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Abstract. As an extension of intuitionistic fuzzy sets, picture fuzzy sets can deal with vague, un-
certain, incomplete and inconsistent information. The similarity measure is an important technique
to distinguish two objects. In this study, a similarity measure between picture fuzzy sets based on
relationship matrix is proposed. The new similarity measure satisfies the axiomatic definition of
similarity measure. It can be testified from a numerical experiment that the new similarity measure
is more effective. Finally, we apply the proposed similarity measure to multiple-attribute decision
making.
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1. Introduction

There is a lot of vague and uncertain information in the real world; Zadeh (1965) estab-
lished the fuzzy set to handle this information. The fuzziness and uncertainty are char-
acterized by assigning a membership degree to each element. But in reality, the sin-
gle membership degree cannot adequately express the hesitancy of multiple information.
Atanassov Atanassov (1986) developed the intuitionistic fuzzy set to eliminate such situa-
tions. Intuitionistic fuzzy set consists of the membership degree and the non-membership
degree, the sum of which is not more than one. Intuitionistic fuzzy set has been widely
used in pattern recognition (Chu et al., 2014; Chen and Chang, 2015; Dhivya and Sridevi,
2019; Luo et al., 2018), decision making (Chen et al., 2016; Li and Zeng, 2015; Ngan et
al., 2018), clustering analysis (Khan and Lohani, 2016; Hwang et al., 2018; Jiang and
Jin, 2019; Wang and Mao, 2018), image processing (Bustince et al., 2007; Xu et al.,
2009) and so on. Intuitionistic fuzzy set has received extensive attention from the research
community, but it is limited when dealing with ambiguous, uncertain, incomplete, and
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inconsistent information. For example, voting questions: all voting results can be grouped
into four groups that are “vote for”, “abstain”, “vote against” and “refuse to vote”. Cuong
(2013) presents the picture fuzzy set, which is composed of the positive, the negative, the
neutral and the refusal membership degrees. It is more flexible than intuitionistic fuzzy
set in dealing with such problems. Therefore, numerous studies related to picture fuzzy
sets have become popular among various WEI domains. Wei et al. (2019) studied two
aggregation operators of a picture fuzzy set, and applied it to the safety assessment of a
construction project. Wei et al. (2021) developed some picture 2-tuple linguistic power
Hamy mean aggregation operators based on the power average and power geometric op-
erations, and used it for enterprise resource planning system selection. Zhang et al. (2020)
extended multi-attributive border approximation area comparison method to the multiple
attribute group decision making with picture 2-tuple linguistic numbers. Luo and Long
(2021) propose some picture fuzzy geometric aggregation operators, and apply it to multi-
attribute decision making questions.

As one of the research hotspots of picture fuzzy sets, similarity measure is used to
assess the similarity between two objects. Distance measures and similarity measures are
complementary and are used to illustrate differences between two matters. Recently, the
exploration of distance measures and similarity measures between picture fuzzy sets have
presented a lot of achievements. Cuong (2013) gave the Hamming distance and Euclidean
distance. Singh et al. (2018) developed two distance measures with parameters, which
contain normalized Hamming distance, normalized Euclidean distance and normalized
Hausdorff distance as special situations. Based on these distances, Singh et al. studied
a new similarity measure and applied it to assess flood disaster risk. Son (2016) introduced
a generalized distance measure, and applied it to clustering issues. Dutta (2017) pointed
out that Son’s distance measure has limitations, presented a new distance measure and
used it for medical diagnostic problems. Liu and Zeng (2019) explored some picture fuzzy
weighted, ordered weighted and hybrid weighted distance measures, and used them for
multi-attribute group decision making. Dinh and Thao (2018) presented several distance
and dissimilarity measures and applied them to pattern recognition and decision making
problems. Wei (2016) presented picture fuzzy cross-entropy, and used it for multi-attribute
decision making questions. Wei et al. (2018) introduced cosine projection model, and em-
ployed it to decision making problems. Wei and Gao (2018) proposed a normalized Dice
similarity measure with parameter, and applied it to building material recognition. Wei
(2017b) proposed a similarity measure based on cosine function, and used it for strategic
decision making issues. Luo and Zhang (2020) proposed a similarity measure based on
the constituent functions of a picture fuzzy set, and applied it to pattern recognition.

However, existing similarity measures do not take into account the relationship be-
tween four functions of the picture fuzzy set, which will lead to unreasonable results
in some cases (see Example 4.1). This study introduces a new similarity measure be-
tween picture fuzzy sets, which not only considers the four functions of picture fuzzy sets
but also considers the relationship between them. In particular, the relationship between
the refusal membership function and positive membership function, neutral membership
function, negative membership function are considered separately. A numerical example
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shows that the proposed similarity measure can conquer the defect of some existing ones.
When applied to multi-attribute decision making, reasonable and effective results can be
obtained. The rest of this paper consists of the following. In Section 2, we review primary
concepts and properties about picture fuzzy sets. In Section 3, a novel similarity measure
based on relationship matrix is proposed. In Section 4, the proposed similarity measure
is used for multi-attribute decision making. Section 5 is the conclusion.

2. Preliminaries

In this part, some basic concepts of picture fuzzy sets are reviewed. We list some existing
similarity measures that will be used later.

Definition 2.1 (See Atanassov, 1986). A intuitionistic fuzzy set A on universe X is an
object of the form:

A = {〈
μA(x), νA(x)

〉 ∣∣ x ∈ X
}
,

where μA(x): X → [0, 1] is called the degree of membership, νA(x): X → [0, 1] is called
the degree of non-membership, and μA(x), νA(x) satisfy the condition: 0 � μA(x) +
νA(x) � 1, ∀x ∈ X. πA(x) = 1 − μA(x) − νA(x) is called the degree of hesitancy.

Definition 2.2 (See Cuong, 2013). A picture fuzzy set A on universe X is an object of
the form:

A = {〈
μA(x), ηA(x), νA(x)

〉 ∣∣ x ∈ X
}
,

where μA(x): X → [0, 1] is called the degree of positive membership, ηA(x): X →
[0, 1] is called the degree of neutral membership, νA(x): X → [0, 1] is called the degree
of negative membership, and μA(x), ηA(x), νA(x) satisfy the condition: 0 � μA(x) +
ηA(x)+ νA(x) � 1, ∀x ∈ X. ρA(x) = 1 − (μA(x)+ ηA(x)+ νA(x)) is called the degree
of refusal membership. All picture fuzzy sets on universe X denoted by PFS(X).

Let D∗ = {x = (x1, x2, x3) | x ∈ [0, 1]3, x1 + x2 + x3 � 1}. An order relation on D∗
as x �1 y if and only if ((x1 � y1) ∧ (x3 � y3)) ∨ ((x1 = y1) ∧ (x3 > y3)) ∨ ((x1 =
y1) ∧ (x3 = y3) ∧ ((x2 � y2)) for x = (x1, x2, x3), y = (y1, y2, y3) ∈ D∗. Then
(D∗,�1) is a complete lattice (Cuong et al., 2016). 1D∗ = (1, 0, 0) and 0D∗ = (0, 0, 1)

are the greatest element and the smallest element in D∗, respectively.

Definition 2.3 (See Cuong et al., 2016). Let A = {〈μA(x), ηA(x), νA(x)〉 | x ∈ X} and
B = {〈μB(x), ηB(x), νB(x)〉 | x ∈ X} be two picture fuzzy sets on universe X, some
relations between A and B are defined as follows:

(1) A ⊆ B iff 〈μA(x), ηA(x), νA(x)〉 �1 〈μB(x), ηB(x), νB(x)〉 for all x∈X;
(2) A = B iff A ⊆ B and B ⊆ A;
(3) Ac = {〈νA(x), ηA(x), μA(x)〉|x ∈ X}.
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Definition 2.4 (See Singh et al., 2018). Let A = {〈μA(x), ηA(x), νA(x)〉 | x ∈ X}
and B = {〈μB(x), ηB(x), νB(x)〉 | x ∈ X} be two picture fuzzy sets on universe X,
S(A,B) : PFS(X) × PFS(X) → [0, 1] is called similarity measure between A and B,
if S(A,B) satisfies the following axioms:

(S1) 0 � S(A,B) � 1;
(S2) S(A,B) = S(B,A);
(S3) S(A,B) = 1 iff A = B;
(S4) Let C be any PFS(X), if A ⊆ B ⊆ C, then S(A,C) � S(A,B) and S(A,C) �

S(B,C).

Let A = {〈μA(xi), ηA(xi), νA(xi)〉 | xi ∈ X} and B = {〈μB(xi), ηB(xi), νB(xi)〉 |
xi ∈ X} be two picture fuzzy sets on X = {x1, x2, . . . , xn}, we review some similarity
measures between A and B, which will be used in this paper.

Dinh and Thao’s similarity measures (Dinh and Thao (2018)):

Sp1(A,B) = 1 − 1

3n

n∑
i=1

(∣∣μA(xi) − μB(xi)
∣∣ + ∣∣ηA(xi) − ηB(xi)

∣∣
+ ∣∣νA(xi) − νB(xi)

∣∣), (1)

Sp2(A,B) = 1 −
{

1

3n

n∑
i=1

(
μA(xi) − μB(xi)

)2 + (
ηA(xi) − ηB(xi)

)2

+ (
νA(xi) − νB(xi)

)2
}1/2

, (2)

Sp3(A,B) = 1 − 1

n

n∑
i=1

max
(∣∣μA(xi) − μB(xi)

∣∣, ∣∣ηA(xi) − ηB(xi)
∣∣,

∣∣νA(xi) − νB(xi)
∣∣), (3)

Sp4(A,B) = 1 −
{

1

n

n∑
i=1

max
((

μA(xi) − μB(xi)
)2

,
(
ηA(xi) − ηB(xi)

)2
,

(
νA(xi) − νB(xi)

)2)}1/2

. (4)

Wei’s similarity measures (Wei, 2017b):

Sg1(A,B)

= 1

n

n∑
i=1

μA(xi)μB(xi) + ηA(xi)ηB(xi) + νA(xi)νB(xi)√
μA(xi)2 + ηA(xi)2 + νA(xi)2

√
μB(xi)2 + ηB(xi)2 + νB(xi)2

, (5)
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Sg2(A,B) = 1

n

n∑
i=1

cos

{
π

2

[∣∣μA(xi) − μB(xi)
∣∣ ∨ ∣∣ηA(xi) − ηB(xi)

∣∣
∨ ∣∣νA(xi) − νB(xi)

∣∣]}, (6)

Sg3(A,B) = 1

n

n∑
i=1

cos

{
π

4

[∣∣μA(xi) − μB(xi)
∣∣ + ∣∣ηA(xi) − ηB(xi)

∣∣
+ ∣∣νA(xi) − νB(xi)

∣∣]}, (7)

Sg4(A,B) = 1

n

n∑
i=1

cot

[{
π

4
+ π

4

(∣∣μA(xi) − μB(xi)
∣∣ ∨ ∣∣ηA(xi) − ηB(xi)

∣∣
∨ ∣∣νA(xi) − νB(xi)

∣∣)}]
. (8)

Wei and Gao’s similarity measures (Wei and Gao, 2018):

Sw1(A,B)

= 1

n

n∑
i=1

2(μA(xi)μB(xi) + ηA(xi)ηB(xi) + νA(xi)νB(xi))

(μA(xi)2 + ηA(xi)2 + νA(xi)2) + (μB(xi)2 + ηB(xi)2 + νB(xi)2)
, (9)

Sw2(A,B)

=
∑n

i=1 2(μA(xi)μB(xi) + ηA(xi)ηB(xi) + νA(xi)νB(xi))∑n
i=1(μA(xi)2 + ηA(xi)2 + νA(xi)2) + ∑n

i=1(μB(xi)2 + ηB(xi)2 + νB(xi)2)
.

(10)

Son’s similarity measures (Son, 2016):

Ss(A,B) = 1 − N

N + max{ϕA
i , ϕB

i } + 1
n

∑n
i=1(|ϕA

i − ϕB
i |p)

1
p + 1

, (11)

where N = 1
n

∑n
i=1[�μ

p
i +�η

p
i +�ν

p
i

3 + max(�μ
p
i ,�η

p
i ,�ν

p
i )] 1

p , �μi = |μA(xi) −
μB(xi)|, �ηi = |ηA(xi) − ηB(xi)|, �νi = |νA(xi) − νB(xi)|, ϕA

i = |μA(xi) + ηA(xi) +
νA(xi)|, ϕB

i = |μB(xi) + ηB(xi) + νB(xi)|, (i = 1, 2, . . . , n).
Palash’s similarity measures (Dutta, 2017):

Sp(A,B) = 1 − M

M + 1
n

∑n
i=1(max{ϕA

i , ϕB
i } + |ϕA

i − ϕB
i |p)

1
p + 1

, (12)

where M = 1
n

∑n
i=1[�μ

p
i +�η

p
i +�ν

p
i

3 + max(�μ
p
i ,�η

p
i ,�ν

p
i )] 1

p , �μi = |μA(xi) −
μB(xi)|, �ηi = |ηA(xi) − ηB(xi)|, �νi = |νA(xi) − νB(xi)|, ϕA

i = |μA(xi) + ηA(xi) +
νA(xi)|, ϕB

i = |μB(xi) + ηB(xi) + νB(xi)|, (i = 1, . . . , n).
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3. A New Similarity Measure for Picture Fuzzy Sets

In this section, we will give a new similarity measure between picture fuzzy sets based
on a relationship matrix, which is composed of the values of the relationship between
positive membership, neutral membership, negative membership and refusal membership,
respectively.

Theorem 3.1. Let A = {〈μA(xi), ηA(xi), νA(xi)〉 | xi ∈ X} and B = {〈μB(xi), ηB(xi),

νB(xi)〉 | xi ∈ X} be two picture fuzzy sets on X = {x1, x2, . . . , xn}. The mapping
S(A,B) : PFS(X) × PFS(X) → [0, 1] is defined as follows:

S(A,B) = 1 − 1

n

n∑
i=1

√
1

6

(
IA(xi) − IB(xi)

)
M

(
IA(xi) − IB(xi)

)T
. (13)

Then S(A,B) is a similarity measure between picture fuzzy sets A and B, where IA(xi) =
[μA(xi), ηA(xi), νA(xi), ρA(xi)], IB(xi) = [μB(xi), ηB(xi), νB(xi), ρB(xi)],

M =

⎛
⎜⎜⎝

μ η ν ρ

μ 1 0 0 g

η 0 1 0 h

ν 0 0 1 l

ρ g h l 1

⎞
⎟⎟⎠,

g, h, l ∈ [0, 1], g + h + l = 1. M is called a relationship matrix.

In this relationship matrix, we know that the relation value between positive member-
ship and positive membership is 1. Similarly, the relation value between neutral mem-
berships, negative memberships, refusal memberships are 1. Since the three component
functions of picture fuzzy set are independent of each other, the relation value among pos-
itive membership, neutral membership and negative membership are 0. We assume that
the values of the relationship between the refusal membership and positive membership,
neutral membership, negative membership are g, h, l, respectively. It’s clear that g, h, l

are not greater than one, and they add up to one.

Proof. Let A = {〈μA(xi), ηA(xi), νA(xi)〉 | xi ∈ X} and B = {〈μB(xi), ηB(xi), νB(xi)〉
| xi ∈ X} be two picture fuzzy sets on X.

Taking a close explanation of the similarity measure S(A,B):

(
IA(xi) − IB(xi)

)
M

(
IA(xi) − IB(xi)

)T

=

⎛
⎜⎜⎝

μA(xi) − μB(xi)

ηA(xi) − ηB(xi)

νA(xi) − νB(xi)

ρA(xi) − ρB(xi)

⎞
⎟⎟⎠

T ⎛
⎜⎜⎝

1 0 0 g

0 1 0 h

0 0 1 l

g h l 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

μA(xi) − μB(xi)

ηA(xi) − ηB(xi)

νA(xi) − νB(xi)

ρA(xi) − ρB(xi)

⎞
⎟⎟⎠
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= (2 − 2g)
(
μA(xi) − μB(xi)

)2 + (2 − 2h)
(
ηA(xi) − ηB(xi)

)2

+ (2 − 2l)
(
νA(xi) − νB(xi)

)2 + (2 − 2g − 2h)
(
μA(xi) − μB(xi)

)
× (

ηA(xi) − ηB(xi)
) + (2 − 2g − 2l)

(
μA(xi) − μB(xi)

)(
νA(xi)

− νB(xi)
) + (2 − 2h − 2l)

(
ηA(xi) − ηB(xi)

)(
νA(xi) − νB(xi)

)
.

S(A,B) = 1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μA(xi) − μB(xi)

)2

+ (1 − h)
(
ηA(xi) − ηB(xi)

)2 + (1 − l)
(
νA(xi) − νB(xi)

)2

+ (1 − g − h)
(
μA(xi) − μB(xi)

)(
ηA(xi) − ηB(xi)

)
+ (1 − g − l)

(
μA(xi) − μB(xi)

)(
νA(xi) − νB(xi)

)
+ (1 − h − l)

(
ηA(xi) − ηB(xi)

)(
νA(xi) − νB(xi)

)]} 1
2

.

(S1) For A = {〈μA(xi), ηA(xi), νA(xi)〉 | xi ∈ X}, B = {〈μB(xi), ηB(xi), νB(xi)〉 |
xi ∈ X}, we have −1 � μA(xi) − μB(xi) � 1, −1 � ηA(xi) − ηB(xi) � 1 and
−1 � νA(xi) − νA(xi) � 1. Hence,

(
μA(xi) − μB(xi)

)2 ∈ [0, 1], (
ηA(xi) − ηB(xi)

)2 ∈ [0, 1],(
νA(xi) − νB(xi)

)2 ∈ [0, 1], (
μA(xi) − μB(xi)

)(
ηA(xi) − ηB(xi)

) ∈ [−1, 1],(
μA(xi) − μB(xi)

)(
νA(xi) − νB(xi)

) ∈ [−1, 1],(
ηA(xi) − ηB(xi)

)(
νA(xi) − νB(xi)

) ∈ [−1, 1],
1 − g, 1 − h, 1 − l, 1 − g − h, 1 − g − l, 1 − h − l ∈ [0, 1].

1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μA(xi) − μB(xi)

)2 + (1 − h)
(
ηA(xi) − ηB(xi)

)2

+ (1 − l)
(
νA(xi) − νB(xi)

)2 + (1 − g − h)
(
μA(xi) − μB(xi)

)
× (

ηA(xi) − ηB(xi)
) + (1 − g − l)

(
μA(xi) − μB(xi)

)(
νA(xi) − νB(xi)

)
+ (1 − h − l)

(
ηA(xi) − ηB(xi)

)(
νA(xi) − νB(xi)

)]} 1
2

� 1 −
{

1

3

[
(1 − g) + (1 − h) + (1 − l) + (1 − g − h) + (1 − g − l)

+ (1 − h − l)
]} 1

2 = 0.



550 M. Luo et al.

Besides,

1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μA(xi) − μB(xi)

)2 + (1 − h)
(
ηA(xi) − ηB(xi)

)2

+ (1 − l)
(
νA(xi) − νB(xi)

)2 + (1 − g − h)
(
μA(xi) − μB(xi)

)
× (

ηA(xi) − ηB(xi)
) + (1 − g − l)

(
μA(xi) − μB(xi)

)(
νA(xi) − νB(xi)

)
+ (1 − h − l)

(
ηA(xi) − ηB(xi)

)(
νA(xi) − νB(xi)

)]} 1
2

� 1.

Thus, we can get

0 � 1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μA(xi) − μB(xi)

)2 + (1 − h)
(
ηA(xi) − ηB(xi)

)2

+ (1 − l)
(
νA(xi) − νB(xi)

)2 + (1 − g − h)
(
μA(xi) − μB(xi)

)
× (

ηA(xi) − ηB(xi)
) + (1 − g − l)

(
μA(xi) − μB(xi)

)(
νA(xi) − νB(xi)

)
+ (1 − h − l)

(
ηA(xi) − ηB(xi)

)(
νA(xi) − νB(xi)

)]} 1
2

� 1.

From the above analysis, we get 0 � S(A,B) � 1.

(S2) Obviously, S(A,B) = S(B,A).
(S3)

S(A,B) = 1

⇔
{

1

3

[
(1 − g)

(
μA(xi) − μB(xi)

)2 + (1 − h)
(
ηA(xi) − ηB(xi)

)2 + (1 − l)

× (
νA(xi) − νB(xi)

)2 + (1 − g − h)
(
μA(xi) − μB(xi)

)(
ηA(xi) − ηB(xi)

)
+ (1 − g − l)

(
μA(xi) − μB(xi)

)(
νA(xi) − νB(xi)

) + (1 − h − l)

× (
ηA(xi) − ηB(xi)

)(
νA(xi) − νB(xi)

)]} 1
2 = 0

⇔ μA(xi) = μB(xi), ηA(xi) = ηB(xi), νA(xi) = νB(xi).

Then from the above analysis, we get S(A,B) = 1 if and only if A = B.
(S4) Let A = {〈μA(xi), ηA(xi), νA(xi)〉 | xi ∈ X}, B = {〈μB(xi), ηB(xi), νB(xi)〉 |

xi ∈ X} and C = {〈μC(xi), ηC(xi), νC(xi)〉 | xi ∈ X} be three PFSs that satisfy the
relation A ⊆ B ⊆ C, we have:

S(B,C) = 1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μB(xi) − μC(xi)

)2 + (1 − h)
(
ηB(xi) − ηC(xi)

)2

+ (1 − l)
(
νB(xi) − νC(xi)

)2 + (1 − g − h)
(
μB(xi) − μC(xi)

)



A New Similarity Measure for Picture Fuzzy Sets and Its Application 551

× (
ηB(xi) − ηC(xi)

) + (1 − g − l)
(
μB(xi) − μC(xi)

)(
νB(xi) − νC(xi)

)
+ (1 − h − l)

(
ηB(xi) − ηC(xi)

)(
νB(xi) − νC(xi)

)]} 1
2

,

S(A,C) = 1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μA(xi) − μC(xi)

)2 + (1 − h)
(
ηA(xi) − ηC(xi)

)2

+ (1 − l)
(
νA(xi) − νC(xi)

)2 + (1 − g − h)
(
μA(xi) − μC(xi)

)
× (

ηA(xi) − ηC(xi)
) + (1 − g − l)

(
μA(xi) − μC(xi)

)(
νA(xi) − νC(xi)

)
+ (1 − h − l)

(
ηA(xi) − ηC(xi)

)(
νA(xi) − νC(xi)

)]} 1
2

,

S(A,B) = 1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μA(xi) − μB(xi)

)2 + (1 − h)
(
ηA(xi) − ηB(xi)

)2

+ (1 − l)
(
νA(xi) − νB(xi)

)2 + (1 − g − h)
(
μA(xi) − μB(xi)

)
× (

ηA(xi) − ηB(xi)
) + (1 − g − l)

(
μA(xi) − μB(xi)

)(
νA(xi) − νB(xi)

)
+ (1 − h − l)

(
ηA(xi) − ηB(xi)

)(
νA(xi) − νB(xi)

)]} 1
2

.

For a, b, c,∈ [0, 1], a + b + c � 1, x, y, z ∈ [0, 1], x + y + z ∈ [0, 1]. 1 − g, 1 − h,

1 − l, 1 − g − h, 1 − g − l, 1 − h − l ∈ [0, 1], we define a function f as:

f (x, y, z) = 1

3

[
(1 − g)(x − a)2 + (1 − h)(y − b)2 + (1 − l)(z − c)2

+ (1 − g − h)(x − a)(y − b) + (1 − g − l)(x − a)(z − c)

+ (1 − h − l)(y − b)(z − c)
]
.

We have

∂f

∂x
= 1

3

[
2(1 − g)(x − a) + (1 − g − h)(y − b) + (1 − g − l)(z − c)

]
,

∂f

∂x

∣∣∣∣
y=b
z=c

= 1

3
(1 − g)(x − a),

∂f

∂y
= 1

3

[
2(1 − h)(y − b) + (1 − g − h)(x − a) + (1 − h − l)(z − c)

]
,

∂f

∂y

∣∣∣∣
x=a
z=c

= 1

3
(1 − h)(y − b)

and

∂f

∂z
= 1

3

[
2(1 − l)(z − c) + (1 − g − l)(x − a) + (1 − h − l)(y − b)

]
,
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∂f

∂z

∣∣∣∣
x=a
y=b

= 1

3
(1 − l)(z − c).

Therefore, ∂f
∂x

� 0, for 0 � x � a. It means that f is a decreasing function of x, when
y = b, z = c, x � a. Similarly, ∂f

∂x
� 0, for a < x � 1. It means that f is an increasing

function of x, when y = b, z = c, x > a.
In the same way, we can get ∂f

∂y
� 0 for 0 � y � b. It means that f is a decreasing

function of y, when x = a, z = c, y � b. ∂f
∂y

� 0 for b < y � 1. It means that f is an
increasing function of y, when x = a, z = c, y > b. ∂f

∂z
� 0 for 0 � z � c. It means that

f is a decreasing function of z, when x = a, y = b, z � c. ∂f
∂z

� 0 for c < z � 1. It
means that f is an increasing function of z, when x = a, y = b, z > c.

(1) Suppose that A = {〈μA(xi), ηA(xi), νA(xi)〉|xi ∈ X}, B = {〈μB(xi), ηB(xi),

νB(xi)〉|xi ∈ X} and C = {〈μC(xi), ηC(xi), νC(xi)|xi ∈ X〉} satisfying

(
μA(xi) < μB(xi) < μC(xi)

) ∧ (
νA(xi) � νB(xi) � νC(xi)

)
,

we can obtain:

f
(
μA(xi), μA(xi), μA(xi)

)
� f

(
μB(xi), ηB(xi), νB(xi)

)
� f

(
μC(xi), ηC(xi), νC(xi)

)
,

then:

f
(
μB(xi), ηB(xi), νB(xi)

)
� f

(
μC(xi), ηC(xi), νC(xi)

)
,

i.e.

1

3

[
(1 − g)

(
μB(xi) − μA(xi)

)2 + (1 − h)
(
ηB(xi) − ηA(xi)

)2 + (1 − l)

× (
νB(xi) − νA(xi)

)2 + (1 − g − h)
(
μB(xi) − μA(xi)

)(
ηB(xi) − ηA(xi)

)
+ (1 − g − l)

(
μB(xi) − μA(xi)

)(
νB(xi) − νA(xi)

)
+ (1 − h − l)

(
ηB(xi) − ηA(xi)

)(
νB(xi) − νA(xi)

)]
� 1

3

[
(1 − g)

(
μC(xi) − μA(xi)

)2 + (1 − h)
(
ηC(xi) − ηA(xi)

)2 + (1 − l)

× (
νC(xi) − νA(xi)

)2 + (1 − g − h)
(
μC(xi) − μA(xi)

)(
ηC(xi) − ηA(xi)

)
+ (1 − g − l)

(
μC(xi) − μA(xi)

)(
νC(xi) − νA(xi)

)
+ (1 − h − l)

(
ηC(xi) − ηA(xi)

)(
νC(xi) − νA(xi)

)]
.
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Thus, we have:

1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μA(xi) − μB(xi)

)2 + (1 − h)
(
ηA(xi) − ηB(xi)

)2

+ (1 − l)
(
νA(xi) − νB(xi)

)2 + (1 − g − h)
(
μA(xi) − μB(xi)

)
× (

ηA(xi) − ηB(xi)
) + (1 − g − l)

(
μA(xi) − μB(xi)

)(
νA(xi) − νB(xi)

)
+ (1 − h − l)

(
ηA(xi) − ηB(xi)

)(
νA(xi) − νB(xi)

)]} 1
2

� 1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μA(xi) − μC(xi)

)2 + (1 − h)
(
ηA(xi) − ηC(xi)

)2

+ (1 − l)
(
νA(xi) − νC(xi)

)2 + (1 − g − h)
(
μA(xi) − μC(xi)

)
× (

ηA(xi) − ηC(xi)
) + (1 − g − l)

(
μA(xi) − μC(xi)

)(
νA(xi) − νC(xi)

)
+ (1 − h − l)

(
ηA(xi) − ηC(xi)

)(
νA(xi) − νC(xi)

)]} 1
2

.

S(A,B) � S(A,C) is founded. Similarly, if we suppose a = μC , b = ηC , c = νC , then
we have S(B,C) � S(A,C).

(2) Suppose that A = {〈μA(xi), ηA(xi), νA(xi)〉 | xi ∈ X}, B = {〈μB(xi), ηB(xi),

νB(xi)〉 | xi ∈ X} and C = {〈μC(xi), ηC(xi), νC(xi)〉 | xi ∈ X} satisfying

(
μA(xi) = μB(xi) = μC(xi)

) ∧ (
νA(xi) > νB(xi) > νC(xi)

)
,

we can obtain

f
(
μA(xi), μB(xi), μC(xi)

)
� f

(
μB(xi), ηB(xi), νB(xi)

)
� f

(
μC(xi), ηC(xi), νC(xi)

)
.

Thus, we have:

1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μA(xi) − μB(xi)

)2 + (1 − h)
(
ηA(xi) − ηB(xi)

)2

+ (1 − l)
(
νA(xi) − νB(xi)

)2 + (1 − g − h)
(
μA(xi) − μB(xi)

)
× (

ηA(xi) − ηB(xi)
) + (1 − g − l)

(
μA(xi) − μB(xi)

)(
νA(xi) − νB(xi)

)
+ (1 − h − l)

(
ηA(xi) − ηB(xi)

)(
νA(xi) − νB(xi)

)]} 1
2
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� 1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μA(xi) − μC(xi)

)2 + (1 − h)
(
ηA(xi) − ηC(xi)

)2

+ (1 − l)
(
νA(xi) − νC(xi)

)2 + (1 − g − h)
(
μA(xi) − μC(xi)

)
× (

ηA(xi) − ηC(xi)
) + (1 − g − l)

(
μA(xi) − μC(xi)

)(
νA(xi) − νC(xi)

)
+ (1 − h − l)

(
ηA(xi) − ηC(xi)

)(
νA(xi) − νC(xi)

)]} 1
2

.

S(A,B) � S(A,C) is founded. Similarly, if we suppose a = μC , b = ηC , c = νC , then
we have S(B,C) � S(A,C).

(3) Suppose that A = {〈μA(xi), ηA(xi), νA(xi)〉 | xi ∈ X}, B = {〈μB(xi), ηB(xi),

νB(xi)〉 | xi ∈ X} and C = {〈μC(xi), ηC(xi), νC(xi)〉 | xi ∈ X} satisfying(
μA(xi) = μB(xi) = μC(xi)

) ∧ (
νA(xi) = νB(xi) = νC(xi)

)
∧ (

ηA(xi) � ηB(xi) � ηC(xi)
)
,

we can obtain

f
(
μA(xi), μB(xi), μC(xi)

)
� f

(
μB(xi), ηB(xi), νB(xi)

)
� f

(
μC(xi), ηC(xi), νC(xi)

)
.

Thus we have

1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μA(xi) − μB(xi)

)2 + (1 − h)
(
ηA(xi) − ηB(xi)

)2

+ (1 − l)
(
νA(xi) − νB(xi)

)2 + (1 − g − h)
(
μA(xi) − μB(xi)

)
× (

ηA(xi) − ηB(xi)
) + (1 − g − l)

(
μA(xi) − μB(xi)

)(
νA(xi) − νB(xi)

)
+ (1 − h − l)

(
ηA(xi) − ηB(xi)

)(
νA(xi) − νB(xi)

)]} 1
2

� 1 − 1

n

n∑
i=1

{
1

3

[
(1 − g)

(
μA(xi) − μC(xi)

)2 + (1 − h)
(
ηA(xi) − ηC(xi)

)2

+ (1 − l)
(
νA(xi) − νC(xi)

)2 + (1 − g − h)
(
μA(xi) − μC(xi)

)
× (

ηA(xi) − ηC(xi)
) + (1 − g − l)

(
μA(xi) − μC(xi)

)(
νA(xi) − νC(xi)

)
+ (1 − h − l)

(
ηA(xi) − ηC(xi)

)(
νA(xi) − νC(xi)

)]} 1
2

.

S(A,B) � S(A,C) is founded. Similarly, if we suppose a = μC , b = ηC , c = νC , then
we can get S(B,C) � S(A,C).

Furthermore, picture fuzzy sets A = {〈μA(xi), ηA(xi), νA(xi)〉 | xi ∈ X}, B =
{〈μB(xi), ηB(xi), νB(xi)〉 | xi ∈ X} and C = {〈μC(xi), ηC(xi), νC(xi)〉 | xi ∈ X},
A ⊆ B ⊆ C also satisfying
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(4) (μA(xi) < μB(xi) = μC(xi)) ∧ (νA(xi) � νB(xi) > νC(xi)).
(5) (μA(xi) < μB(xi) = μC(xi))∧(νA(xi) � νB(xi) = νC(xi))∧(ηB(xi) � ηC(xi)).
(6) (μA(xi) = μB(xi) < μC(xi)) ∧ (νA(xi) > νB(xi) � νC(xi)).
(7) (μA(xi) = μB(xi) = μC(xi))∧(νA(xi) > νB(xi) = νC(xi))∧(ηB(xi) � ηC(xi)).
(8) (μA(xi) = μB(xi) < μC(xi))∧(νA(xi) = νB(xi) � νC(xi))∧(ηA(xi) � ηB(xi)).
(9) (μA(xi) = μB(xi) = μC(xi)) ∧ (νB(xi) > νC(xi)) ∧ (ηA(xi) � ηB(xi)).
Similarly, these cases can be proved.
Summing up the above, Eq. (13) satisfies Definition 2.4.

Remark 3.1. Let A = {〈μA(xi), ηA(xi), νA(xi)〉 | xi ∈ X} and B = {〈μB(xi), ηB(xi),

νB(xi)〉 | xi ∈ X} be two picture fuzzy sets on X = {x1, x2, . . . , xn}, then similarity
measure between picture fuzzy sets A and B

S0(A,B) =1 − 1

n

n∑
i=1

√
1

6

(
IA(xi) − IB(xi)

)
M0

(
IA(xi) − IB(xi)

)T
, (14)

where M0 =

⎛
⎜⎜⎝

μ η ν ρ

μ 1 0 0 1/3
η 0 1 0 1/3
ν 0 0 1 1/3
ρ 1/3 1/3 1/3 1

⎞
⎟⎟⎠.

Remark 3.2. If picture fuzzy sets A and B degenerate into intuitionistic fuzzy sets, the
similarity measure

S′(A,B) =1 − 1

n

n∑
i=1

√
1

2

(
IA(xi) − IB(xi)

)
M ′(IA(xi) − IB(xi)

)T (15)

is a new similarity measure between intuitionistic fuzzy sets A and B, where IA(xi) =

[μA(xi), νA(xi), πA(xi)], IB(xi) = [μB(xi), νB(xi), πB(xi)], M ′ =
⎛
⎝

μ ν π

μ 1 0 g

ν 0 1 l

π g l 1

⎞
⎠,

and g, l ∈ [0, 1], g + l = 1.

Remark 3.3. For g = l = 1/2 in Eq. (15), we get that S′(A,B) is the similarity measure
between intuitionistic fuzzy sets A and B in the literature (Song et al., 2016).

Theorem 3.2. Let A = {〈μA(xi), ηA(xi), νA(xi)〉 | xi ∈ X} and B = {〈μB(xi), ηB(xi),

νB(xi)〉 | xi ∈ X} be two picture fuzzy sets on X = {x1, x2, . . . , xn}. The mapping
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Sw(A,B) : PFS(X) × PFS(X) → [0, 1] is defined as follows:

Sw(A,B)

= 1 −
n∑

i=1

wi

{
1

3

[
(1 − g)

(
μA(xi) − μB(xi)

)2 + (1 − h)
(
ηA(xi) − ηB(xi)

)2

+ (1 − l)
(
νA(xi) − νB(xi)

)2 + (1 − g − h)
(
μA(xi) − μB(xi)

)
× (

ηA(xi) − ηB(xi)
) + (1 − g − l)

(
μA(xi) − μB(xi)

)
× (

νA(xi) − νB(xi)
) + (1 − h − l)

(
ηA(xi) − ηB(xi)

)(
νA(xi) − νB(xi)

)]} 1
2

.

(16)

Then Sw(A,B) is a similarity measure between A and B, where wi is the weight of xi on
X, wi ∈ [0, 1] and

∑n
i=1 wi = 1.

4. Applications

In this section, a numerical example is constructed. Some of the existing similarity mea-
sures cannot produce rational results, while the proposed similarity measure can get a
logical result. Then we apply the proposed similarity measure to multi-attribute decision
making.

4.1. Numerical Comparisons

Example 4.1. By comparing the first pairs of picture fuzzy sets {A1, B1} and {A2, B2},
Sp1(A1, B1) = Sp1(A2, B2) when A1 = A2, B1 = B2, we find that similarity measures
Sp1 , Sp2 , Sp3 , Sp4 , Sg2 , Sg3 , Sg4 have the same unreasonable results. Analogously, by
comparing the other pairs of picture fuzzy sets {A3, B3}, {A4, B4}, we have irrational cases
in Sp1 , Sp3 , Sp4 , Sg1 , Sg2 , Sg4 , Sw1 , Sw2 as well. As can be seen from Table 1, there is no
unreasonable result for the proposed similarity measure. It is more suitable to distinguish
picture fuzzy sets.

4.2. Algorithm and Applications

4.2.1. Algorithm for Multi-Attribute Decision Making
Let A = {A1, A1, . . . , An} be a set of alternatives, C = {C1, C2, . . . , Cm} be a set of
evaluation attributes. The weight vectors of different attributes are represented by wj =
{w1, w2, . . . , wm}, wj > 0,

∑m
j=1 wj = 1. Suppose the picture fuzzy information is given

by decision maker’s preference expressed as δij = 〈μij , ηij , νij 〉, (i = 1, 2, . . . , n), (j =
1, 2, . . . , m). The picture fuzzy decision matrix R = (δij )n×m is constructed according
to the preference for the alternatives Ai (i = 1, 2, . . . , n). The computational steps are
explored as follows:
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Table 1
Comparisons of different similarity measures (counter-intuitive cases are in bold type).

1 2 3 4
Ai 〈0.5, 0.1, 0.4〉 〈0.4, 0.2, 0.3〉 〈0.5, 0.1, 0.4〉 〈0.4, 0.2, 0.3〉 〈0.0, 1.0, 0.0〉 〈0.0, 0.0, 1.0〉 〈0.0, 1.0, 0.0〉 〈0.0, 0.0, 1.0〉
Bi 〈0.4, 0.1, 0.4〉 〈0.5, 0.1, 0.4〉 〈0.5, 0.1, 0.3〉 〈0.3, 0.3, 0.4〉 〈0.5, 0.0, 0.5〉 〈0.6, 0.3, 0.0〉 〈0.9, 0.0, 0.1〉 〈0.7, 0.1, 0.0〉
Sp1 Dinh and Thao (2018) 0.867 0.867 0.350 0.350
Sp2 Dinh and Thao (2018) 0.884 0.884 0.299 0.256
Sp3 Dinh and Thao (2018) 0.900 0.900 0.000 0.000
Sp4 Dinh and Thao (2018) 0.900 0.900 0.000 0.000
Sg1 Wei (2017b) 0.984 0.971 0.000 0.000
Sg2 Wei (2017b) 0.997 0.997 0.000 0.000
Sg3 Wei (2017b) 0.956 0.956 0.039 0.078
Sg4 Wei (2017b) 0.650 0.650 0.000 0.000
Sw1 Wei and Gao (2018) 0.972 0.959 0.000 0.000
Sw2 Wei and Gao (2018) 0.973 0.967 0.000 0.000
Ss (p = 1) Son (2016) 0.926 0.926 0.554 0.563
Ss (p = 2) Son (2016) 0.947 0.947 0.645 0.371
Sp(p = 1) Dutta (2017) 0.906 0.906 0.484 0.495
Sp(p = 2) Dutta (2017) 0.932 0.932 0.621 0.532
S(g = 1/6, h = 1/2, l = 1/3) 0.933 0.943 0.505 0.477

Step 1. Attributes may be divided into two types: cost attribute (O) and benefit attribute
(E). We transform R = (δij )n×m into normalized picture fuzzy decision matrix N =
(γij )n×m according to the following equation:

γij =
{

δij j ∈ E,

δc
ij j ∈ O.

Step 2. Let A+ = {C+
1 , C+

2 , . . . , C+
m} be the ideal alternative. Each attribute value of the

ideal alternative is expressed by maximum picture fuzzy number, then A+ is shown as
follows:

A+ =
{

1D∗, 1D∗ , . . . , 1D∗︸ ︷︷ ︸
m times

}
.

Step 3. Calculate the similarity measure S(Ai, A
+) (i = 1, 2, . . . , n) by Theorem 3.2.

Step 4. Rank all alternatives Ai (i = 1, 2, . . . , n) in a descending order in line with the
value of the similarity. The best alternative is the one with the maximal similarity measure.

4.2.2. Applications for Multi-Attribute Decision Making
Example 4.2. Joshi and Kumar (2018) consider an Indian multinational is planning its
financial strategy in line with the group’s strategic objectives. After preliminary screen-
ing, four alternatives were obtained and determined as: A1: to invest the “Southern
Asian marketplace”, A2: to invest the “Eastern Asian marketplace”, A3: to invest the
“Northern Asian marketplace”, A4: to invest the “Local marketplace”. Evaluation at-
tribute comes from four aspects: C1: the risk analysis, C2: the growth analysis, C3:
the sociopolitical influence, C4: the environmental implication. The weight vector is
w = (0.2, 0.3, 0.1, 0.4)T. Picture fuzzy decision matrix is constructed in Table 2.

Step 1. C2 and C3 are the benefit attributes while C1 and C4 are the cost attributes, we get
the normalized picture fuzzy decision matrix in Table 3.
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Table 2
Picture fuzzy decision matrix.

C1 C2 C3 C4

A1 〈0.2, 0.1, 0.6〉 〈0.5, 0.3, 0.1〉 〈0.5, 0.1, 0.3〉 〈0.4, 0.3, 0.2〉
A2 〈0.1, 0.4, 0.4〉 〈0.6, 0.3, 0.1〉 〈0.2, 0.1, 0.7〉 〈0.2, 0.1, 0.7〉
A3 〈0.3, 0.2, 0.2〉 〈0.6, 0.2, 0.1〉 〈0.3, 0.3, 0.4〉 〈0.3, 0.3, 0.4〉
A4 〈0.3, 0.1, 0.6〉 〈0.1, 0.2, 0.6〉 〈0.2, 0.3, 0.2〉 〈0.2, 0.3, 0.2〉

Table 3
Normalized picture fuzzy decision matrix.

C1 C2 C3 C4

A1 〈0.6, 0.1, 0.2〉 〈0.5, 0.3, 0.1〉 〈0.5, 0.1, 0.3〉 〈0.2, 0.3, 0.4〉
A2 〈0.4, 0.4, 0.1〉 〈0.6, 0.3, 0.1〉 〈0.2, 0.1, 0.7〉 〈0.7, 0.1, 0.2〉
A3 〈0.2, 0.2, 0.3〉 〈0.6, 0.2, 0.1〉 〈0.3, 0.3, 0.4〉 〈0.4, 0.3, 0.3〉
A4 〈0.6, 0.1, 0.3〉 〈0.1, 0.2, 0.6〉 〈0.2, 0.3, 0.2〉 〈0.2, 0.3, 0.2〉

Table 4
The results of similarity measure S(Ai ,A

+).

Sw(Ai ,A
+) Sw(Ai ,A

+)

(g = h = l = 1/3) (g = 1/6, h = 1/2, l = 1/3)

A1 0.711 0.703
A2 0.773 0.771
A3 0.715 0.708
A4 0.641 0.627

Table 5
Ranking results.

Methods Ranking order

Sw(g = h = l = 1/3) A2 > A3 > A1 > A4
Sw(g = 1/6, h = 1/2, l = 1/3) A2 > A3 > A1 > A4

Step 2. The ideal alternative is A+ = {1D∗, 1D∗ , 1D∗ , 1D∗}.
Step 3. We calculate the similarity measure S(Ai, A

+) (i = 1, 2, 3, 4) by Theorem 3.2,
where g, h, l were selected as g = h = l = 1/3 and g = 1/6, h = 1/2, l = 1/3. The
results are shown in Table 4.

Step 4. The maximal similarity is the best one, the ranking results are shown in Table 5.
From the above results, it is clear that the best financial strategy is A2. So we suggest

the multinational to invest in Asian market. It can be seen from Table 5 that the different
parameters may cause changes in the value of similarity measure, but does not affect the
final decision. In Table 6, by comparing with the existing methods, it can be seen that our
results are the same as the methods in literature (Garg, 2017; Joshi and Kumar, 2018).
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Table 6
Comparisons with other methods.

Methods Ranking order

Garg (2017) (PFWA) A2 > A1 > A3 > A4
Garg (2017) (PFHA) A2 > A3 > A1 > A4
Joshi and Kumar (2018) A2 > A3 > A1 > A4
Sw(g = h = l = 1/3) A2 > A3 > A1 > A4
Sw(g = 1/6, h = 1/2, l = 1/3) A2 > A3 > A1 > A4

Table 7
Normalized picture fuzzy decision matrix.

C1 C2 C3 C4

A1 〈0.56, 0.34, 0.10〉 〈0.90, 0.07, 0.03〉 〈0.40, 0.33, 0.19〉 〈0.09, 0.79, 0.03〉
A2 〈0.70, 0.10, 0.09〉 〈0.10, 0.66, 0.20〉 〈0.06, 0.81, 0.12〉 〈0.72, 0.14, 0.09〉
A3 〈0.88, 0.09, 0.03〉 〈0.08, 0.10, 0.06〉 〈0.05, 0.83, 0.09〉 〈0.65, 0.25, 0.07〉
A4 〈0.80, 0.07, 0.04〉 〈0.70, 0.15, 0.11〉 〈0.03, 0.88, 0.05〉 〈0.07, 0.82, 0.05〉
A5 〈0.85, 0.06, 0.03〉 〈0.64, 0.07, 0.22〉 〈0.06, 0.88, 0.05〉 〈0.13, 0.77, 0.09〉

Table 8
The results of similarity measure S(Ai, A

+).

Sw(Ai ,A
+) Sw(Ai ,A

+)

(g = h = l = 1/3) (g = 1/6, h = 1/2, l = 1/3)

A1 0.649 0.652
A2 0.717 0.721
A3 0.718 0.724
A4 0.604 0.606
A5 0.626 0.629

Example 4.3. Wei et al. (2018) consider an organization intends to select a promising
emerging technology commercial enterprise. After their preliminary screening five enter-
prises are expressed as A1, A2, A3, A4, A5. Evaluation attribute comes from four aspects:
C1: the technical progress, C2: the potential market and market risk, C3: the sociopoliti-
cal influence, C4: the financial investment. The weight vector is w = (0.2, 0.1, 0.3, 0.4)T.
Picture fuzzy decision matrix is constructed in Table 7.

Step 1. C1, C2, C3, C4 are benefit attributes, the normalized decision matrix is picture
fuzzy decision matrix.

Step 2. The ideal alternative is A+ = {1D∗, 1D∗ , 1D∗ , 1D∗}.
Step 3. We calculate the similarity measure S(Ai, A

+)(i = 1, 2, 3, 4) by Theorem 3.2,
where g, h, l were selected as g = h = l = 1/3 and g = 1/6, h = 1/2, l = 1/3. The
results are shown in Table 8.

Step 4. The maximal similarity is the best one, we get ranking results in Table 9.
From the above discussion, it is clear that the most promising enterprise is A3. So we

suggest the organization to pick the enterprise A3. In Table 8, we can also see that the
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Table 9
Ranking results.

Methods Ranking order

Sw(g = h = l = 1/3) A3 > A2 > A1 > A5 > A4
Sw(g = 1/6, h = 1/2, l = 1/3) A3 > A2 > A1 > A5 > A4

Table 10
Comparisons with other methods.

Methods Ranking order

Wei (2017a) (PFWA) A3 > A2 > A1 > A5 > A4
Wei (2017a) (PFWG) A3 > A1 > A2 > A5 > A4
Wei (2018) (PFHWA) A3 > A2 > A1 > A5 > A4
Wei (2018) (PFHWG) A3 > A1 > A2 > A5 > A4
Sw(g = h = l = 1/3) A3 > A2 > A1 > A5 > A4
Sw(g = 1/6, h = 1/2, l = 1/3) A3 > A2 > A1 > A5 > A4

Table 11
Normalized picture fuzzy decision matrix.

C1 C2 C3 C4

A1 〈0.4, 0.3, 0.1〉 〈0.7, 0.3, 0.0〉 〈0.4, 0.3, 0.0〉 〈0.5, 0.0, 0.0〉
A2 〈0.7, 0.2, 0.0〉 〈0.4, 0.0, 0.3〉 〈0.5, 0.5, 0.0〉 〈0.4, 0.0, 0.0〉
A3 〈0.5, 0.5, 0.0〉 〈0.1, 0.4, 0.2〉 〈0.5, 0.1, 0.3〉 〈0.1, 0.4, 0.3〉

different values of parameters may lead to the changes in the value of similarity measure,
but does not affect the final decision. From Table 10, by comparing with other methods,
it can be seen that our results are consistent with the methods in Wei (2018, 2017a).

Example 4.4. Consider a supplier who wants to choose a construction company to work
with. After their preliminary screening three companies are expressed as A1, A2, A3.
Evaluation attribute come from four aspects: C1: technical support, C2: behaviour, C3:
service, C4: public praise. The weight vector is w = (0.25, 0.25, 0.25, 0.25)T. Picture
fuzzy decision matrix is constructed in Table 11.

Step 1. C1, C2, C3, C4 are benefit attributes, the normalized decision matrix is picture
fuzzy decision matrix.

Step 2. The ideal alternative is A+ = {1D∗, 1D∗ , 1D∗ , 1D∗}.
Step 3. We calculate similarity measure S(Ai, A

+)(i = 1, 2, 3, 4) by Theorem 3.1, where
g, h, l were selected as g = h = l = 1/3 and g = 1/6, h = 1/2, l = 1/3. The results are
shown in Table 12.

Step 4. The maximal similarity is the best alternative, we get the ranking results in Ta-
ble 13.

From the above discussion, it is clear that the best company is A1. So we suggest the
supplier to pick the company A1. In Table 12, we can also see that the different values of
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Table 12
The results of similarity measure S(Ai, A

+).

Sw(Ai ,A
+) Sw(Ai ,A

+)

(g = h = l = 1/3) (g = 1/6, h = 1/2, l = 1/3)

A1 0.757 0.739
A2 0.749 0.734
A3 0.657 0.645

Table 13
Ranking results.

Methods Ranking order

Sw(g = h = l = 1/3) A1 > A2 > A3
Sw(g = 1/6, h = 1/2, l = 1/3) A1 > A2 > A3

Table 14
Comparisons with other methods.

Methods Ranking order

Sp1 Dinh and Thao (2018) A1 = A2 > A3
Sp2 Dinh and Thao (2018) A1 = A2 > A3
Sp3 Dinh and Thao (2018) A1 = A2 > A3
Sp4 Dinh and Thao (2018) A1 = A2 > A3
Sg1 Wei (2017b) A1 > A2 > A3
Sg2 Wei (2017b) A1 = A2 > A3
Sg3 Wei (2017b) A1 = A2 > A3
Sg4 Wei (2017b) A1 = A2 > A3
Sw1 Wei and Gao (2018) A1 > A2 > A3
Sp(p = 1) Dutta (2017) A1 = A2 > A3
Sw(g = h = l = 1/3) A1 > A2 > A3
Sw(g = 1/6, h = 1/2, l = 1/3) A1 > A2 > A3

parameters may lead to the changes in the value of similarity measure, but does not affect
the final decision. From Table 14, by comparing with other methods, it can be seen that
consistent decision results can been obtained by our method and Sg1 , Sw1 in Wei (2017b),
Wei and Gao (2018), while decision results cannot been obtained by other methods.

4.3. Analysis and Discussion

In practical problems, we find that the proposed method can also solve some multi-
attribute decision making problems which can be solved by existing methods. The pro-
posed method can solve some multi-attribute decision making problems which cannot be
solved by existing methods. It shows that the method we proposed is reasonable and su-
perior. Furthermore, we find some existing methods can’t make decisions, because the
similarity measure formulas only carry out simple operations on positive membership,
neutral membership and negative membership, and it may result in the calculation result
of similarity between picture fuzzy sets and other different picture fuzzy sets being the
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same. The new method based on relational matrix is proposed, which overcomes the de-
fects mentioned above and achieves good results in multi-attribute decision making.

5. Conclusions

In this study, we develop a novel similarity measure between picture fuzzy sets based on
the relationship matrix, which not only considers the four membership functions of picture
fuzzy sets but also the relations between them. Particularly, the relationship between the
refusal membership and positive membership, neutral membership, negative membership
are explored. The proposed similarity measure satisfies the axiom definition of similarity
measure. A numerical comparison shows that the proposed similarity measure is more
effective than other methods in distinguishing picture fuzzy sets. It can conquer defects
of some existing similarity measures. Moreover, in multi-attribute decision experiments,
the decision results show that the proposed similarity measure is valid and superior.
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