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Abstract. Single cell transcriptomics has recently seen a surge in popularity, leading to the need for data analysis pipelines
that are reproducible, modular, and interoperable across different systems and institutions.

To meet this demand, we introduce scAN1.0, a processing pipeline for analyzing 10X single cell RNA sequencing data.
scAN1.0 is built using the Nextflow DSL2 and can be run on most computational systems. The modular design of Nextflow
pipelines enables easy integration and evaluation of different blocks for specific analysis steps.

We demonstrate the usefulness of scAN1.0 by showing its ability to examine the impact of the mapping step during
the analysis of two datasets: (i) a 10X scRNAseq of a human pituitary gonadotroph tumor dataset and (ii) a murine 10X
scRNAseq acquired on CD8 T cells during an immune response.
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1. Introduction

The recent surge in single cell transcriptomics, par-
ticularly through single-cell RNAseq (scRNAseq),
has led to the need for data analysis pipelines that
are reproducible, modular, and able to interoperate
across different systems and institutions.

The first step in scRNAseq data analysis consists
in generating a count matrix from FASTQ sequence

∗Corresponding author: Olivier Gandrillon, E-mail: olivier.gan
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files. However, this step is often overlooked although
it can be critical for the success of the analysis.
Therefore, it is important to have access to analy-
sis pipelines that allow for easy verification of the
impact of various analysis steps, such as the nature
of the Gene Transfer Format (GTF) file used or the
normalization method on the generation of the count
matrix.

scRNAseq analysis packages such as Seurat [1]
are designed to be user-friendly, but do not offer easy
options for incorporating alternative low-level anal-
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ysis steps. To address this challenge, we developed
scAN1.0, a processing pipeline for 10X scRNAseq
data that can be run on most computational systems
using the Nextflow DSL2.

Nexflow [2] is a bioinformatics workflow man-
agement tool that aims to improve reproducibility,
modular architecture, and cross-environment com-
patibility in bioinformatics pipelines, through:

1. Reproducibility: Nexflow allows users to easily
and accurately reproduce their pipelines by pro-
viding a clear and traceable record of all the steps
that were taken and the input and output data for
each step. This helps to ensure that the results of
a pipeline can be easily reproduced and validated
by other researchers.

2. Modular architecture: Nexflow has a modular
architecture, which means that pipelines can be
built by combining smaller, reusable compo-
nents called “tasks". This allows users to easily
reuse tasks in multiple pipelines and makes it
easier to maintain and update pipelines over
time.

3. Cross-environment compatibility: Nexflow is
designed to be compatible with a wide range
of computing environments, including on-
premises clusters, cloud environments, and

desktop computers. This makes it easier for users
to run pipelines in the environment that best suits
their needs and enables them to easily scale their
pipelines as their needs change.

We illustrate the benefit of using scAN1.0 by
showing its ability to assess the impact of the map-
ping step on the resulting UMAP projection as well
as on some specific gene identification using two
datasets: (i) a 10X scRNAseq of a human pituitary
gonadotroph tumor dataset and (ii) a murine 10X scR-
NAseq acquired on CD8 T cells during an immune
response.

2. Results

2.1. Version annotation effect

We first assessed the impact of the Ensembl ver-
sion of the GTF file on the final output using the
human Gonadotroph tumour dataset as an input (see
Material and methods). GTF files and their corre-
sponding FASTA files were downloaded via ftp
protocol using the --version parameter (see section
4). We set Cellranger as the default mapper and then
assessed the impact of 4 different annotation releases
(93, 98, 103 and 106) on the number of detected genes

Fig. 1. A metromap view of the scAN1.0 pipeline. Tools used for the processing steps are given below the name of the process.
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Fig. 2. Impact of the GTF version. The human gonadotroph tumors dataset was submitted to scAN1.0 with 4 different versions of the
GTF for mapping with Cellranger. A. Venn diagram of the number of the detected genes when using the different versions. B. Violin plot
representation of the impact of the GTF version on the UMI counts for the CHGA gene.

(Fig. 2A) and on the count per genes as assessed with
the CHGA gene (Fig. 2B).

The overall impact of the GTF version seems rel-
atively modest, especially in regard to the number of
UMI counts for CHGA. However, the 106 version
allowed to identify a larger number of genes and was
kept for the next step.

2.2. Comparing filtered with unfiltered
annotations

We then assessed the impact of filtrating the GTF
file with the cellranger mkgtf function. This
filtration step is intended to remove unwanted genes
classified by biotype, such as long non-coding RNAs
(https://www.ensembl.org/info/genome/genebuild/

biotypes.html). We used the default values of
that function that removes biotypes such as gene
biotype:pseudogenes from the GTF annotation file.

This step reduces the presence of multi-mapping
due to non-regularly processed nucleic acids, remov-
ing ambiguity about gene identification and allowing
quantification of properly mapped sequences.

We observed that this filtration step indeed had a
major impact on both the number of genes detected
(Fig. 3A) but also on gene counts (Fig. 3B).

2.3. Cellranger versus Kallisto-bustools

We then compared the impact of two popu-
lar alignment tools for single-cell RNA sequencing
(Kallisto-bustools and Cellranger) using the 10x

https://www.ensembl.org/info/genome/genebuild/biotypes.html
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Fig. 3. Impact of the GTF filtration. A. Venn diagramm of the number of the detected genes when using either an unfiltered (106) of filtered
(filter106) version of the GTF file. B. Violin plot representation of the filtration impact on the UMI counts for the CD68 gene.

Genomics pre-built Cellranger reference packages
version 2020-A for human.

As seen in Fig. 4A, 81% of the genes were iden-
tified by both algorithms whereas Kallisto-bustools
identified more genes than Cellranger.

The impact of the mapper on counts for specific
genes seemed to be negligible (Fig. 4B). Therefore
this tends to favor Kallisto-bustools for downstream
analyses.

We also assessed the impact of the mapper choice
on the final clustering step. As seen in Fig. 5, the
impact was modest but apparent (e.g. cluster number

1 in the Cellranger dataset was split in two in the
Kallisto-Bustools dataset).

Please, note that the different positioning of the
clusters on each UMAP is due to known flaws asso-
ciated with a 2D representation using UMAP (see e.g.
[3])

2.4. Application of scAN1.0 to a CD8+ T cell
murine dataset

The final combination that was found to be the most
effective for our human dataset therefore was using
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Fig. 4. Impact of the mapping tool. A. Venn diagram of the number of the detected genes when using either Cellranger (CR) or Kallisto-
bustools (KB) as an alignment tool. B. Violin plot representation on the UMI counts for two genes, CHGA and RBP4.

Kallisto-bustools together with the filtered version of
the 106 GTF.

We decided to apply scAN1.0 to a published
scRNA-seq dataset acquired from murine individual
CD8+ T cells throughout the course of their differen-
tiation in response to viral infection [4] and in order
to compare the two alignment tools Kallisto-bustools
and Cellranger.

As seen in Fig. 6, overall less genes were detected
than observed in human cells with 11587 genes iden-
tified by both algorithms. Quite interestingly we
observed the very same increase (plus 20%) in in the
number of genes identified by Kallisto-bustools when
compared with Cellranger.

3. Discussion

We described scAN1.0, a Nextflow based pro-
cessing pipeline of 10X scRNAseq data.

By applying scAN1.0 to a tumor dataset, we
showed that the impact of the annotation version was
relatively modest although using the latest Ensembl
release (106) of the GTF and FASTA allows to iden-
tify a larger number of genes.

As expected, filtrating the GTF files by removing
unwanted genes based on 10X reference package of
biotypes had a major impact both on the number of
genes but also on gene counts. Furthermore, a recent
study showed that GTF filtration led to a diminu-
tion of the number of processed pseudogenes and
to a better identification of mitochondrial genes [5].
We therefore strongly recommend to use a filtered
annotation when controlling data for mitochondrial
content.

Futhermore, when using Kallisto-bustools instead
of Cellranger the impact of the count numbers for
specific genes seemed to be small but meaningful.
Finally, Kallisto-bustools produced higher total num-
ber of genes detected than Cellranger on two very
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Fig. 5. Cluster characterization: UMAP representation (A and B) and Silhouette scores (C and D) of the clusters obtained on data processed
with CellRanger (A and C) or Kallisto-bustools (B and D). In E, is shown an alluvial plot highlighting the conservation and differences in
cluster composition depending upon the initial mapping method.

Fig. 6. Murine dataset analysis: Venn diagramm of the number of genes detected using Cellranger (CR) or Kallisto-bustools (KB) as
alignment tool the murine CD8 dataset.

different datasets. For the human dataset, we obtained
5169 unique genes detected by Kallisto-bustool as
compared to 344 unique genes detected by Cell-
ranger. For the murine dataset, the ration was 2849 to
72.

From a biological standpoint, this represents a very
significant increase in the amount of biological infor-

mation at hand, and in our view, it fully justifies the
use of Kallisto-bustools instead of Cellranger.

Thus,scAN1.0 can be easily used to reproducibly
compare different conditions of the pre-processing
steps of scRNAseq analyses. Its modular composition
of independent processes communicating via chan-
nels allows easy workflow pipeline modifications
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with DSL2 syntax and addition of new processing
modules. For instance, we intend to include different
normalization procedures in the future:

• The basic global-scaling normalization method
from Seurat [6].

• Sctransform which uses regularized nega-
tive binomial regression and computes Pearson
residuals that correspond to the normalized
expression levels for each transcript [7].

• Scran which uses pooling-based size factor
estimation [8].

The use of scAN1.0 should be made straight-
forward to assess a combination of low-level steps
together with the normalization step on the resulting
output.

Up to now, two solutions were offered to anyone
wanting to process scRNAseq data: (i) using a turnkey
solution like Seurat or (ii) chaining its own combina-
tion of required scripts (see e.g. [9]). Our solution
bridges the gap between those two options: (i) it can
be run easily in a “full Seurat mode” or (ii) it can
used as it stands for exploring the impact of mapping
solutions or (iii) it can be used for more advanced
bioinformaticians to plug-in and easily chaining new
algorithms.

One major limitation of using Nextflow is a lack
of interactivity during pipeline running, which would
allow the user to modify parameter on the fly. Instead,
all pipeline parameters need to be defined and set in
the launching command.

In conclusion, we believe that scAN1.0 will be a
useful tool for the growing community of 10X scR-
NAseq aficionados.

4. Material and methods

4.1. Pipeline description

Figure 1 describes the overall processing of the
sequencing files with the ordering of all steps
described in subsection 4.5.

4.2. Gonadotroph tumour dataset

Single cell preparation and sequencing. A tumor
fragment from a gonadotroph surgically-resected
adenoma was collected in Dulbecco’s Modified Eagle
Medium (DMEM, cat 41965062; Life Technologies).
Single-cell suspension of the resected fragment was
obtained through mechanical and enzymatic disso-

ciation (Collagenase P, cat 11213865001) followed
by filtration through a 100 μm mesh-strainer (#732-
2759, VWR international).

Red blood cells were eliminated using a 10-
minute incubation with a commercial red blood cell
lysis buffer (eBioscience, cat #00-4300-54). The
whole process was achieved within the 2 hours
following the surgical resection, cell viability was
evaluated to reach at least 70 percent prior encap-
sulation. Generation of the library was done using a
Chromium controller from 10xGenomics. The entire
procedure was achieved as recommended by the
manufacturer’s for the v3 reagent kit (Chromium
Next GEM Single Cell 3’ Kit v3.1 (10xGenomics
cat#1000269). Single cell suspension was loaded
onto a Chromium Single Cell A Chip, aiming for
5,000 cells in total. The cDNA was amplified after
a reverse transcription step, followed by a cleaning
using SPRIselect (Beckman Coulter), a quantifica-
tion step, and enzymatic fragmentation before being
sequenced using a NextSeq500 system (Illumina).
FASTQ files were generated from sequencer’s base
call files (BCLs) for each flowcell directory using
cellranger mkfastq.

Study ethic approval. This work is part of the
SPACE-PIT study (MR004 n21-5439). It was
approved by the Hospices Civils de Lyon ethical
committee and registered at the “Centre National
Information et Liberté” (CNIL.fr) under the refer-
ence 20 098. Informed consent was obtained from
the patients.

Processing. The dataset was processed using
scAN1.0 with the following parameters:

• species = human (default option)
• min cells= 3
• min feature RNA = 500
• max feature RNA = 7000
• max percent mito= 25

The following options were used to choose either
KB or CR:

• version = 106
• quantif = cellranger or quantif = kb

The following options were used for filtratingGTF:

• filtergtf

The following options were used to choose GTF
version:

CNIL.fr
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• version = 106
• version = 103
• version = 98
• version = 93

The number of principal components of the PCA
used for UMAP embedding and clustering was set
to 10 as determined by the rule of thumb heuris-
tic and the broken stick method [10]. The clustering
resolution was set to 0.7.

4.3. CD8 T cells dataset

Single cells preparation and sequencing. We down-
loaded reads from GEO (GSE131847, https://www-
ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr/geo/)
with fastqdump (https://rnnh.github.io/bioinfo-
notebook/docs/fastq-dump.html) using the --split-
files option. Quality control of reads was per-
formed with fastp (https://github.com/OpenGene/
fastp) and resulting FASTQ files were submitted to
scAN1.0.

To briefly describe this dataset (see [4] for the
full description), P14 transgenic CD8 T cell, which
recognise an LCMV epitope, were transferred to
histo-compatible hosts that were acutely immunised
the day after with the virus. Six days after infec-
tion, single responding P14 CD8 T cells from the
spleens of immunised hosts were sorted and loaded
into Single Cell A chips for partition into Gel
Bead In-Emulsions in a Chromium Controller (10x
Genomics). Single-cell RNA libraries were prepared
according to the 10x Genomics Chromium Single
Cell 3 Reagent Kits v2 User Guide and sequenced
(paired-end) on a HiSeq 4000 (Illumina).

Processing. The dataset was processed using
scAN1.0 with the following parameters:

• version = 106
• species = mouse
• filtergtf
• min feature RNA = 500
• min cells= 3
• max percent mito= 5
• chemistry V2

The following options were used to choose either
KB or CR:

• quantif = cellranger or quantif = kb

4.4. Implementation

The scAN1.0 pipeline was implemented using
the reactive workflow manager Nextflow [2], coding
with the DSL2 syntax extension. Nextflow simpli-
fies the writing of computational pipelines by making
them portable, scalable,parallelizable and ensuring
a high level of reproducibility. Nextflow provides
native support for container technologies such as
Docker or Singularity. Each process in the pipeline
will be run in a container. A reproducible container
environment is built for each process from Docker
images stored on the DockerHub. The analyses can be
run on the user’s preferred computing platform. Using
the configuration file and corresponding profile, the
pipeline can be run on a local computer via Docker
or Singularity, as well as on a high-performance
computing (HPC) cluster or in cloud-based environ-
ments. In the case the workflow cannot complete all
steps, a cache-based pipeline resume feature allows to
recover the processed steps and the blocked process
for debugging before resuming the workflow.

4.5. Input

scAN1.0 takes three mandatory parameters as
input: the paired-end FASTQ files from the 10X
Chromium sequencing and two genomics files (one
FASTA and one GTF).
FASTQ files store the nucleotide sequence and the

associated sequencing quality scores. For paired-end
sequencing, a FASTQfile is provided in a compressed
gzip format for each read ( R1 and R2). In the case
a sample has been sequenced on several lanes, all R1
and R2 reads are concatenated together.

The mapping steps requires the input of two addi-
tional files corresponding to the species of interest:

• A FASTA genomic file which stores the raw
genome sequence.

• A GTF file which stores genome annotation
including gene positions.

One should note that for human datasets, FASTA
and GTF files can be downloaded automatically by
specifying a version number as an entry parameter
(--version) available on the ENSEMBL database.

4.6. Preprocessing & Mapping

First, FASTQ files are processed and trimmed by
using Fastp v0.20.1 , an ultra-fast FASTQ prepro-
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cessor with useful quality control and data-filtering
features [11]. Reads with phred quality (https://en.
wikipedia.org/wiki/Phred quality score) at least
equal to 30 (-q 30) are qualified for the quan-
tification step. Length filtering is disabled (-L)
while adapter sequence auto-detection is enabled
(--detect adapter for pe). To reduce overlapping
annotation, we recommend and implemented
(parameter --filtergtf) an optionnal tool of Cell-
ranger (mkgtf function) that allows the GTF
filtration based on biotype attributes of sequences.
(see: https://support.10xgenomics.com/single-cell-
gene-expression/software/release-notes/build and
https://www.ensembl.org/info/genome/genebuild/bi-
otypes.html)

The processed files are then mapped to a refer-
ence genome in order to quantify gene expression. In
scAN1.0, the user can specify two different map-
pers (see below): Kallisto-bustools v0.26.0 [9] or
Cellranger v5.0.1 [12].

• Kallisto-bustools is used thought the Python
wrapper: kb python. Starting with FASTA and
GTF files, an index of the reference can be built
as a colored De Bruij graph with Kallisto via
kb ref. with default parameter. Once an index
has been generated or downloaded,kb count
uses Kallisto to pseudoalign reads and bus-
tools to quantify the data.

• Cellranger creates and prepares a reference
package withcellranger mkref function.
The alignment is then run via cellranger
countwith default parameters as described on
10xgenomics.com.

4.7. Quality control

Empty Droplets. With droplet-based technologies,
most of the barcodes in the matrix correspond
to empty droplets (e.g., barcodes with the sum
of expressions over all genes being null). They
must be removed from Kallisto-bustools generated
gene expression matrices. Thus, the Kallisto-
bustools outputs were imported into R with a
customized R function. The UMI total counts
were ranked using barcodeRanks() function
from DropletUtils v1.14.2 . Empty droplets
were removed by selecting the inflection point
value on the resulting knee plot (lower cutoff =
10).

On its side, Cellranger handles empty droplets by
itself and matrices cleared of empty droplets were

directly imported from the standard filtered barcode
output.

After importation, either gene expression matri-
ces were converted as Seurat object (Seurat v4.0.4)
with CreateSeuratObject function, including
features detected in at least 3 cells (min.cells =3).

Low quality cells. On the resulting empty droplet-
free matrices, the pipeline computes 3 QC metrics per
sample: the number of unique features, the number of
UMIs and the percent of mitochondrial gene counts;
per cell. These QC metrics are then used to discard
three main types of low quality cells [13]:

1. Cells in apoptosis may exhibit high% mitochon-
drial and low number of UMIs per cell.

2. Bad library preparation leads to low number of
unique gene counts and low number of UMIs per
cell.

3. Cellular doublets in droplets leads to high number
of UMI and unique gene count.

For this, a threshold can be set by the user
on scAN1.0 parameters min feature RNA, min
ncount RNA, max percent mito, max feature RNA,
max ncount RNA; which default values are 500 and
0 for the first two and “adaptive” for the others. With
the “adaptive” configuration,scAN1.0defines a cer-
tain number of median absolute deviations (MADs)
away from the median to define maximum values
(median + 3*mad) [14].

Furthermore, the pipeline uses the R package
DoubletFinder v2.0.3 to detect and remove the
potential doublets from the dataset. See [15] and [16].

Non-expressed genes. Genes with sum count along
cells equal to 0 (e.g. not-expressed genes) are
removed.

4.8. Normalization

After selection of high quality single-cells droplets
and significantly expressed genes, the count matrices
are then normalized using Sanity, a Bayesian algo-
rithm to infer gene-expression state [17]. We are fully
aware that the normalization of single cell transcrip-
tomic data is a research field on its own (see e.g. [18]
and citations therein), and we expect this block in the
pipeline to be susceptible to be modified in future ver-
sions of the pipeline. The modularity of the Nextflow
syntax makes it ideal for such additions.

https://en.wikipedia.org/wiki/Phred_quality_score
https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build
https://www.ensembl.org/info/genome/genebuild/biotypes.html
10xgenomics.com
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4.9. Clustering and two-dimensional
visualization

A final step consists in variable features selec-
tion with Seurat::FindVariableFeatures
using the vst method (selection.method = “vst")
and selecting the 2000 first highly variable genes
(nfeatures = 2000), followed by a first linear dimen-
sionality reduction using PCA (Seurat::RunPCA with
default parameter). The m first axis of the PCA are
then used for the nearest-neighbor graph construc-
tion with Seurat::FindNeighbors function
(dims=1:m).

Cluster determination was performed using
the Louvain algorithm [19] run with Seu-
rat::FindClusters function. The resolution
parameter set by default to 0.7. The quality of
the clustering was assessed using the Silhouette
score [20]. Finally, non-linear dimensional repre-
sentation (using either t-SNE [21] or UMAP [22])
is then performed using Seurat::RunTSNE or
Seurat::RunUMAPwith default parameters using
the same number of dimensions than the nearest-
neighbor graph building.

The resolution parameters used for clustering and
the number of principal components kept for both
clustering and dimension reduction embeddings can
be respectively modified by the user at the start of
the pipeline by the --resolution clustering and the --
principal component parameters (default values: 0.7
and 10, respectively).

Alternatively, this last step can be skipped allowing
the user to use their own clustering method. Similarly,
to avoid the introduction of layers of complexity and
simplify the pipeline usage, the automatic annotation
of clusters was not introduced. Users can annotate
their dataset manually.

4.10. Output

The complete list of process outputs is available on
the Readme file of the gitlab repository (see section
5).

By default, all outputs are saved in the results direc-
tory, which is structured into subdirectories that are
named according to each process. Results and graph-
ics are stored in the subdirectories that correspond
to each process. For the post-quantification steps,
scAN1.0 provides a Seurat object and an updated
matrix for each step. The user can easily manipulate
the Seurat object by loading it into R. Since cluster
annotation has not been integrated into the pipeline,

users can manually annotate the clusters using marker
genes or cell type reference signatures.

Availability

scAN1.0 is freely available at: https://gitbio.ens-
lyon.fr/LBMC/sbdm/scan10. Please, take caution to
clone using HTTP instead of SSH.
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