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Abstract. This paper proposes a new family of 4-dimensional chaotic cat maps. This family is then
used in the design of a novel block-based image encryption scheme. This scheme is composed of two
independent phases, a robust light shuffling phase and a masking phase which operate on image-
blocks. It utilizes measures of central tendency to mix blocks of the image at hand to enhance
security against a number of cryptanalytic attacks. The mixing is designed so that while encryption
is highly sensitive to the secret key and the input image, decryption is robust against noise and
cropping of the cipher-image. Empirical results show high performance of the suggested scheme
and its robustness against well-known cryptanalytic attacks. Furthermore, comparisons with existing
image encryption methods are presented which demonstrate the superiority of the proposed scheme.
Key words: cryptography, chaos, cat map, pseudorandom numbers, image encryption.

1. Introduction

The rapid growth in multimedia applications has led to the vast spread of multimedia
information across public networks. As a consequence, such information has become vul-
nerable to eavesdropping. Therefore, the need for safeguarding algorithms has become of
major concern. Digital images are amongst the most popular digital media, they are found
in a number of applications including military, medical and geographical applications.
Due to this wide range of applications, research for developing efficient safeguarding al-
gorithms has grasped the attention of scientists and engineers more than ever.

Cryptography is a field of mathematics and computer science that provide many secu-
rity services including encryption and data hiding. Data hiding is a process that intends to
hide secret information within cover media in such a way that an eavesdropper is incapable
to detect the presence of such information within the carrier. On the contrary, encryption
is a process that transforms secret information into scrambled data which is totally mean-
ingless to an eavesdropper (Katz et al., 1996; Rijmen and Daemen, 2001; Rivest et al.,
1978). Both techniques require a secret key that entitles the recipient to recover back the
secret information. One disadvantage of data hiding techniques is that most schemes hide

∗Corresponding author.

https://doi.org/10.15388/20-INFOR426


794 A. Kanso et al.

the raw data within the cover media (Cheddad et al., 2010; Mao and Qin, 2013; Ghebleh
and Kanso, 2014; Tang et al., 2014). Furthermore, secret images of large sizes require
quite large carriers. Due to some inherent characteristics of digital images such as bulk
data capacity, high redundancy and correlation between adjacent pixels, conventional en-
cryption schemes such as the Data Encryption Standard (DES) (Katz et al., 1996), the
Advanced Encryption Standard (AES) (Rijmen and Daemen, 2001), the Rivest, Shamir
and Adleman’s scheme (RSA) (Rivest et al., 1978) are unsuitable for the encryption of
digital images.

Chaotic systems have a number of important characteristics such as high sensitive de-
pendence on initial conditions and control parameters, large keyspace, unpredictability,
ergodicity, and mixing property. Furthermore, with suitable control parameters and initial
conditions, they can generate random looking sequences indistinguishable from random
sequences. Confusion and diffusion are two important properties of any suitable encryp-
tion scheme (Shannon, 1949). In image encryption, confusion makes the relationship be-
tween the cipher-image and the secret key as complex as possible. That is, the impact of
a tiny change to the secret key results in a major change in the cipher-image. On the other
hand, diffusion makes the statistical relationship between the plain-image and the cipher-
image as complex as possible. That is, the impact of a tiny change in the plain-image results
in a major change in the cipher-image. This complexity can be obtained by a number of
permutations and substitutions. Owing to the strong relationship between the properties
of chaotic systems and Shannon’s principles of confusion and diffusion (Shannon, 1949),
which are ideal properties in the design of a strong image encryption scheme, chaotic sys-
tems have become promising building blocks in the construction of such schemes. In 1998,
Fridrich (1998) presented an elegant chaos-based image encryption scheme that consists
of two phases: a shuffling phase to confuse the relationship between the cipher-image and
the plain-image, and a masking phase to spread a small change in the plain-image through-
out the whole cipher-image. Despite the fact that Fridrich’s scheme is shown to suffer from
security issues under chosen cipher-image scenario (Solak et al., 2010; Xie et al., 2017),
Fridrich’s approach has been adopted in the designs of most proposed chaos-based image
encryption schemes. Throughout the last two decades, a number of chaos-based image en-
cryption schemes have been developed (Chen et al., 2004; Guan et al., 2005; Behnia et al.,
2008; Zhang et al., 2010; Liu Y. et al., 2016; Hua et al., 2015; Kanso and Ghebleh, 2012,
2015a; Khan et al., 2017; Fu et al., 2018; Khan and Shah, 2015). Chen et al. (2004) pro-
posed an image encryption scheme that employs a 3-dimensional (3D) cat map. However,
Chen et al.’s scheme (Chen et al., 2004) is shown to be vulnerable to differential attacks (Li
and Chen, 2008; Wang et al., 2005). Guan et al. (2005) proposed an image encryption
scheme based on Arnold cat map and Chen’s chaotic system. Cokal and Solak (2009)
proved that this scheme suffers from security weaknesses under chosen plain-image and
known plain-image scenarios. Behnia et al. (2008) proposed a new kind of image encryp-
tion scheme based on composition of trigonometric chaotic maps. However, this scheme
is shown to suffer from security issues under chosen plain-image scenario and differential
attacks (Li et al., 2010). Zhang et al. (2010) proposed an image encryption scheme based
on DNA addition in conjunction with two chaotic logistic maps. Hermassi et al. (2014)
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revealed a number of flaws including non-invertibility of Zhang et al.’s scheme (Zhang et
al., 2010). In Zhu (2012), Zhu proposed an image encryption scheme based on improved
hyper-chaotic sequences. Li et al. (2013) showed that Zhu’s scheme can be broken with
only one known plain-image. In Liu Y. et al. (2016), a hyper-chaos-based image encryp-
tion algorithm with linear feedback shift registers is proposed. Zhang et al. (2017) showed
that this scheme has some flaws due to weak security of the diffusion process and it is vul-
nerable to differential attacks. Hua et al. (2015) introduced a new 2D sine logistic modu-
lation map and proposed a chaotic magic transform image encryption scheme. Kanso and
Ghebleh (2012) proposed an image encryption scheme based on 3D cat map. In Kanso
and Ghebleh (2015a), a new family of 4D cat maps is proposed together with an image
encryption scheme for medical applications. Khan et al. (2017) proposed a chaos-based
image encryption scheme that utilizes a non-linear chaotic algorithm for destroying cor-
relation and diffusion in plain-image. In Fu et al. (2018), Fu et al. proposed an algorithm
based on a 4D hyper-chaotic system in conjunction with the hash function SHA-224. In
addition to the aforementioned schemes, the research committee has proposed a number
of schemes such as those presented in Wang et al. (2015), Zhou et al. (2014), Xu et al.
(2016), Liu et al. (2016), Hua and Zhou (2017), Zhou et al. (2013), Wu et al. (2014), Cao
et al. (2018), Hua et al. (2019), Khan et al. (2017), Fu et al. (2018), Liu et al. (2019), Sun
et al. (2020), Hemdan et al. (2019) and references therein.

Among the large number of image encryption schemes that have appeared in the lit-
erature, security flaws in some of these schemes have been revealed by the cryptographic
community. Furthermore, the rapid advancement of digital media technology demands the
attention of researchers to develop fast and efficient image encryption schemes. Arnold’s
cat map (Arnol’d and Avez, 1968) is one of the most studied 2D chaotic maps. Due to its
characteristics, it has been widely used in a number of cryptographic applications (Guan
et al., 2005; Xiao et al., 2009; Fu et al., 2011; Ghebleh et al., 2014b; Soleymani et al.,
2014; Kanso and Ghebleh, 2015a,b). Furthermore, a number of generalizations of the 2D
cat map have appeared in the literature (Chen et al., 2004; Kanso and Ghebleh, 2013).
In this paper, we propose a new family of 4D chaotic cat maps that is an extension of
the generalization suggested in Kanso and Ghebleh (2013) for use in cryptographic ap-
plications. The objective of this proposal is to increase the number of control parameters
in the coefficient matrix defining the 4D cat map which in turn increases the size of the
keyspace of any cryptographic scheme adopting the generalization. We then propose an
image encryption scheme based on members of this family. The proposed scheme fol-
lows Fridrich’s approach. It is composed of a light shuffling phase and a masking phase,
which operate on image-blocks. The shuffling phase preforms a circular shift on the rows
and columns of the image at hand in conjunction with a zigzag ordering algorithm. The
masking phase uses pseudorandom sequences generated by the proposed 4D cat map for
diffusion of the resulting shuffle-image. Furthermore, the masking phase applies measures
of central tendency to enhance security against a number of cryptanalytic attacks such as
differential attacks. The mixing is designed so that while encryption is highly sensitive
to the secret key and the input image, decryption is robust against noise and cropping of
the cipher-image. Simulation results are presented to demonstrate the high performance
of the proposed scheme and its high security level.
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The main contributions of this work are as follows:

• The method is simple and efficient.
• The encryption scheme is highly sensitive to its key and input image, while the de-

cryption scheme is robust against various alternations such as noise and cropping of
cipher-image.

• The method is block-based. Based on the block size, there is a tradeoff between the
security and the speed of the proposed scheme. However, simulations show that the
chosen block size makes the scheme robust to existing attacks, insensitive to cipher-
image attacks, and faster than existing schemes.

The paper is organized as follows: Section 2 presents the proposed family of 4D cat
maps. In Section 3, we give a detailed description of the proposed image encryption
scheme. We also demonstrate the randomness of matrices generated by successive iter-
ations of the proposed 4D cat map. Section 4 showcases the efficiency of the proposed
scheme. It also presents simulation results that demonstrate the robustness of the proposed
scheme against statistical attacks. In Section 5, we further analyse the security of the pro-
posed scheme. In Section 6, we showcase the superiority of the proposed scheme over
some of the existing schemes. Finally, we end the paper with some concluding remarks.

2. The 4-Dimensional Cat Map

Arnold’s cat map (Arnol’d and Avez, 1968) is a chaotic map defined on the torus R2/Z2

by

�(x, y) = (x + y, x + 2y) mod 1.

The discrete cat map can be defined accordingly by

[
xn+1

yn+1

]
=

[
1 1
1 2

] [
xn

yn

]
mod 1,

which starting from any initial state (x0, y0) defines an infinite sequence of 2-vectors. This
map can be generalized (Chen et al., 2004) using two positive integer parameters a and b

as [
xn+1

yn+1

]
=

[
1 a

b ab + 1

] [
xn

yn

]
mod 1. (1)

Further generalizations of this map to higher dimensions are also known (Chen et al.,
2004; Kanso and Ghebleh, 2013). Chen et al. (2004) proposed a generalization of the 2D
cat map into a 3D cat map, where the coefficient matrix consists of six control parameters.
Kanso and Ghebleh (2013) extended the generalization of the 2D cat map into a 4D cat
map, where the coefficient matrix consists of four control parameters. Despite existing
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generalizations, in this paper we extend the generalization of the 4D cat map suggested
in Kanso and Ghebleh (2013) so that the number of control parameters of the coefficient
matrix increases to twelve positive integers. The increase in the number of control param-
eters is very beneficial to cryptographic applications since it leads to a larger keyspace of
the cryptographic scheme.

We consider the following path to define a new 4 × 4 coefficient matrix for a 4D cat
map. The building blocks for this definition are maps which fix two coordinates and apply
Eq. (1) to the other two coordinates. More specifically, we use the six matrices

M12 =

⎡
⎢⎢⎣

1 a1 0 0
b1 a1b1 + 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , M23 =

⎡
⎢⎢⎣

1 0 0 0
0 1 a2 0
0 b2 a2b2 + 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

M34 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 a3

0 0 b3 a3b3 + 1

⎤
⎥⎥⎦ , M41 =

⎡
⎢⎢⎣

a4b4 + 1 0 0 b4

0 1 0 0
0 0 1 0
a4 0 0 1

⎤
⎥⎥⎦ ,

M31 =

⎡
⎢⎢⎣

a5b5 + 1 0 a5 0
0 1 0 0
b5 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , and M24 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 a6

0 0 1 0
0 b6 0 a6b6 + 1

⎤
⎥⎥⎦ ,

where a1, . . . , a6, b1, . . . , b6 are constant positive integers. Note that each Mij is obtained
from the identity matrix I4 via replacing a 2 × 2 principal minor by the coefficient matrix
of Eq. (1) using parameters a = ak and b = bk . The 4 × 4 coefficient matrix is now
defined to be

A = M12M23M34M41M31M24. (2)

In turn, this matrix can be used in defining the 4D cat map
⎡
⎢⎢⎣

xn+1

yn+1

zn+1

wn+1

⎤
⎥⎥⎦ = A

⎡
⎢⎢⎣

xn

yn

zn

wn

⎤
⎥⎥⎦ mod 1. (3)

It is easy to see that each matrix Mij has determinant 1, thus det(A) = 1. On the
other hand, since this construction involves no subtraction, and since all its parameters
are positive integers, each entry of the matrix A of Eq. (2) is greater than or equal to its
corresponding entry in the matrix A0 obtained with all parameters set to 1:

A0 =

⎡
⎢⎢⎣

7 3 4 5
10 5 6 8
6 3 4 5
5 2 3 4

⎤
⎥⎥⎦ .
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In particular, tr(A) � tr(A0) = 20. Now if λ1, λ2, λ3, λ4 denote the (possibly complex)
eigenvalues of A, then

λ1λ2λ3λ4 = det(A) = 1, and λ1 + λ2 + λ3 + λ4 = tr(A) � 20.

Thus at least one eigenvalue of A has modulus greater than 1, which justifies chaotic
behaviour of the map of Eq. (3). See Ott (2002), Hua et al. (2017), Wang et al. (2018) for
more information.

For all the experimental results presented in this work, we use the values

(a1, a2, a3, a4, a5, a6) = (1, 2, 3, 1, 7, 11) and
(b1, b2, b3, b4, b5, b6) = (2, 1, 3, 5, 3, 3)

for the control parameters of the 4D cat map, while yield the coefficients matrix

A =

⎡
⎢⎢⎣

270 34 86 385
678 87 216 985
207 28 66 317
229 30 73 340

⎤
⎥⎥⎦ , (4)

whose eigenvalues are

λ1 ≈ 758.8966, λ2 ≈ 4.1140, and λ3, λ4 ≈ −0.0053 ± 0.0171 i.

Since A has more than one eigenvalue greater than 1, the 4D cat map of Eq. (3) exhibits
hyper-chaotic behaviour (Hua et al., 2017).

3. Description of the Proposed Scheme Pr-IES

In this work, we propose an image encryption scheme that follows Fridrich’s approach.
The proposed scheme consists of three phases (i) a preprocessing phase for reshaping
the input image, (ii) a shuffling phase for destroying any correlation between adjacent
intensity values, and (iii) a masking phase that acts on the shuffle-image to change its
intensity values in such a way that a tiny change in one intensity value spreads out to
almost all intensity values in the cipher-image. Algorithm 1 depicts the phases of the
proposed image encryption scheme.

3.1. The Preprocessing Phase

The size of the input image plays an important role in the performance of the proposed
scheme. In the preprocessing phase, the input image J , typically a 2D (for grayscale im-
ages) or 3D (for colour images) array of bytes, is reshaped into an almost square 2D ma-
trix J0. This step is necessary if the number of rows of the 2D matrix is more than twice



Efficient Image Encryption Scheme Based on 4-Dimensional Chaotic Maps 799

Algorithm 1: The proposed image encryption scheme Pr-IES
Data: Plain-image J and the number of rounds r and s

Data: Initial conditions and control parameters from secret key K

Result: The encrypted image Jcipher

J0 ← Preprocess(J )

Jshuffled ← Shuffle(J0, r,K1), where K1 ∈ K

Jmasked ← Mask(Jshuffled, s,K2), where K2 ∈ K

Reshape Jmasked into the shape of the input matrix J to produce the encrypted
image Jcipher

the number of columns or vice versa. If this condition is not attainable (e.g. if the number
of rows and columns of J are primes far apart), then a padding scheme can be applied to
the input image. We refer to the number of rows and columns of the resulting matrix J0

from the preprocessing phase by m and n, respectively.

3.2. The Shuffling Phase

This phase aims to destroy correlations between adjacent pixels in the input image. It per-
forms an (a, b)-circular shift on the matrix at hand in conjunction with a zigzag reordering
of the entries. By an (a, b)-circular shift we mean shifting all entries of the matrix a − 1
places up and b − 1 places left, so that the (a, b)-entry is moved to the (1, 1) position.
Note that entries exiting the matrix from the top or from the left, enter from the opposite
side in a circular fashion. This phase requires 2r pseudorandom numbers, where r is the
number of rounds. These numbers can be obtained from a chaotic map such as the skew
tent map

ui+1 =
⎧⎨
⎩

ui

p
if ui � p,

1−ui

1−p
if ui > p,

where p ∈ (0, 1) is a control parameter and u0 ∈ (0, 1). The skew tent map is widely used
in cryptographic applications (Alvarez and Li, 2006; Ghebleh et al., 2014a). Algorithm 2
depicts the shuffling phase of the proposed image encryption scheme.

To illustrate the shuffling phase, we present a one round toy example on the 4 × 5
matrix

P0 = J0 =

⎡
⎢⎢⎣

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

⎤
⎥⎥⎦ .
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Algorithm 2: The shuffling of the matrix J0

Data: The array J0 from the preprocessing phase and the number of rounds r

Data: Initial condition u0 and control parameter p of the skew tent map from
secret key K

Result: Shuffled matrix Jshuffled

P0 ← J0

for k = 1 to r do
Generate two numbers u and v by successive iterations of the skew tent map
a ← 1 + �mu�
b ← 1 + �nv�
T1 ← perform an (a, b)–circular shift on the matrix Pk−1

T2 ← traverse T1 in a zigzag order
Pk ← reshape T2 into an m × n matrix

Jshuffled ← Pr

Suppose a = 4 and b = 3. Performing a (4, 3)–circular shift on the matrix J0 gives

T1 =

⎡
⎢⎢⎣

18 19 20 16 17
3 4 5 1 2
8 9 10 6 7

13 14 15 11 12

⎤
⎥⎥⎦ .

Traverse T1 in a zigzag order as follows

18 19 20 16 17

3 4 5 1 2

8 9 10 6 7

13 14 15 11 12

.

This gives the 1D array

T2 = [18 19 3 8 4 20 16 5 9 13 14 10 1 17 2 6 15 11 7 12].

Reshaping T2 back to 4 × 5 matrix yields

P1 =

⎡
⎢⎢⎣

18 4 9 1 15
19 20 13 17 11
3 16 14 2 7
8 5 10 6 12

⎤
⎥⎥⎦ .
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3.3. The Masking Phase

The masking phase acts on the shuffled matrix Jshuffled. It masks the rows and columns
of Jshuffled using entries of matrices �1,�2, . . . , �s consisting of pseudorandom bytes
(integers in [0, 255]) derived from output sequences of the 4D cat map defined in Eq. (3).
More specifically, each �k is a 4 × � matrix of bytes where 4� is greater than or equal to
the number of entries of Jshuffled. Columns of �1 are generated via iterations of the 4D cat
map with chosen control parameters. For 2 � k � s, we define �k by applying a (possibly
different) 4D cat map to columns of �k−1. It is demonstrated in Subsection 3.4 that this
transition of matrices preserves pseudorandomness of entries. The masking phase also
mixes the rows and the columns of the image at hand using measures of central tendency.
Algorithm (3) presents a detailed description of the masking phase.

3.4. Randomness of the Masking Matrices

In Bassham et al. (2010), the National Institute of Standards and Technology (NIST) pro-
poses a Statistical Test Suite (STS) which is one of the most popular tools for validation of
random number generators and pseudorandom number generators for cryptographic ap-
plications. To assess randomness of their entries, we subject the matrices �1,�2, . . . , �50

constructed in 50 rounds of Algorithm 3 to the STS. These matrices are computed using
the 4D cat map coefficient matrix A of Eq. (3) which is used also as the transition matrix
in all rounds. That is, A2 = A3 = · · · = A50 = A. Further parameters used in the genera-
tion of these matrices are m = 256, n = 512, and randomized initial condition x0. Hence
each �k is a 4 × 32768 matrix, which is passed to the STS as a sequence of 1048576
bits. Table 1 presents the results generated by the STS. On the basis of these results, we
conclude that the matrices �1,�2, . . . , �50 all possess excellent randomness properties.

4. Statistical Analysis of Cipher-Images

In this section, we showcase the efficiency of the proposed scheme. We then evaluate
the randomness of cipher-images corresponding to standard test images. Furthermore, we
consider cipher-images corresponding to bank of test plain-images.

4.1. Test Images and Parameters

This section shows the efficiency of the proposed image encryption scheme Pr-IES. Fig-
ure 1 depicts standard grayscale test images Barbara of size 256 × 256, Lena of size
512 × 512 and Elaine of size 1024 × 1024.

Figure 2 presents the shuffle-images corresponding to the test images Barbara, Lena
and Elaine for r = 1, 2, 3 and 4. It is evident that for r > 3 the shuffle-images show
no pattern. On the basis of these results and the fact that a shuffle-image is almost free
of correlation for r = 5 (as shown in Fig. 3), we consider the number of rounds for the
shuffling phase to be set to 5. Similarly, it is shown in Section 5 that the image encryption
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Algorithm 3: Generation of the scrambled matrix Jmasked
Data: Jshuffled from the shuffling phase and the number of rounds s

Data: Initial condition x0 and control parameters of the 4D cat map from secret
key K

Data: Control parameters of the coefficient matrices A2, A3, . . . , As from secret
key K

Result: Encrypted matrix Jmasked

for j = 1 to �mn/4	 do
xj ← Axj−1 mod 1

�1 ← �256X� where X is the matrix whose j–th column is xj

�1 ← reshape the first mn entries of �1 into an m × n matrix
for k = 2 to s do

�k ← Ak�k−1 mod 256
�k ← reshape �k into an m × n

P0 ← Jshuffled
Initialize two m × n matrices Q1 and R1

for k = 1 to s do
for j = 1 to n do

if j = 1 then
p ← coln(Pk−1)

else
p ← colj−1(Qk)

μ ← mean of colj (�k)

p ← �μp mod 256�
g ← (

colj (Pk) + colj (�k)
)

mod 256
colj (Qk) ← p ⊕ g

for i = 1 to m do
if i = 1 then

p ← rowm(Qk)

else
p ← rowi−1(Rk)

μ ← mean of rowi (�k)

p ← �μp mod 256�
g ← (

rowi (Qk) + rowi (�k)
)

mod 256
rowi (Rk) ← p ⊕ g

Qk+1 ← Qk

Rk+1 ← Rk

Pk ← flip matrix Pk−1 in up/down direction

Jmasked ← Ps
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Table 1
Statistical Test Suite results for a matrix �1 and 49 of its consecutive cat
transition matrices �2, �3, . . . , �50 as described in 3.4. Each matrix is

processed as a sequence of 1048576 bits. According to the STS
documentation, a minimum pass rate for each statistical test is 96%.

Statistical test Set of matrices
P -value Result

Frequency 0.455937 50/50
Block-frequency 0.983453 49/50
Cumulative-sums (forward) 0.350485 50/50
Cumulative-sums (reverse) 0.383827 50/50
Runs 0.779188 49/50
Longest-runs 0.191687 48/48
Rank 0.616305 50/50
FFT 0.494392 50/50
Non-overlapping-templates 0.616305 50/50
Overlapping-templates 0.289667 50/50
Universal 0.494392 50/50
Approximate entropy 0.657933 50/50
Random-excursions 0.324180 33/33
Random-excursions variant 0.706149 33/33
Serial 1 0.383827 48/50
Serial 2 0.816537 48/50
Linear-complexity 0.213309 49/50

Fig. 1. Test plain-images Barbara of size 256 × 256, Lena of size 512 × 512 and Elaine of size 1024 × 1024.

scheme Pr-IES is robust against differential attacks when the number of rounds for the
masking phase s > 3. Thus, r = s = 5 is ideal for the robustness of the proposed
encryption scheme.

Figure 3 depicts the shuffle-images and cipher-images corresponding to the test plain-
images Barbara, Lena and Elaine, with r = s = 5. It is evident that one cannot distinguish
between the cipher-images and a random image.
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Fig. 2. The shuffle-images corresponding to the test images Barbara, Lena and Elaine.

4.2. Histogram Analysis

Histogram analysis is an important test which shows the distribution of the intensity values
of the pixels within an image. A secure image encryption scheme produces cipher-images
whose pixel intensity values are uniformly distributed in the interval [0, 255]. It is evident
from Fig. 4, which depicts the histograms of the test images Barbara, Lena, Elaine and
their corresponding cipher-images, that the histograms of the cipher-images are almost flat
and hence show no useful information about the plain-images. Furthermore, the average
pixel intensity of the cipher-images is approximately 127.50, which is the ideal value.
Moreover, Table 2 reports the chi-square test (Kwok and Tang, 2007) for cipher-images
and random images. It is evident that the chi-square measures for cipher-images are similar
to those of random images and they are less than the upper bound 293 for a significance
level 0.05.

4.3. Correlation Analysis of Adjacent Pixels

A secure image encryption scheme generates cipher-images almost free of any correlation.
The correlation coefficients rxy between N pairs of randomly chosen adjacent pixels x =
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Fig. 3. The shuffle-images (top) and cipher-images (bottom) for r = s = 5 corresponding to the test plain-images
Barbara, Lena and Elaine. The decipher-images are identical to the plain-images.

Table 2
The chi-square test results for the

cipher-images corresponding to the test
images Barbara, Lena and Elaine. This
table also reports the chi-square value

for a random image.

Cipher-image χ2
test

Cipher-Barbara 262.5859
Cipher-Lena 248.8477
Cipher-Elaine 222.1147
Random image 235.4453

{xi}Ni=1 and y = {yi}Ni=1 in a given image is defined by

rxy = cov(x, y)

σxσy
,

where cov(x, y) = 1
N

∑N
i=1

(
xi − E[x])(yi − E[y]), E[x] and E[y] are the expected val-

ues of the samples x and y respectively, and σx and σy are their standard deviations.
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Fig. 4. Histograms of the test images Barbara, Lena and Elaine (top) and their corresponding cipher-images (bot-
tom).

Table 3
Correlation coefficients of the test plain-images, shuffle-images and cipher-images for

N = 10000.

Image Adjacency Plain-image Shuffle-image Cipher-image

Barbara Horizontal 0.956279 −0.006150 −0.017363
Vertical 0.971464 0.003786 0.007816
Diagonal 0.935520 −0.002700 −0.016839

Lena Horizontal 0.972826 0.006197 0.001692
Vertical 0.986398 −0.019941 0.020036
Diagonal 0.962357 −0.015373 −0.004486

Elaine Horizontal 0.994613 0.015765 −0.009980
Vertical 0.993920 −0.004081 0.008746
Diagonal 0.989842 0.003508 −0.009003

Table 3 reports the correlation coefficients for cipher-images corresponding to the test
plain-images Barbara, Lena and Elaine. Furthermore, the table presents the correlation
coefficients of the shuffle-images corresponding to the test images. It is evident from this
table that the correlation coefficients of the cipher-images and the shuffle-images are al-
most zero. Hence, the cipher-images are almost free of any correlation.

Figure 5 depicts a plot of the points (xi, yi), where 1 � i � 10000, in the plain-image
Lena and its corresponding shuffle-image and cipher-image. It is evident from this figure
that the cipher-image is almost free of any correlation between the values of xi and yi .
The cipher-images corresponding to the plain-images Barbara and Elaine have similar
behaviour, hence are omitted.
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Fig. 5. Point plots of the intensity values of randomly chosen pairs of horizontally, vertically and diagonally ad-
jacent pixels in the plain-image Lena (top), its corresponding shuffle-image (middle) and cipher-image (bottom).

4.4. Information entropy analysis

Information entropy (Shannon, 1948) is an important measure for evaluating the strength
of an image encryption scheme. It measures the distribution of gray-values in an image.
The entropy H(s) of a source s emitting 256 symbols s1, s2, . . . , s256 is defined by

H(s) = −
256∑
i=1

P(si) log2 P(si),

where P(si) represents the probability of occurrence of si . For a random source s,
H(s) = 8. Table 4 reports the entropy measures for the test plain-images and their corre-
sponding cipher-images. The reported measures are very close to the ideal value 8. Hence,
the proposed scheme is robust against entropy attacks.

To further showcase the randomness of the proposed image encryption scheme we
measure the entropy over local cipher-images blocks (Wu et al., 2013). Table 5 reports
the mean of entropy measures over local cipher-images blocks, where the block sizes are
16 × 16, 32 × 32 and 64 × 64. It is evident from this table that the reported measures are
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Table 4
Entropy measures for the test plain-images Barbara,
Lena, Elaine and their corresponding cipher-images.

Image Entropy
Plain-image Cipher-image

Barbara 7.6019 7.9971
Lena 7.4455 7.9993
Elaine 7.5029 7.9998

Table 5
Average entropy of image blocks.

Image Plain-image Cipher-image
16 × 16 32 × 32 64 × 64 16 × 16 32 × 32 64 × 64

Barbara 5.7160 6.5322 7.0868 7.1766 7.8076 7.9549
Lena 4.9910 5.6328 6.2260 7.1763 7.8098 7.9550
Elaine 4.7618 5.3754 5.9626 7.1759 7.8095 7.9546
Random 7.1750 7.8097 7.9542 7.1738 7.8090 7.9542

close to the theoretical mean of Shannon entropy measures for a random image, that is
7.174966353, 7.808756571 and 7.954588734 for 16 × 16, 32 × 32 and 64 × 64 blocks,
respectively (Wu et al., 2013). Table 5 also includes the mean of local entropy measures
for a random image and its corresponding cipher-image.

4.5. Randomness Analysis

In this section, we evaluate the randomness of cipher-images generated by the proposed
scheme Pr-IES using the STS proposed by the National Institute for Standards and Tech-
nology (NIST) (Bassham et al., 2010). For this regard, we consider the first 100 images
from the test bank of images in BOWS2 (2019). We encrypt each 512 × 512 image by the
proposed scheme, and subject the resulting cipher-image to the STS. Each cipher-image
consists of 2097152 bits and is processed in STS as a single sequence. Table 6 reports the
STS results for a collection of 100 cipher-images, each of length 2097152 bits. According
to documentation of the STS documentation (Bassham et al., 2010), the minimum pass
rate for each test is 96%. Thus, it is evident that the cipher-images pass all 15 test and
hence, they possess very good randomness properties.

4.6. Speed Analysis

In this section, we report the running speed of the proposed image encryption scheme
Pr-IES in MATLAB on a desktop machine with an Intel® Core™ i7-4770 processor and
8GB of memory, running Windows 10. Table 7 reports the running time for encrypting the
test images by the proposed scheme. Furthermore, Fig. 6 shows a sample of the running
times for encrypting grayscale images of different sizes by the proposed image encryption
scheme with r = s = 5.
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Table 6
Statistical Test Suite results for 100 cipher-images, each of length

2097152 bits.

Statistical test Cipher-images
P -value Result

Frequency 0.911413 98/100
Block-frequency 0.366918 100/100
Cumulative-sums (forward) 0.924076 97/100
Cumulative-sums (reverse) 0.851383 98/100
Runs 0.334538 100/100
Longest-runs 0.419021 99/100
Rank 0.816537 99/100
FFT 0.108791 99/100
Non-overlapping-templates 0.897763 100/100
Overlapping-templates 0.739918 100/100
Universal 0.994250 98/100
Approximate entropy 0.657933 98/100
Random-excursions 0.534146 72/72
Random-excursions variant 0.846579 72/72
Serial 1 0.719747 99/100
Serial 2 0.191687 99/100
Linear-complexity 0.289667 99/100

Table 7
Running time of the proposed encryption

scheme.

Size Encryption
time in seconds

256 × 256 0.0644554
512 × 512 0.2422222
1024 × 1024 1.0021399

5. Security Analysis

In this section, we evaluate the security level of the proposed scheme. We show that the
proposed scheme Pr-IES is highly sensitive to a slight modification in the plain-image.
We further show that the scheme has a large keyspace, and it is highly sensitive to its
secret key and control parameters. Moreover, we analyse the security of the proposed
scheme under cipher-image scenario and chosen plain-image scenario. In addition to that,
we demonstrate the robustness of its decryption to various alterations in the cipher-image.

5.1. Differential analysis

Differential analysis of an image encryption scheme investigates the affect of a slight mod-
ification in the plain-image on the corresponding cipher-image. In this section, we mea-
sure the sensitivity of the proposed image encryption against slight modification in the
plain-image. The Number of Pixels Change Rate (NPCR) and Unified Average Chang-
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Fig. 6. Encryption time versus image size.

Table 8
Acceptance intervals for the null hypothesis with different levels of significance (Wu et al., 2011).

Parameter Size 0.05-level 0.01-level 0.001-level

NPCR 256 × 256 [99.5693, 100] [99.5527, 100] [99.5341, 100]
512 × 512 [99.5893, 100] [99.5810, 100] [99.5717, 100]
1024 × 1024 [99.5994, 100] [99.5952, 100] [99.5906, 100]

UACI 256 × 256 [33.2824, 33.6447] [33.2255, 33.7016] [33.1594, 33.7677]
512 × 512 [33.3730, 33.5541] [33.3445, 33.5826] [33.3115, 33.6156]
1024 × 1024 [33.4183, 33.5088] [33.4040, 33.5231] [33.3875, 33.5396]

ing Intensity (UACI) are two measures used to evaluate the strength of image encryption
schemes against differential attacks (Wu et al., 2011). Suppose C1 and C2 are two m × n

matrices, then the NPCR and UACI between C1 and C2 are given by

NPCR =
∑

i,j D(i, j)

m × n
,

where

D(i, j) =
{

1 if C1(i, j) �= C2(i, j),

0 otherwise,

and

UACI = 1

m × n

∑
i,j

|C1(i, j) − C2(i, j)|
255

.

According to Wu et al. (2011), the theoretical ideal NPCR and UACI measures for
C1 and C2 to be random-like in comparison are approximately 99.6094% and 33.4635%,
respectively. Furthermore, Table 8 reports the acceptance intervals for the null hypothesis
with different significance levels for the NPCR and UACI measures.
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Table 9
NPCR and UACI measures between cipher-images C1 and C2 corresponding to the test images Barbara, Lena

and Elaine, with slight modifications.

Measures Cipher-images of Barbara Cipher-images of Lena Cipher-images of Elaine
Min Mean Max Min Mean Max Min Mean Max

NPCR 99.5483 99.6093 99.6796 99.5819 99.6110 99.6399 99.5972 99.6089 99.6252
UACI 33.2820 33.4913 33.6932 33.3231 33.4388 33.5638 33.4136 33.4649 33.5160

Fig. 7. NPCR (left) and UACI (right) measures for plain-image sensitivity of the proposed scheme. Each point
represent an NPCR/UACI measure resulting from repeating the test 100 for each test image in (BOWS2).

We evaluate the robustness of the proposed image encryption scheme by considering
two plain-images P1 and P2, where P1 and P2 differ in a single bit. We encrypt P1 and P2

using the proposed image encryption scheme, with the same secret key and parameters,
to get cipher-images C1 and C2, respectively. We then compute the NPCR and UACI
measures between C1 and C2. For each test image Barbara, Lena and Elaine, we repeat
this test 100 times, where each time we flip the least significant bit of a randomly selected
intensity value in the plain-image (including the first and the last intensity value). The
minimum, mean and maximum NPCR and UACI measures of the ciphers-images of the
original plain-image for each of the 100 cipher-images resulting from a slight modification
to the original plain-image are reported in Table 9.

We further evaluate the robustness of the proposed scheme by subjecting each of the
first 100 test images from (BOWS2) to the plain-image sensitivity test. For each plain-
image we repeat the test 100 times, where each time we make a change to the least signif-
icant bit of a randomly chosen intensity value of the original plain-image. It turns out that
the pass rate for the NPCR is 99.85% and that for the UACI is 99.93%. Figure 7 depicts
a point plot, where each point corresponds to an NPCR/UACI measure resulting from
repeating the sensitivity test 100 times for each of the 100 images from (BOWS2). It is
evident from this figure that the proposed scheme is robust against plain-image sensitivity.
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Fig. 8. Bitwise xor between cipher-images C1 and C2 corresponding to Lena with K1 and K2. Left: K2 differs
from K1 by 10−14 in one component of the initial condition of the 4D cat map. Right: K2 differs from K1 in
the least significant bit of one control parameter of the 4D cat map.

5.2. Keyspace

The secret key K of the proposed scheme is composed of two doubles p, u0 ∈ (0, 1)

for the shuffling phase, as well as control parameters and initial conditions of the 4D cat
map(s) used in the masking phase. In the latter, there are at least 12 positive integers (for
control parameters) and four doubles in (0, 1). Under the assumption that 64-bit doubles
and 8-bit integers are used to initialize the cat map, and with the commonly used precision
of 10−14 for 64-bit doubles, the secret key of the proposed scheme has size at least

(
28

)12 ·(
1014

)6
> 2375. This number renders key search attacks impractical. The keyspace may

further expand if we consider distinct transition matrices A2, A3, . . . , As in Algorithm (3).
In such a case the size of the keyspace becomes

(
28

)12s · (1014
)6, which with s = 5 yields

a keyspace of size larger than > 2759.
Figure 8 depicts the bitwise xor (exclusive or) of two cipher-images C1 and C2 corre-

sponding to the test image Lena with slightly different keys K1 and K2. Figure 9 shows
histograms of the images presented in Fig. 8. Furthermore, Table 10 reports the NPCR
and UACI measures between cipher-images C1 and C2 of the three test images Barbara,
Lena and Elaine generated using slightly different keys.

The experimental results presented in Fig. 8, Fig. 9, and Table 10 demonstrate high
sensitivity of the proposed scheme to its secret key, hence its robustness against key search
attacks.

5.3. Cipher-Image and Plain-Image Analysis

In this section, we show that the proposed scheme is robust against cipher-image and plain-
image analysis. In a cipher-image attack, the intruder has only access to the cipher-image.
Since the above tests show that no useful information about the plain-image can be gained
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Fig. 9. Histograms of the two images of Fig. 8, respectively.

Table 10
NPCR and UACI measures between cipher-images C1 and C2 corresponding to the test images Barbara, Lena

and Elaine, with slight modifications in the secret key.

Measures Cipher-images of Barbara Cipher-images of Lena Cipher-images of Elaine

NPCR 99.6338 99.6124 99.6002 99.6101 99.6215 99.6066
UACI 33.6906 33.4831 33.3946 33.4988 33.4807 33.4435

from the corresponding cipher-image, we conclude that the proposed scheme is robust
against this type of attack. In a plain-image attack, the intruder can choose any part of
the plain-image and request its corresponding cipher-image part. The aim of this attack is
to reconstruct some other plain-image parts. The fact that the chaotic map possesses the
one-way property due to floating point errors makes the inverse computation very difficult.
Furthermore, since the proposed scheme is highly dependent on its secret key, one cannot
predict further outputs of the 4D cat map. Thus, the scheme is robust against this type of
attacks.

5.4. Robustness to Noise and Data Loss

Earlier, we have shown that the proposed scheme is highly sensitive to its secret key, and
it is also highly sensitive to a tiny change in its input plain-image. That is, a change in a
plain-image intensity value spreads over all intensity values in the corresponding cipher-
image. In this section, we show that a change in intensity values in the cipher-image affects
only few intensity values in the corresponding plain-image. The importance of this feature
is that with distortion of cipher-images due to salt and pepper noise or data loss one can
still successfully recover the corresponding plain-image. Figure 10 depicts median filtered
recovered plain-image Lena resulting from subjecting its corresponding cipher-image to
salt and pepper noise for different levels of added noise. Figure 11 depicts the median
filtered recovered plain-image Lena resulting from subjecting its corresponding cipher-
image to data loss for different sizes of data loss.
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Fig. 10. The reconstructed plain-image Lena resulting from subjecting its corresponding cipher-image to a 1%,
2%, 3% and 4% salt and pepper noise.

Fig. 11. The reconstructed plain-image Lena (bottom) resulting from subjecting its corresponding cipher-image
to a 10%, 25%, 50% and 75% data loss (top).

6. Comparison with Existing Work

In this section, we compare the performance of the proposed scheme Pr-IES with existing
ones. Figure 12 presents NPCR and UACI measures for cipher-images corresponding to 25
test images in Test-images (2019) for a number of existing schemes. There are 7 test images
of size 256×256 (top), 15 of size 512×512 (middle) and 3 of size 1024×1024 (bottom).
Figure 12 shows that the pass rate for the proposed scheme is 25/25 with α = 0.05
significance level for the NPCR and UACI measures. Table 11 reports the schemes under
comparison and the pass rate of each scheme.

We further compare the correlation coefficients between adjacent pixels of the pro-
posed scheme and existing ones. Figure 13 depicts the correlation coefficients between
adjacent intensity values in the horizontal, vertical and diagonal directions for the test
image Lena and its corresponding cipher-images generated by the proposed scheme and
existing schemes. Note the schemes proposed in Fu et al. (2011) and Liao et al. (2010)
are referred to by FLMLC and LLZ, respectively.
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Table 11
The NPCR and UACI pass rates of the proposed scheme and some

existing schemes. The pass rates for the schemes under comparison are
quoted from Hua et al. (2019).

Scheme Pass rate
NPCR UACI

WWZ (Wang et al., 2015) 23/25 22/25
ZBC1 (Zhou et al., 2014) 15/25 6/25
XLLH (Xu et al., 2016) 23/25 23/25
LSZ (Liu et al., 2016) 23/25 23/25
HZ (Hua and Zhou, 2017) 24/25 24/25
ZBC2 (Zhou et al., 2013) 23/25 7/25
WZNA (Wu et al., 2014) 23/25 22/25
CSL (Cao et al., 2018) 24/25 25/25
HZH (Hua et al., 2019) 25/25 25/25
Pr-IES 25/25 25/25

Table 12
Running time in seconds for encrypting a single image by existing schemes and the proposed encryption

scheme Pr-IES. The running times for the schemes under comparison are quoted from Hua et al. (2019) used
under license CC BY-NC-ND 4.0 (License, 2020).

Image size 128 × 128 256 × 256 512 × 512 1024 × 1024

(Diaconu, 2016) 0.0579 0.2224 0.9731 3.8377
(Ping et al., 2018) 0.0902 0.3440 1.3357 5.3223
(Chai et al., 2017) 0.2757 0.9810 3.8539 15.4565
(Hua and Zhou, 2017) 0.1531 0.6347 2.4913 9.9185
(Xu et al., 2016) 0.0247 0.1164 0.4924 20.144
(Zhou et al., 2014) 0.0933 0.3843 1.4824 5.8175
(Liao et al., 2010) 0.0323 0.1440 0.5510 2.0864
(Hua et al., 2019) 0.0244 0.0949 0.4010 1.9857
Pr-IES 0.0217 0.0645 0.2422 1.0021

Table 12 reports the running time in seconds for encrypting a single image with some
existing schemes and the proposed scheme. The reported running times for the schemes
under comparison are quoted from Hua et al. (2019). According to Hua et al. (2019), the
reported running times for existing schemes are obtained on a computer under the follow-
ing environments: Intel® Core™ i7-7700 CPU @3.60 GHz and 8 GB of memory, running
Windows 10 operating system. While the reported running times for the proposed scheme
Pr-IES are obtained on a desktop machine with an Intel® Core™ i7-4770 processor @3.40
GHz and 8GB of memory, running Windows 10 operating system.

It is evident from the obtained results that the proposed scheme has superiority over
existing schemes and competitive with others.
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Fig. 12. NPCR (left) and UACI (right) measures for cipher-images generated by existing image encryption
schemes and the proposed scheme. The measures for existing schemes are obtained from Hua et al. (2019).

7. Conclusion

We propose a new family of 4D chaotic cat maps. As an application of these maps, we
present a novel block-based image encryption scheme utilizing them. This scheme con-
sists of a light shuffling phase and a masking phase which uses measures of central ten-
dency for mixing the image blocks. While encryption is highly sensitive to the secret key
and the input image, decryption is robust against noise and cropping of the cipher-image.
Simulations show that the proposed scheme generates cipher-images possessing high ran-



Efficient Image Encryption Scheme Based on 4-Dimensional Chaotic Maps 817

Fig. 13. Adjacent intensity values correlation coefficients for the test image Lena and corresponding cipher-
images generated by existing schemes and the proposed scheme. The values for existing schemes are obtained
from Hua et al. (2019).

domness properties. Furthermore, the scheme is shown to be robust against differential
cryptanalysis. With respect to existing works, the proposed scheme is shown to have su-
perior performance over existing image encryption algorithms and to be competitive with
others.
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