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Abstract. Multidimensional scaling (MDS) is a widely used technique for mapping data from
a high-dimensional to a lower-dimensional space and for visualizing data. Recently, a new method,
known as Geometric MDS, has been developed to minimize the MDS stress function by an iterative
procedure, where coordinates of a particular point of the projected space are moved to the new po-
sition defined analytically. Such a change in position is easily interpreted geometrically. Moreover,
the coordinates of points of the projected space may be recalculated simultaneously, i.e. in parallel,
independently of each other. This paper has several objectives. Two implementations of Geometric
MDS are suggested and analysed experimentally. The parallel implementation of Geometric MDS
is developed for multithreaded multi-core processors. The sequential implementation is optimized
for computational speed, enabling it to solve large data problems. It is compared with the SMACOF
version of MDS. Python codes for both Geometric MDS and SMACOF are presented to highlight
the differences between the two implementations. The comparison was carried out on several as-
pects: the comparative performance of Geometric MDS and SMACOF depending on the projection
dimension, data size and computation time. Geometric MDS usually finds lower stress when the
dimensionality of the projected space is smaller.
Key words: dimensionality reduction, multidimensional scaling, Geometric MDS, large-scale
data, multi-core implementation, SMACOF, Python codes.

1. Introduction

Every day we receive an enormous amount of data, information, and knowledge. Data
becomes information when it is contextualised and related to a specific problem or so-
lution. Data mining is an important part of knowledge discovery processes in various
fields and sectors, such as medicine, economics, finance, telecommunications. Data min-
ing helps uncover hidden information from vast amounts of data, which is valuable for
recognising important facts, relationships, trends, and patterns. As data sets become in-
creasingly large, more efficient ways of visualizing, analysing and interpreting the infor-
mation they contain are needed. Comprehension of data is challenging, especially when
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the data relates to a complex object, a phenomenon that is described by many parameters,
attributes, or features. Such data are called multidimensional, and the main goal is to make
some visual insight into the data set being analysed. Visual information can be perceived
much faster than textual information. For human perception, the multidimensional data
must be represented in a low-dimensional space, usually two or three dimensions.

The main task in dimensionality reduction is to represent objects with a smaller set of
more “compressed” features. Another reason for reducing the dimensionality or visual-
ization of the data is to reduce the computational load for further data processing. Dimen-
sionality reduction techniques enable the extraction of meaningful information hidden in
the data. In addition, one of the most important purposes of data visualization is to get
an idea of how close or far away certain points of the analysed multidimensional data are
from each other.

Consider the multidimensional data set as an array X = {Xi = (xi1, . . . , xin), i =
1, . . . , m} of n-dimensional data points Xi ∈ R

n, n � 3. A data point Xi is the result of
an observation of some object or phenomenon that depends on n features. Dimensionality
reduction means finding a set of coordinates (locations) of points Yi = (yi1, . . . , yid),
i = 1, . . . , m, in a lower-dimensional space (d < n), where the particular point Xi ∈ R

n

is represented by Yi ∈ R
d . If d � 3, then dimensionality reduction results can be presented

visually for more convenient human decision-making.
Dimensionality reduction or data visualization techniques play an important role in

machine learning (Murphy, 2022; Zhou, 2021; Ray et al., 2021; Dzemyda et al., 2013;
Dos Santos and Brodlie, 2004; Buja et al., 2008). Such visualization is useful, espe-
cially in exploratory analysis: they provide insights into similarity relationships in high-
dimensional data that would be unlikely to be obtained without visualization (Lee and
Verleysen, 2007; Van Der Maaten et al., 2009; Markeviciute et al., 2022; Xu et al., 2019;
Bernatavičienė et al., 2007; Kurasova and Molyte, 2011; Borg and Groenen, 2005; Dze-
myda and Kurasova, 2006; Dzemyda et al., 2013; Jolliffe, 2002; Karbauskaitė and Dze-
myda, 2015, 2016; Groenen et al., 1995). The classical dimensionality reduction methods
for data visualization include linear principal component analysis (PCA) (Jolliffe, 2002;
Jackson, 1991) and multidimensional scaling (MDS) (Torgerson, 1958; Borg and Groe-
nen, 2005; Borg et al., 2018). PCA seeks to reduce the dimensionality of the data by
finding orthogonal linear combinations (principal components) of the original variables
with the highest variance (Jackson, 1991; Medvedev et al., 2011). The interpretation of
principal components can sometimes be complex. PCA cannot cover non-linear struc-
tures consisting of arbitrarily shaped clusters or manifolds because it describes the data in
terms of a linear subspace. Since global methods such as PCA and MDS cannot represent
the local non-linear structure, there have been developed methods that preserve the raw
local distances, i.e. the values of distances between nearest neighbours. Isomap, Local
Linear Embedding (LLE), Hessian Local Linear Embedding and Laplacian Eigenmaps
are traditional methods that attempt to preserve local Euclidean distances from the origi-
nal space (Wang et al., 2021; Espadoto et al., 2021). More recent methods that focus on
local structure preservation are t-Distributed Stochastic Neighbour Embedding (t-SNE)
(Van der Maaten and Hinton, 2008) and UMAP (McInnes et al., 2018). A comprehensive
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review of dimensionality reduction methods is presented in Murphy (2022), Espadoto et
al. (2021), Wang et al. (2021), Vachharajani and Pandya (2022), Dzemyda et al. (2013),
Lee and Verleysen (2007), Van Der Maaten et al. (2009), Xu et al. (2019).

Artificial neural networks can also be applied to reduce dimensionality and visual-
ize data (Dzemyda et al., 2007). A feedforward neural network is used for a topographic,
structure-preserving, dimension-reducing transformation of data, with the additional abil-
ity to incorporate various degrees of related subjective information. There is also a neural
network architecture developed specifically for topographic mapping, known as a Self-
Organizing Map (SOM) (Kohonen, 2001; Stefanovic and Kurasova, 2011), which uses
implicit lateral connections in the output layer of neurons. SOM is a technique used for
both clustering and data dimensionality reduction (Dzemyda et al., 2007, 2013). In addi-
tion, there is a special learning rule, similar to backpropagation, which allows an ordinary
feedforward artificial neural network to learn the Sammon mapping, which is a special
case of metric MDS, in an unsupervised way. The learning rule for this type of neural
network is known as SAMANN (Mao and Jain, 1995; Ivanikovas et al., 2007; Medvedev
et al., 2011; Dzemyda et al., 2007).

An alternative view of dimensionality reduction is offered by multidimensional scal-
ing (Borg and Groenen, 2005). Multidimensional scaling (MDS) is a classical non-linear
approach that maps an original high-dimensional data set onto a lower-dimensional data
set, but does so in an attempt to preserve the proximities between the corresponding data
points. It is one of the most popular methods for multidimensional data visualization (Mur-
phy, 2022; Borg et al., 2018; Dzemyda et al., 2013). Despite the fact that MDS demon-
strates great versatility, it is computationally demanding. This can be challenging when
the data amount increases. Traditional MDS approaches are limited when analysing very
large data sets, as they require long computational time and large amounts of memory.
Until now, there have been various studies aimed at creating a new solution or modifying
the MDS to analyse large amounts of data and speed up the visualization process (Orts et
al., 2019; Qiu and Bae, 2012; Pawliczek et al., 2014; Ingram et al., 2008; Medvedev et
al., 2011; Ivanikovas et al., 2007).

The input data for MDS is a symmetric m × m matrix D = {dij , i, j = 1, . . . , m}
of proximities (similarities or dissimilarities) between the pairs of objects. More often,
the dissimilarities are used to represent the proximities, however, the formulation of the
multidimensional scaling problem and its solving methods remain the same in both cases.
A lower dissimilarity value means that the objects are more similar. As dissimilarity, dij

can be a distance between points Xi and Xj , i, j = 1, . . . , m (Dzemyda et al., 2013). The
smaller the distance, the closer the points are.

One of the most popular algorithms for MDS is SMACOF (De Leeuw, 1977; De Leeuw
and Mair, 2009). The algorithm is based on the majorization approach (Groenen et al.,
1995), which iteratively replaces the original objective function with an auxiliary ma-
jorization function that is much easier to optimize. Majorization is not just an algorithm,
it is more of a prescription for constructing optimization algorithms. The principle of ma-
jorization consists in constructing a auxiliary function that majorizes a certain objective
function (De Leeuw and Mair, 2009). Experimental studies have shown that SMACOF is
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the most accurate algorithm compared to others (Orts et al., 2019; Ingram et al., 2008).
There are a number of popular software implementations of SMACOF (De Leeuw and
Mair, 2009; Pedregosa et al., 2011; Orts et al., 2019; MATLAB, 2012).

An alternative to SMACOF the Geometric MDS proposed in Dzemyda and Saba-
liauskas (2020) and Dzemyda and Sabaliauskas (2021a), and developed in Sabaliauskas
and Dzemyda (2021), Dzemyda and Sabaliauskas (2021b, 2021c), Dzemyda et al. (2022),
Dzemyda and Sabaliauskas (2022). This will be discussed in more detail further in the
paper. Figure 1 illustrates the visualization using Geometric MDS of 10, 50, and 100-
dimensional datasets generated with Gaussian and Ellipsoidal cluster generators (Handl
and Knowles, 2005). The dimensionality of the multidimensional data has been reduced
to 2 (d = 2). The Gaussian cluster generator is based on a standard cluster model using
multivariate normal distributions, and the ellipsoidal cluster generator creates ellipsoidal
clusters with the major axis at an arbitrary orientation. For each cluster, data points are
generated at a Gaussian distributed distance from a uniformly random point on the major
axis, in a uniformly random direction, and are rejected if they lie outside the boundary
(Handl and Knowles, 2005). As the datasets are generated using cluster generators for
large high-dimensional data sets with large numbers of clusters, some noisy data may be
included. The example in Fig. 1 illustrates the use of visualization techniques to iden-
tify outliers, patterns in data in the form of clusters, relationships, and trends. The figure
clearly shows clusters of analysed data and the location of individual multidimensional
data among the rest.

The novelty of this paper consists in the experimental investigation of parallelization
of recently developed Geometric Multidimensional Scaling. The process of paralleliza-
tion can lead to faster dimensionality reduction and data visualization process and to the
possibility to process a large-scale multidimensional data. Theoretically proved properties
of Geometric MDS are applied in parallelization. In addition, Geometric MDS is also ex-
perimentally compared with SMACOF, which is one of the most popular implementations
of MDS. It was found that Geometric MDS is superior to the SMACOF in most cases.

2. Geometric MDS: Multidimensional Scaling From a Geometric Point of View

MDS looks for coordinates of points Yi representing Xi in the lower-dimensional Eu-
clidean space Rd by minimizing the stress function (Dzemyda et al., 2013). There are sev-
eral MDS implementations with different stress functions (see review in Dzemyda et al.,
2013). However, their minimization is rather complicated. In Dzemyda and Sabaliauskas
(2020), Sabaliauskas and Dzemyda (2021), Dzemyda and Sabaliauskas (2021a, 2021c) a
new approach, called Geometric MDS, with low computational complexity is proposed,
making metric MDS applicable to large-scale data. This method is valuable and advanta-
geous because the stress function and the multidimensional scaling have been considered
from a geometrical point of view. The new interpretation of the stress function allows us
to find the proper step size and direction of descent forward to the minimum of the stress
function analytically, if we consider and move a single point of the projected space. A spe-
cial property of the new approach is that there is no need for an analytical expression of
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Fig. 1. Examples of dimensionality reduction results obtained using Geometric MDS.

the stress function. Even more, no linear search, which is used for local descent in opti-
mization, is needed. Theoretical investigation showed that the step direction determined
by Geometric MDS coincides with the direction of the steepest descent method (Dzemyda
and Sabaliauskas, 2021a). The step size found analytically is such that it guarantees stress
reduction in that direction.

A Geometric MDS has the advantage that it can use the simplest stress function, and
there is no need to normalize it based on the number of data points and the scale of prox-
imities. In Dzemyda and Sabaliauskas (2021a) it is shown that Geometric MDS does not
depend on the scale of proximities and can therefore use a simple stress function, such as
a raw stress function:

S(Y1, . . . , Ym) =
m∑

i=1

m∑
j=i+1

(
dij − d∗

ij

)2
, (1)



304 G. Dzemyda et al.

where d∗
ij is the Euclidean distance between points Yi and Yj in a lower-dimensional space:

d∗
ij =

√√√√ d∑
l=1

(yil − yjl)2. (2)

The optimization problem is to find the minimum of the function S(·) (1), and the
optimal coordinates of the points Yi = (yi1, . . . , yid), i = 1, . . . , m:

min
Y1,...,Ym∈Rd

S(Y1, . . . , Ym). (3)

Let there be some initial configuration of points Y1, . . . , Ym. The simplest way to min-
imize the stress S(·) by Geometric MDS is a consecutive changing of positions of sep-
arate points Y1, . . . , Ym many times (iterations). This realization is denoted by GMDS1.
One iteration of GMDS1 changes all points Yi = (yi1, . . . , yid) in consecutive order
when i runs from 1 to m once. Here we compute a new position Y ∗

i = (y∗
i1, . . . , y

∗
id ) of

Yi = (yi1, . . . , yid) when the positions of remaining points Y1, . . . , Yj−1, Yj+1, . . . , Ym

are fixed, and update Yj by Y ∗
j then. So, Geometric MDS recalculates the coordinates of

a single d-dimensional point Yj at each step, and one of its iterations consists of m steps.
The result is a new point Y ∗

j . The stopping condition may be the number of iterations or
the value of decrease of the stress function (1). Convergence of this algorithm to the local
minimum of the stress is proved.

The core formula of Geometric MDS, when defining the transition from Yj to the new
position Y ∗

j , is as follows:

Y ∗
j = 1

m − 1

m∑
i=1
i �=j

Aij , (4)

where the point Aij lies on the line between Yi and Yj , i �= j , at a distance dij from Yi

(see Dzemyda and Sabaliauskas, 2020; Dzemyda and Sabaliauskas, 2021a; Sabaliauskas
and Dzemyda, 2021):

Aij = Yi + (Yj − Yi)
dij

d∗
ij

. (5)

Let’s consider a generalized way to update the entire set of points Y = {Y1, . . . , Ym}
to Y ∗ = {Y ∗

1 , . . . , Y ∗
m}. The main equation of Geometric MDS (4) is used for defining

the transition from Yj to the new position Y ∗
j . The raw stress function (1) decreases af-

ter Yj goes to Y ∗
j , that is, moving any of the projected points by the Geometric MDS

method reduces the stress (Dzemyda and Sabaliauskas, 2021a). But in the generalized
scenario, all points Y1, . . . , Ym change their coordinates to Y ∗

1 , . . . , Y ∗
m simultaneously

and independently of each other during a single iteration of stress minimization. There-
fore, we perform a simultaneous repositioning of all points Y1, . . . , Ym of the projected
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space in the directions determined by the Geometric MDS strategy for individual points.
We update Y1, . . . , Ym by Y ∗

1 , . . . , Y ∗
m after all the points Y ∗

1 , . . . , Y ∗
m are computed, only.

This realization is denoted by GMDSm. One iteration of GMDSm changes all points
Yi = (yi1, . . . , yid) simultaneously once. The convergence is proved theoretically in Dze-
myda and Sabaliauskas (2022).

3. Multi-Core Implementation of Geometric MDS

The GMDSm version of the Geometric MDS updates all points Y1, . . . , Ym in a lower
dimension simultaneously and independently of each other. This enables the use of parallel
computing for updating each Yi independently, i.e. in parallel (see Algorithm 1). Such
possibility of parallelization has been investigated further in this paper utilising multi-
core processing. The computational resources of a single personal computer were used in
this work. Experiments using different number of CPU threads were performed to obtain
preliminary estimates of the efficiency of multi-core implementation of GMDSm.

The purpose of the experiment is to compare the time required to compute new points
Y ∗

1 , . . . , Y ∗
m in the projected space from Y1, . . . , Ym, when using a sequential program-

ming implementation of GMDSm with the computing power of one CPU core (single
thread), and respectively when using a parallel algorithm using 2, 4, 6, 8, 10, 12 CPU
threads. Here each point Y ∗

j is computed using Eq. (4), and all points Y1, . . . , Ym change
their coordinates to Y ∗

1 , . . . , Y ∗
m at once simultaneously and independently of each other

during a single iteration. One iteration is a recalculation (optimal updating) of all points
Yi = (yi1, . . . , yid), i = 1, . . . , m once. The pseudo-code of the algorithm used for exper-
iments is provided in Algorithm 1 (Dzemyda et al., 2022). Note that only the time taken
to compute the new coordinates was measured during the experiments (see the part of
Algorithm 1 that is marked as running in parallel). The California Housing dataset (Pace
and Barry, 1997) was used for the experiments. The dataset consists of data collected in
the 1990 California Census, it has 20640 examples of block groups, each containing an
average of 1425.5 people living in a geographically compact area. There are 10 different
features per example: 8 numeric attributes, one predictive attribute and the target. For pre-
liminary experiments and due to limited computing resources, only part of the data was
used (see Table 1), i.e. data of 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500 and
5000 observations were analysed, and the dimensionality of the multidimensional data
was reduced to 2. This increase in data size reveals a trend which demonstrates that with
further increases in data size, the use of parallel computing becomes more efficient. The
experiments resulted in an average dependence of the time to calculate new point coordi-
nates (without taking into account the full visualization process) on the size of the data
when using different numbers of CPU threads for parallel processing. Each experiment
was repeated 10 times to obtain more reliable data, so Table 1 presents the average value
of the generalized data. For the experiments we used an AMD Ryzen 5 2600 processor,
4000 MHz (6 cores, 12 threads) with high multiprocessor performance, with 16GB of
DDR4-2666 1333 MHz RAM, and the Python-Anaconda (Anaconda, 2022) environment
was used as the software.
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Algorithm 1: A parallel Geometric MDS algorithm for simultaneous calculation
of new points Y ∗

j in the projected space
Data: n is the dimensionality of data, m is the number of data points, d is the

dimensionality of the projected space;
D = (dij ) is a symmetric m × m distance matrix containing the distances, taken
pairwise, between n-dimensional data points;
iterations is the number of transitions from Y1, . . . , Ym to the new position
Y ∗

1 , . . . , Y ∗
m. Y1, . . . , Ym is a set of coordinates of points in a lower-dimensional

space (d < n), where the particular point Xi ∈ R
n, i = 1, . . . , m is represented

by Yi ∈ R
d . One iteration is a change of all points Yi = (yi1, . . . , yid) once;

j0 is an index of the point among Y1, . . . , Ym, whose coordinates will be
recalculated during one iteration.
Result: Y ∗ is m × d matrix of the projected points; S1 – value of stress function
Y ← initial values of m × d matrix;
for it ← 1 to iterations do

foreach j0 ∈ {1, . . . , m} in parallel do
foreach i ∈ {1, . . . , m} \ {j0} do

w ← dij0/

√∑d
k=1 (yik − yj0k)

2;
for k ← 1 to d do

Aik ← yik + (yj0k − yik)w;
end

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Working Parallel
end
for k ← 1 to d do

y∗
j0k

← 1
m−1

∑m
j=1,j �=j0 Ajk;

end
Yj0 ← Y ∗

j0;
/* Y ∗

j0 are final coordinates of the optimized point */
end

end
for i ← 1 to m do

dii ← 0;
for j ← i + 1 to m do

d∗
ij ←

√∑d
k=1(y

∗
ik − y∗

jk)
2;

d∗
ji ← d∗

ij ;
/* d∗

ij is a symmetric m x m distance matrix containing the distances,
taken pairwise, between d-dimensional data points*/

end
end
S1 ← S(Y ∗

1 , . . . , Y ∗
m). /* MDS stress S(·) defined by (1) */



Geometric MDS Performance for Large Data Dimensionality Reduction and Visualization 307

Table 1
Average dependence of the computation time of new coordinates (not considering the complete visualization

process) on the data size when using different numbers of CPU threads for parallel processing, n = 8; the
dimensionality of multidimensional data was reduced to 2 (d = 2).

Number of
points, m

Sequential
algorithm

Number of CPU threads (parallel processing)
2 4 6 8 10 12

100 0.0445 0.6492 0.7018 0.8365 1.0246 1.2450 1.3315
500 1.1770 1.1783 0.9902 1.0372 1.2384 1.4430 1.5087
1000 4.8455 2.9246 1.9148 1.7087 1.9091 2.0435 2.0459
1500 10.8324 5.8416 3.4209 2.8879 2.9647 3.0228 3.0353
2000 19.1812 9.8804 5.5490 4.3496 4.3921 4.4029 4.3415
2500 30.3274 15.3864 8.2581 6.2743 6.3550 6.2527 6.2111
3000 43.6203 21.5616 11.6450 8.7684 8.7479 8.6064 8.2878
3500 59.4401 28.9800 15.8067 11.5609 11.2593 11.0542 10.6939
4000 79.0386 37.7887 20.7712 15.1054 14.3880 14.3113 13.4704
4500 99.2351 47.8711 25.8535 18.8063 18.0433 17.4048 16.8381
5000 124.6468 59.0778 31.7166 23.1730 22.3510 21.3549 20.6990

Fig. 2. Average dependence of the computation time of new coordinates (not taking into account the complete vi-
sualization process) on the size of the data, when using different numbers of CPU threads for parallel processing,
n = 8.

The results obtained (see Table 1 and Fig. 2) demonstrate that even using two CPU
threads for parallel processing, it is possible to achieve significant process speedup (on
average up to 2 times) compared to sequential computing. The results obtained conclude
that when using more than two processor threads for parallel computing, it is possible to
increase the speed of the process of calculating new coordinates in the projected space
on average up to 6 times. It is also worth noting that the difference in time increases with
increasing the size of the analysed data, that is, the larger the size of the data used for vi-
sualization, the more efficient the process of parallel computing (see Fig. 2). It should be
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noted that these data were obtained as a result of initial experiments, using the computa-
tional power of a personal computer. Consider also that the CPU used for the experiments
had 6 cores and 12 threads, so, as can be seen from the results, the efficiency of calcula-
tions using more than 6 threads is not high. The results are promising, which indicates the
feasibility of using Geometric MDS to visualize large-scale multidimensional data using
the computing power of a supercomputer or cluster for parallel computing.

4. Sequential Implementation of Geometric MDS

Although MDS demonstrates great versatility, it is computationally expensive and not
scalable, and requires handling the entire data distance or other proximity matrix. This
can be challenging when we deal with large-scale data. In this section, we propose the
optimized Python implementation of GMDSm for sequential computations.

MDS-type algorithms require to update a matrix of m × m of all pairwise Euclidean
distances d∗

ij between points Yi and Yj , i.e. for m points a m × m matrix is required, each
entry of which defines a non-negative distance between the pair of points. Calculations of
Euclidean distance occur frequently in machine learning and computer vision (Albanie,
2019; Song et al., 2016). The element of the distance matrix is defined by (2).

However, as noted in Albanie (2019), the Euclidean distance matrix can be computed
in another way, which is equivalent to (2):

(
d∗
ij

)2 = (Yi − Yj )(Yi − Yj )
T = ‖Yi‖2 − 2YiY

T
j + ‖Yj‖2, (6)

where the first and last terms are the norms of vectors and can be calculated separately.
This method defined by (6) of calculating the Euclidean distance matrix has been im-

plemented and used in Geometric MDS Python programming implementation. Applying
(6) allows to speed up the visualization significantly because of much simpler calcula-
tions, and also allows to extend the dimensionality reduction for relatively large-scale
data. Python function code for calculating distance matrix from a given m × d matrix
Y = (Yi = (yi1, . . . , yid), i = 1, . . . , m) is presented in Listing 1. This code can be used
to compute a m × m distance matrix from m × n matrix X = (Xi = (xi1, . . . , xin)),
i = 1, . . . , m, too.

The algorithm in Listing 1 returns 10−5 values on the diagonal of the proximity matrix
and in other situations when points among Xi and Xj coincide (the coincidence is only
possible before Geometric MDS starts). This avoids dividing by zero for further calcula-
tions.

The Geometric MDS and SMACOF programming implementation code for Python
has been optimized for computational speed. The Geometric MDS stress minimization
method as well as the SMACOF implementation are featured by the fact that all points
in low-dimensional space change their coordinates simultaneously and independently of
each other during one iteration of stress minimization. We provide a function code im-
plemented to calculate new coordinates of points in d-dimensional space in one iteration
using Geometric MDS and SMACOF (see Listings 2 and 3), as well as the code of a fully
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1 import numpy as np
2
3 def euclidean_distances(Y):
4 Q = np.einsum("ij,ij->i", Y, Y)[:, np.newaxis]
5 distances = -2 * Y @ Y.T
6 distances += Q
7 distances += Q.T
8 np.maximum(distances, 1e-10, out = distances)
9 return np.sqrt(distances)

Listing 1. Python function code for calculating distance matrix.

1 #dm is a symmetric m x m matrix of proximities between n-dimensional
data points;

2 #Y is m x d matrix of the projected points (initial configuration of
points);

3 #Y_new is matrix of size m x d of new positions of projected points.
4 def correction(dm, dist, Y):
5 B = 1 - np.divide(dm, dist)
6 B[np.arange(len(B)), np.arange(len(B))] -= B.sum(axis = 1)
7 Y_new = Y + 1 / (len(Y) - 1) * np.dot(B, Y)
8 return Y_new

Listing 2. Python function code for calculating new points Y ∗ = {Y ∗
1 , . . . , Y ∗

m} in a low-dimensional space
using Geometric MDS.

1 #dm is a symmetric m x m matrix of proximities between n-dimensional
data points;

2 #Y is m x d matrix of the projected points (initial configuration of
points);

3 #Y_new is matrix of size m x d of new positions of projected points.
4 def correction2(dm, dist, Y):
5 B = -np.divide(dm, dist)
6 B[np.arange(len(B)), np.arange(len(B))] -= B.sum(axis = 1)
7 Y_new = 1 / len(Y) * np.dot(B, Y)
8 return Y_new

Listing 3. Python function code for calculating new points Ŷ ∗ = {Ŷ ∗
1 , . . . , Ŷ ∗

m} in a low-dimensional space
using SMACOF (optimized version of SMACOF, referred to as SMACOF-Fast).

working Python program that implements the sequential Geometric MDS algorithm (see
Listing 4), where the stopping condition for stress (1) minimization is either the iteration
number or the accuracy. In one iteration (see Listings 2 and 3), the coordinates of all points
in the projected space are recalculated once. Listing 3 presents the function code for calcu-
lating new coordinates using SMACOF, adapted from the scikit-learn library (Pedregosa
et al., 2011) and updated to improve computation speed (this implementation is denoted
as SMACOF-Fast). In this implementation, the stress majorization, which is also known
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1 #dm is a symmetric m x m matrix of proximities between n-dimensional
data points;

2 #Y is m x d matrix of the projecting points (initial configuration of
points);

3 #eps refers to the accuracy of the final stress value;
4 #max_it is a maximum number of iterations;
5 #dist is a distance m x m matrix of points Y;
6 def GMDSm(dm, Y, eps, max_it):
7 S_old, it = np.inf, 0
8 np.fill_diagonal(dm, 1e-5)
9 while it < max_it:

10 dist = euclidean_distances(Y)
11 S = np.sum((dm - dist) ** 2) / 2
12 if abs(S_old - S) < eps:
13 break
14 Y = correction(dm, dist, Y)
15 #use Y = correction2(dm, dist, Y) for SMACOF-Fast
16 S_old = S
17 it += 1
18 return Y

Listing 4. Main program of Geometric MDS.

as the Guttman transform, guarantees monotonic stress convergence and is more powerful
than traditional methods such as gradient descent.

Geometric MDS becomes the main competitor of SMACOF. We would like to high-
light the main differences between the two algorithms. More detailed theoretical compar-
ison of them is provided in Dzemyda and Sabaliauskas (2022).

At first, we define a Geometric MDS step from point Yj to Y ∗
j , j = 1, . . . , m that

calculates new coordinates of point Y ∗
j :

Y ∗
j = Yj + 1

m − 1

m∑
i=1

(Yi − Yj )fij , fij = 1 − dij

d∗
ij

, fii = 0. (7)

SMACOF is an iterative procedure that calculates the Guttman transform (Guttman,
1968) at each iteration and updates simultaneously the coordinates of m points Yj =
(yj1, . . . , yjd), j = 1, . . . , m:

Ŷ ∗ = 1

m
B(Y)Y, (8)

where Ŷ ∗
j = (ŷ∗

j1, . . . , ŷ
∗
jd), j = 1, . . . , m are new points, Y and Ŷ ∗ are m × d matrices

of coordinates of points Yj and Ŷ ∗
j , respectively, B = B(Y ) is m×m matrix with elements

Bij = −dij

d∗
ij

, Bii = −
m∑

j=1
j �=i

Bij , i, j = 1, . . . , m. (9)
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It is easy to check that SMACOF works very similarly to Geometric MDS. By calculating
coordinates of point Ŷ ∗

j , j = 1, . . . , m, (8) and (9) can be expressed as

Ŷ ∗
j = 1

m

m∑
i=1

(Yj − Yi)dij

d∗
ij

. (10)

It is proved in Dzemyda and Sabaliauskas (2022) that both Geometric MDS and SMACOF
make a step from the point Yj to its new position Y ∗

j or Ŷ ∗
j , respectively in the same

direction with different step size. The step size by Geometric MDS is longer by m
m−1

times.
Geometric MDS can be expressed in matrix form as well:

Y ∗ = Y + 1

m − 1
B̂(Y )Y, (11)

where Y ∗
j = (y∗

j1, . . . , y
∗
jd), j = 1, . . . , m are new points, Y and Y ∗ are m × d matrices

of coordinates of points Yj and Y ∗
j , respectively, B̂ = B̂(Y ) is m×m matrix with elements

B̂ij = 1 − dij

d∗
ij

, B̂ii = −
m∑

j=1
j �=i

B̂ij , i, j = 1, . . . , m. (12)

4.1. Computation Time Cost by Geometric MDS and SMACOF

The dimensionality reduction performance was compared using SMACOF (from the
scikit-learn library, Pedregosa et al., 2011), SMACOF-Fast (Listing 3) and Geometric
MDS algorithms (Listing 2). Experiments were carried out using:

• randomly generated sets of 10-dimensional data points Xi = (xi1, . . . , xid), i =
1, . . . , m, with coordinates uniformly distributed in the interval (0, 1);

• random proximity matrices with elements uniformly distributed in the interval (0, 1).

The dimensionality was reduced to d = 2. After one iteration, the time taken to cal-
culate the new coordinates of the point positions in the projected space was measured and
the stress value S(·) defined by (1) was obtained. Data with different number of points
m were used: 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 15000, and 20000.
In order to obtain more accurate and reliable results, each experiment was repeated 100
times. The results of these experiments are shown in Tables 2 and 3. Since the number
of computational operations using Geometric MDS and SMACOF-Fast is approximately
the same (it can be concluded from Listing 2 and Listing 3), the time required to compute
new coordinates using Geometric MDS and SMACOF-Fast is about the same.

The dependency of the calculation time on a number of points using Geometric MDS
(see Listing 2) and SMACOF (Pedregosa et al., 2011) is shown in Fig. 3. The number m

of points (m = 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 15000, and 20000)
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Table 2
Average dependency of time required to compute new coordinates and Stress function values per iteration on data size when n = 10, using SMACOF-Fast, SMACOF and

Geometric MDS.

Ratio

Number of
points, m

SMACOF SMACOF-Fast Geometric MDS SMACOF/
SMACOF-Fast

Geometric
MDS/SMACOF-Fast

Stress Time, s Stress Time, s Stress Time, s Stress ratio Time ratio Stress ratio Time ratio

10 11.6 0.00019 11.6 0.00003 11.7 0.00003 1.0000000 7.3152985 1.0095220 1.2097938
20 66.7 0.00036 66.7 0.00005 66.7 0.00006 1.0000000 6.9684499 1.0011044 1.1193416
50 479.1 0.00056 479.1 0.00009 478.8 0.00009 1.0000000 6.3983110 0.9992541 1.0824801
100 2128.1 0.00093 2128.1 0.00016 2127.0 0.00017 1.0000000 5.9893883 0.9995029 1.0680442
200 8946.6 0.00194 8946.6 0.00035 8944.1 0.00037 1.0000000 5.5188379 0.9997245 1.0489429
500 51188.6 0.00885 51188.6 0.00246 51183.4 0.00267 1.0000000 3.5984986 0.9998969 1.0861585
1000 218604.8 0.03845 218604.8 0.01419 218594.0 0.01452 1.0000000 2.7084907 0.9999505 1.0227548
2000 894694.9 0.18151 894694.9 0.06169 894672.8 0.06175 1.0000000 2.9422145 0.9999753 1.0009971
5000 5106657.3 1.15621 5106657.3 0.32358 5106605.3 0.32322 1.0000000 3.5731957 0.9999898 0.9988961
10000 21892993.0 5.06069 21892993.0 1.27452 21892881.6 1.26265 1.0000000 3.9706513 0.9999949 0.9906829
15000 59857709.1 14.66615 59857709.1 3.51422 59857507.2 3.46431 1.0000000 4.1733769 0.9999966 0.9857980
20000 127201601.7 32.07792 127201601.7 7.49513 127201281.2 7.45024 1.0000000 4.2798321 0.9999975 0.9940104
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Table 3
Average dependence of the time required to compute new coordinates and Stress function values per iteration on the data size on random proximity matrices whose element

takes uniformly distributed values in the interval (0, 1), using SMACOF-Fast, SMACOF and Geometric MDS.

Ratio

Number of
points, m

SMACOF SMACOF-Fast Geometric MDS SMACOF/
SMACOF-Fast

Geometric
MDS/SMACOF-Fast

Stress Time, s Stress Time, s Stress Time, s Stress ratio Time ratio Stress ratio Time ratio

10 3.812807 0.00018 3.812807 0.00003 3.738581 0.00003 1.00000000 6.20922293 0.98053234 1.01140901
20 22.02273 0.00036 22.02273 0.00006 21.81476 0.00006 1.00000000 6.34562798 0.99055667 1.02805624
50 164.0261 0.00057 164.0261 0.00010 163.6571 0.00010 1.00000000 6.00706317 0.99774989 1.02165017
100 788.3272 0.00112 788.3272 0.00017 787.7029 0.00017 1.00000000 6.75047562 0.99920800 1.02180998
200 3295.794 0.00230 3295.794 0.00035 3294.927 0.00035 1.00000000 6.49822251 0.99973703 0.99185505
500 19294.97 0.00888 19294.97 0.00272 19293.7 0.00286 1.00000000 3.26174940 0.99993376 1.04896365
1000 83109.29 0.03834 83109.29 0.01447 83107.34 0.01415 1.00000000 2.65000273 0.99997652 0.97795314
2000 339234.9 0.17323 339234.9 0.05924 339231.9 0.05665 1.00000000 2.92438158 0.99999104 0.95639967
5000 1940633 1.15612 1940633 0.30542 1940628 0.29682 1.00000000 3.78540252 0.99999716 0.97186003
10000 8348942 5.42154 8348942 1.22316 8348932 1.23237 1.00000000 4.43240329 0.99999878 1.00752752
15000 22765379 15.06911 22765379 3.37158 22765362 3.44193 1.00000000 4.46944395 0.99999926 1.02086564
20000 48401588 32.37652 48401588 7.35390 48401562 7.41715 1.00000000 4.40263131 0.99999946 1.00860033
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Fig. 3. Dependence of computation time on the number of points when reducing the dimensionality of 10-
dimensional data (n = 10) to d = 2. The number of points (m = 10, 20, 50, 100, 200, 500, 1000, 2000, 5000,
10000, 15000, and 20000) is given in a logarithmic scale. All results are averaged, as a result of each experiment
being repeated 100 times to calculate one iteration.

Fig. 4. Dependence of computation time on the number of points when reducing the dimensionality of 10-
dimensional data (n = 10) to d = 2. The time of calculation and the number of points (m = 10, 20, 50, 100,
200, 500, 1000, 2000, 5000, 10000, 15000, and 20000) are given in a logarithmic scale. All results are averaged,
as a result of each experiment being repeated 100 times to calculate one iteration.

is given in a logarithmic scale. Each experiment was repeated 100 times, so the figures
summarise the results with the average time and the value of the Stress function for each
case of m. In order to provide the results in a more informative form, and to emphasize the
differences in the time required to calculate new coordinates using Geometric MDS (see
Listing 2) and SMACOF (Pedregosa et al., 2011), the time of calculation and the number
of points are additionally given in a logarithmic scale in Fig. 4. The results demonstrate
that Geometric MDS (Listing 2) outperforms the SMACOF (from the scikit-learn library,
Pedregosa et al., 2011) in all cases in terms of the computation time required to recalculate
the coordinates of new points Y1, . . . , Ym in the projected space. Comparing the results
obtained using SMACOF, SMACOF-Fast and Geometric MDS, it can be observed that
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Fig. 5. Stress comparison between Geometric MDS and SMACOF depending on the number of points m and
and the dimensionality of the projected space d.

with increasing data size Geometric MDS requires less computing time and the resulting
stress is smaller than that by SMACOF under the same conditions (see Fig. 4, Tables 2
and 3). Meanwhile, the time required to recalculate new coordinates using Geometric
MDS and SMACOF-Fast is approximately the same.

4.2. Comparative Efficiency of Geometric MDS and SMACOF

To compare which method, Geometric MDS or SMACOF, better reduces the MDS stress
S(·) defined by (1), we tested these methods on random proximity matrices whose ele-
ments take uniformly distributed values in the interval (0, 1). 101 tests were performed
with different m = 3, . . . , 1000 and d = 1, . . . , 30. The experiments were carried out
using the programming implementations provided earlier in this section: SMACOF-Fast
based on Listing 3 and Geometric MDS based on Listing 2. The results of the experiments
are given in Fig. 5, which visually shows which algorithm, SMACOF or Geometric MDS,
get a smaller value of the stress function S(·) after updating the points Y1, . . . , Ym only
once, i.e. after one iteration, depending on the number m of points and the dimensionality
d of the projected space. The red colour indicates cases in which SMACOF stress was
superior to Geometric MDS in all cases, the light red indicates cases in which SMACOF
stress was superior to Geometric MDS in more cases, the light green indicates cases in
which Geometric MDS stress was superior to SMACOF in more cases, and the green
indicates cases in which Geometric MDS stress was superior to SMACOF in all cases.

Figure 5 discloses a very interesting and essential difference between the performance
of Geometric MDS and SMACOF. Geometric MDS finds smaller stress when the dimen-
sionality of projected space is lower. This is particularly important for the multidimen-
sional data visualization task.
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Fig. 6. Stress comparison between Geometric MDS and SMACOF depending on the number of points m and
the dimensionality n, when reducing the dimensionality to d = 2.

In Fig. 5, we present a curve that would allow us to choose either Geometric MDS or
SMACOF in order to get a better stress after their first step and assuming that the values
of the elements of the symmetric distance matrix are uniformly distributed in the interval
(0, 1). The upper part of the parabola was used to determine the distinguishing curve. The
optimization package of the MAPLE software (Bernardin et al., 2021) was used to define
the coefficients in the equation that is as follows in this particular case:

f (m) ≈ 0.003646m + 0.362826
√

m − 3 + 6.782796.

Particular case is d = 2, because it is the most used in multidimensional data visual-
ization. Figure 6 illustrates the values of the stress function S(·) depending on the number
of points m and the dimensionality n of the analysed multidimensional data. By random
generating a set of m n-dimensional points X1, . . . , Xm, the distance matrix m × m was
calculated. Then a random set of 2-dimensional (d = 2) points Y1, . . . , Ym was selected
as a starting position for optimization of the stress. The coordinates of these points were
recalculated in one iteration using Geometric MDS and SMACOF (see Listings 2 and 3).
The colours in Fig. 6 were labelled using the same rules as in Fig. 5: red means that in
101 such independent trials, SMACOF gave better stress in all cases, light red means that
SMACOF gave better stress in more cases than Geometric MDS, light green means that
Geometric MDS gave better stress in more cases than Geometric MDS but not in all cases,
and light green means that Geometric MDS gave better stress in all cases. Figure 6 shows
visually whether Geometric MDS or SMACOF gives lower stress depending on the num-
ber of points m and on the dimensionality n after one iteration of 101 tries. The results in
Fig. 6 can be useful for choosing an appropriate method when the dimensionality n of the
data to be analysed and the number of points n are known.
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5. Conclusions

A new Geometric MDS method with the low computational complexity has been proposed
in Dzemyda and Sabaliauskas (2021a, 2022). Geometric MDS provides an iterative pro-
cedure to minimize MDS stress where coordinates of a particular point of the projected
space are moved to a new position defined analytically. Such a change in position is easily
interpreted geometrically. Moreover, the coordinates of points of the projected space may
be recalculated simultaneously, i.e. in parallel, independently of each other during one
iteration of stress minimization. Two implementations of Geometric MDS are suggested
and analysed experimentally: parallel and sequential.

A parallel implementation of Geometric MDS is developed for dimensionality reduc-
tion using multithreaded multi-core processors. Based on the results obtained, we can
claim that Geometric MDS allows to implement parallel computing using multithreaded
multi-core processors, as a result, the time to calculate new coordinates of points in the
low-dimensional space may be reduced by 6 times on average, depending on the data size.

The sequential implementation given in this paper is optimized for computational
speed, enabling it to solve large data problems. It is compared with the SMACOF version
of MDS. Python codes for both Geometric MDS and SMACOF are presented to high-
light the differences between the two implementations. These codes were optimized for
computational speed. The comparison was carried out on several aspects: the comparative
performance of Geometric MDS and SMACOF depending on the projection dimension,
data size and computation time. Geometric MDS usually finds lower stress when the di-
mensionality of the projected space is smaller.

SMACOF is an iterative procedure that calculates the Guttman transform. We discov-
ered that the procedure of updating lower-dimensional points by Geometric MDS is a
generalization of the Guttman transform. If we apply 1

m
instead of 1

m−1 in Eq. (7) to all
the lower-dimensional points Y1, . . . , Ym simultaneously and independently of each other
during a single iteration of stress minimization, we get the same result as with the Guttman
transform. However, it is proved in Dzemyda and Sabaliauskas (2022) that both Geomet-
ric MDS (GMDSm) and SMACOF make a step from the point Yj to its new position in
the same direction with different step size. The step size by Geometric MDS is m

m−1 times
longer. In both cases, the stress (1) decreases. Moreover, Geometric MDS allows to update
coordinates of a single point Yj , and it guarantees the decrease of the stress, too. These
are the reasons for further exploring the potential of Geometric MDS and applying the
advantages discovered.
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