games, we here introduce the notion of PMASs for games on
augmenting systems with a coalition structure.

Definition 12. Let v ∈ G(N,�,F ). If the vector x = (xi(S))i∈S satisfies

(i)
∑

i∈S xi(S) = v(S) for any S ∈ L(N,�,F );
(ii) xi(S) � xi(T ) for all i ∈ S and all S, T ∈ L(N,�,F ) such that S ⊆ T ; then

x = (xi(S))i∈S is called a PMAS.

Next, we study the conditions under which the quasi-Owen value is a PMAS.

Theorem 8. Let v ∈ G(N,�,F ), and S, T ∈ L(N,�,F ) with S ⊆ T . Without loss of
generality, suppose that S = D

⋃
l∈R∈FM,k∈R∗ Bl and T = Y

⋃
l∈Q∈FM,k∈Q∗ Bl , where

R ⊆ Q and D ⊆ Y ∈ FBk
.

(i) If FM |Q∪k = {P | P = U ∪ O ∈ FM, where O ⊆ Q\R and U ∈ FM |R∪k} and
Q = R ∪ h such that h ∈ M\R, we have

c(U)c(U ∪ l, R ∪ k)

c(R ∪ k)

� c(U)c(U ∪ l, R ∪ k ∪ h)

c(R ∪ k ∪ h)
+ c(U ∪ h)c(U ∪ h ∪ l, R ∪ k ∪ h)

c(R ∪ k ∪ h)
, (51)

where l ∈ R∗;
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(ii) If FBk

∣∣
Y

= {
E|E = A ∪ C ∈ FBk

, where C ⊆ Y\D and A ∈ FBk

∣∣
D

}
and

Y = D ∪ j such that j ∈ Y\D, we obtain

c(A)c(A ∪ i,D)

c(D)
� c(A)c(A ∪ i,D ∪ j)

c(D ∪ j)
+ c(A ∪ j)c(A ∪ j ∪ i,D ∪ j)

c(D ∪ j)
,

(52)

where j ∈ A∗;
(iii) If v is quasi-chain coalitional convex, then the quasi-Owen value (ϕi(N, �, v,F ))i∈N

is a PMAS.

Proof. From Eq. (7), one can easily derive the condition (i) in Definition 12. As for the
condition (ii), it is proved recursively. Suppose that S∪j = T , where j /∈ S. From Eq. (7),
we have

ϕi(S, �|S , v|S , F |S)

=
∑

{U∈FM

∣∣
R∪k

:k∈U∗}

∑
{A∈FBk

∣∣
D

:i∈A∗}

c(U)c(U ∪ k, R ∪ k)

c(R ∪ k)

c(A)c(A ∪ i,D)

c(D)

× (
v(W ∪ A ∪ i) − v(W ∪ A)

)
(53)

for any i ∈ S, where W = ⋃
l∈U∈FM

∣∣
R∪k

Bl .

Case 1. T = Y
⋃

l∈R∈FM,k∈R∗ Bl , where Y ∈ FBk
and Y = D ∪ j . Then,

ϕi(T , �|T , v|T , F |T )

=
∑

{U∈FM

∣∣
R∪k

:k∈U∗}

∑
{E∈FBk

∣∣
D∪j

:i∈B∗}

c(U)c(U ∪ k, R ∪ k)

c(R ∪ k)

c(E)c(E ∪ i,D ∪ j)

c(D ∪ j)

× (
v(W ∪ E ∪ i) − v(W ∪ E)

)
(54)

for any i ∈ S.
By condition (ii), we have FBk

∣∣
Y

= FBk

∣∣
D∪j

= {E|E = A ∨ A ∪ j ∈
FBk

, where A ∈ FBk

∣∣
D

}. By the property A2, we have i ∈ (A ∪ j)∗ for any i ∈ A∗.
Then, Eq. (55) can be written as:

ϕi(T , �|T , v|T , F |T )

=
∑

{U∈FM

∣∣
R∪k

:k∈U∗}

∑
{A∈FBk

∣∣
D

:i∈A∗}

[
c(U)c(U ∪ k, R ∪ k)

c(R ∪ k)

c(A)c(A ∪ i,D ∪ j)

c(D ∪ j)

× (
v(W ∪ A ∪ i) − v(W ∪ A)

)
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+ c(U)c(U ∪ k, R ∪ k)

c(R ∪ k)

c(A ∪ j)c(A ∪ j ∪ i,D ∪ j)

c(D ∪ j)

× (
v(W ∪ A ∪ j ∪ i) − v(W ∪ A ∪ j)

)]
. (55)

According to the condition (iii) we obtain

v(W ∪ A ∪ i) − v(W ∪ A) � v(W ∪ A ∪ j ∪ i) − v(W ∪ A ∪ j). (56)

By condition (ii), we have

c(U)c(U ∪ k, R ∪ k)

c(R ∪ k)

c(A)c(A ∪ i,D)

c(D)

� c(U)c(U ∪ k, R ∪ k)

c(R ∪ k)

×
(

c(A)c(A ∪ i,D ∪ j)

c(D ∪ j)
+ c(A ∪ j)c(A ∪ j ∪ i,D ∪ j)

c(D ∪ j)

)
. (57)

According to Eqs. (54), (56) to (58), we derive ϕi(S, �|S , v|S ,FS) � ϕi(T , �|T , v|T ,

F |T ) for all i ∈ S.

Case 2. T = D
⋃

l∈Q∈FM,k∈Q∗ Bl , where Q = R ∪ h and Bh = {j}. From Eq. (7), we
have

ϕi(T , �|T , v|T , F |T )

=
∑

{U∈FM

∣∣
R∪k∪h

:k∈P ∗}

∑
{A∈FBk

∣∣
D

:i∈A∗}

c(U)c(U ∪ k, R ∪ k ∪ h)

c(U ∪ k ∪ h)

c(A)c(A ∪ i,D)

c(D)

× (
v(W ∪ A ∪ i) − v(W ∪ A)

)
(58)

for any i ∈ S, where W = ⋃
l∈U∈FM

∣∣
R∪h

Bl .
By condition (i), we obtain FM |Q∪k = {P | P = U ∨ U ∪ h ∈ FM, where U ∈

FM |R∪k}. By the property A2, we have k ∈ (U ∪ h)∗ for any k ∈ U∗. Then, Eq. (59) can
be written as:

ϕi(T , �|T , v|T , F |T )

=
∑

{U∈ FM |R∪k :k∈U∗}

∑
{A∈ FBk

∣∣
D

:i∈A∗∧i∈Bk }

[
c(U)c(U ∪ k, R ∪ k ∪ h)

c(R ∪ k ∪ h)

c(A)c(A ∪ i,D)

c(D)
(v(W ∪ A ∪ i)

− v(W ∪ A)) + c(U ∪ h)c(U ∪ k ∪ h,R ∪ k ∪ h)

c(R ∪ k ∪ h)

c(A)c(A ∪ i,D)

c(D)

× (
v(W ∪ j ∪ A ∪ i) − v(W ∪ j ∪ A)

)]
. (59)

By conditions (i) and (iii), we have ϕi(S, �|S , v|S ,FS) � ϕi(T , �|T , v|T , F |T ) for
all i ∈ S.
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Fig. 1. The model of the food supply chain.

Hence, (ϕi(N, �, v,F ))i∈N is a PMAS.

Remark 3. If there is only one coalition in �, we get the conditions for the Shapley value
for games on augmenting systems to be a PMAS. If all subsets of M and those of each
Bk ∈ � are feasible, the three conditions in Theorem 8 reduce to the condition for the
Owen value for games with a coalition structure to be a PMAS.

5. An Illustrative Example

In this section, we provide an application of games on augmenting system with a coalition
structure in the food supply chain. Set up a supply chain consisting of food raw material
supplier, food packaging supplier, food processing manufacturer, wholesaler and retailer.
For the convenience of expression, the above members are set as 1, 2, 3, 4 and 5, respec-
tively. The model of the food supply chain is shown in Fig. 1.

In this food supply chain, to gain more profits with lower cost, companies 1, 2 and 3
decide to cooperate and form the production union {1, 2, 3} denoted as B1, and compa-
nies 4 and 5 decide to cooperate and form the sales union {4, 5} denoted as B2. Because
their skill levels and working procedures are different, they cannot cooperate freely. For
example, the wholesaler 4 and retailer 5 carry on their work only after suppliers 1, 2
and manufacturer 3 have finished their production. Thus, when B1 and B2 cooperate,
the coalitions that can be formed are ∅, {B1} and {B1, B2}. For the same reason, the
coalitions formed by the companies 4 and 5 are ∅, {4} and B2. In the union {1, 2, 3},
the coalitions {1, 3} and {2, 3} can be formed for production. In addition, 1 and 2 are
the suppliers of 3, which have a competitive relationship with each other, so the supply
coalition {1, 2} can’t be formed. However, the coalition {1, 2, 3} can be formed since the
participation of 3. In conclusion, the formed coalitions are ∅, {1}, {2}, {1, 3}, {2, 3} and
B1. The coalition values (million dollars/week) are offered as shown in Table 1. Thus,
v is a game on augmenting system with a coalition structure denoted by G(N,�, v,F ),
where � = {B1, B2}, FB1 = {∅, {1}, {2}, {1, 3}, {2, 3}, B1}, FB2 = {∅, {4}, B2} and
FM = {∅, {B1}, {B1, B2}}.

From Eq. (7), the quasi-Owen values of enterprises are

ϕ1(N, �, v,F ) = 3.5, ϕ2(N, �, v,F ) = 4.5, ϕ3(N, �, v,F ) = 5,

ϕ4(N, �, v,F ) = 4, ϕ5(N, �, v,F ) = 3.
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Table 1
The coalition values (million dollars/week).

S v(S) (S)

∅ 0 {2, 3} 9
{1} 3 {1, 2, 3} 13
{2} 4 {1, 2, 3, 4} 17
{1, 3} 8 {1, 2, 3, 4, 5} 20

It is apparent that v is quasi-chain coalitional convex. From Eq. (49), the core is defined
as:

C(N,�, v,F )

=
{
(x1, x2, x3, x4, x5)

∣∣∣ 5∑
i=1

xi = 20, x1 � 3, x2 � 4, x1 + x3 � 8, x2 + x3 � 9

x1 + x2 + x3 � 13, x1 + x2 + x3 + x4 � 17

}
.

One can easily check that (ϕi(N, �, v,F ))i∈N ∈ C(N,�, v,F ). It shows that no enter-
prise can make its own payoff greater than the quasi-Owen value without reducing other
players’ payoffs. Namely, the quasi-Owen value is one of the best rule to distribute the
coalition payoffs of the companies in the food supply chain.

This example shows that L(N,�,F ) = {∅, {1}, {2}, {1, 3}, {2, 3}, {1, 2, 3}, {1, 2, 3,

4}, {1, 2, 3, 4, 5}}. For all S, T ∈ L(N,�,F ), such that S ⊆ T , one can check that the
conditions in Theorem 8 are satisfied. Further, one can show that the quasi-Owen value is
a PMAS. For example, when S = {1, 3} and T = {1, 2, 3}, we have

ϕ1(S, �|S , v|S , F |S) = 3 � ϕ1(T , �|T , v|T , F |T ) = 3 and
ϕ3(S, �|S , v|S , F |S) = 3 � ϕ3(T , �|T , v|T , F |T ) = 5.

From the above results, we know that each enterprise can get more payoffs from the larger
coalitions than from the smaller coalitions.

6. Conclusion

From the relationships among augmenting system, antimatroid and convex geometry (Bil-
bao and Ordonez, 2009), one can easily check that when augmenting systems on a coalition
structure and on each union are closed under intersection, they turn to games on convex
geometries with a coalition structure. Further, when augmenting systems on a coalition
structure and on each union are closed under union, they become games on antimatroids
with a coalition structure. It is noteworthy that the power set is also an augmenting system.
Thus, game on augmenting systems with a coalition structure is an extension of game with
a coalition structure.
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The above relationships about different types of games show that the quasi-Owen value
can be seen as a payoff index for them under the corresponding special conditions. Further,
all listed axiomatic systems still hold for the quasi-Owen value in the setting of the above
mentioned cooperative games, where axiomatic systems are defined under the associated
conditions. This paper only studies a special kind of games under precedence constraints
with a coalition structure, and it will be interesting to take into account other types of
games under precedence constraints. Moreover, similar to the offered numerical example,
we can apply the quasi-Owen value into other practical cooperative cases.
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