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1 Solutions of the dynamic models

Here, we give the solutions of the three dynamic models presented in systems (1) to (3) of the main text,
which are represented graphically in figure 2. In all the following, we will note Y0 the initial condition at
time t = 0 for variable Y .

1.1 SB model

System (1) is written in matrix form as:(
dS
dt (t)
dB
dt (t)

)
=

(
ρS − δSB 0

δSB ρB

)(
S(t)

B(t)

)
.

We thus have immediate access to the eigenvalues of the system, and can solve it analytically. There
are two possible cases, whether the two eigenvalues of the matrix are equal or not.

The dynamics of the self-renewing cells are described by the equation:

S(t) = S0e
(ρS−δSB)t .

Concerning the dynamics of the differentiated cells, we thus have :

dB

dt
(t)− ρBB(t) = δSBS0e

(ρS−δSB)t .

Then, there are two cases depending on the value of ρB :

1. If ρB 6= ρS − δSB , then B writes as:

B(t) = b1e
ρB t + b2e

(ρS−δSB)t ,

with b2 = δSBS0
ρS−δSB−ρB

and b1 = B0 − b2.

2. If ρB = ρS − δSB , then B writes as:

B(t) = (b1 + b2t)e
ρB t ,

with b2 = δSBS0 and b1 = B0.
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1.2 S2B model

System (2) is written in matrix form as:
dSLM1
dt (t)

dSDM17
dt (t)
dB
dt (t)

 =

ρLM1 0 0

0 ρDM17 − δSB 0

0 δSB ρB


 SLM1(t)

SDM17(t)

B(t)

 .

Again, the eigenvalues of the matrix of the system are its diagonal coefficients. The dynamics of the
self-renewing cells still follow an exponential dynamic:{

SLM1(t) = S0e
ρLM1t ,

SDM17(t) = S0e
(ρDM17−δSB)t ,

and the differentiated cells follow the same dynamics as in the SB model (by replacing ρS by ρDM17).

1.3 SCB model

System (3) is written in matrix form as:
dS
dt (t)
dC
dt (t)
dB
dt (t)

 =

ρS − δSC 0 0

δSC ρC − δCB 0

0 δCB ρB


S(t)

C (t)

B(t)

 .

Again, the eigenvalues of the matrix of the system are its diagonal coefficients, and we can solve it
analytically. There are several possible cases, depending on what eigenvalues are equal.

For the self-renewing cells, we have the same solution as in the two other models:

S(t) = S0e
(ρS−δSC )t .

Concerning the dynamics of the committed cells, we thus have :

dC

dt
(t)− (ρC − δCB)C (t) = δSCS0e

(ρS−δSC )t .

There are two cases depending on the respective values of ρC − δCB and ρS − δSC :

1. If ρC − δCB 6= ρS − δSC , then C writes as:

C (t) = c1e
(ρC−δCB)t + c2e

(ρS−δSC )t ,

with c2 =
δSCS0

(ρS−δSC )−(ρC−δCB)
and c1 = C0 − c2.

2. If ρC − δCB = ρS − δSC , then C writes as:

C (t) = (c1 + c2t)e
(ρS−δSC )t ,

with c2 = δSCS0 and c1 = C0.

Depending on the two previous cases, there are several possible solutions for the dynamics of differ-
entiated cells:
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1. If ρC − δCB 6= ρS − δSC , then:

dB

dt
(t)− ρBB(t) = δCBc1e

(ρC−δCB)t + δCBc2e
(ρS−δSC )t .

Then, there are three possible sub-cases depending on the relative values of ρS − δSC , ρC − δCB

and ρB :

(a) If ρC − δCB 6= ρS − δSC , ρS − δSC 6= ρB and ρC − δCB 6= ρB , then B writes as:

B(t) = b1e
ρB t + b2e

(ρC−δCB)t + b3e
(ρS−δSC )t ,

with b2 =
δCBc1

ρC−δCB−ρB
, b3 = δCBc2

ρS−δSC−ρB
and b1 = B0 − b2 − b3.

(b) If ρS − δSC 6= ρC − δCB and ρB = ρC − δCB , then B writes as:

B(t) = (b1 + b2t)e
ρB t + b3e

(ρS−δSC )t ,

with b2 = δCBc1, b3= δCBc2
ρS−δSC−ρB

and b1 = B0 − b3.

(c) If ρS − δSC 6= ρC − δCB and ρB = ρS − δSC , then B writes as:

B(t) = (b1 + b3t)e
(ρS−δSC )t + b2e

(ρC−δCB)t ,

with b2 =
δCBc1

ρC−δCB−ρB
, b3 = δCBc2 and b1 = B0 − b2.

2. If ρS − δSC = ρC − δCB , then:

dB

dt
(t)− ρBB(t) = δCB(c1 + c2t)e

(ρS−δSC )t .

Then, there are two possible sub-cases depending on the relative values of ρS − δSC , ρC − δCB and
ρB :

(a) If ρS − δSC = ρC − δCB and ρB 6= ρS − δSC , then B writes as:

B(t) = b1e
ρB t + (b2 + b3t)e

(ρS−δSC )t ,

with b3 =
δCBc2

ρS−δSC−ρB
, b2 = δCBc1−b3

ρS−δSC−ρB
and b1 = B0 − b2.

(b) If ρS − δSC = ρC − δCB = ρB , then B writes as:

B(t) = (b1 + b2t + b3t
2)eρB t ,

with b2 = δCBc1, b3 = δCBc2
2 and b1 = B0

2 Convergence of the estimation

In both estimation steps, we minimized the -log likelihood with the Truncated Newton’s algorithm
implemented in scipy, with a maximum number of function evaluations of 106. We used random sampling
of the initial guesses for parameter values to assure convergence to the global optimum.

Figure S1 shows the distance to the minimal log-likelihood (sorted from highest to lowest) over large
samples of initial guesses (200 initial guesses for the first step, 1000 initial guesses for the second one)
for our SCB model with proportional error. It shows that with a relatively small sample, the estimated
likelihood is already quite close to its minimal value and that increasing the sample size doesn’t result in
a better fit.

In order to balance the quality of the fit with the computational cost of the estimation, we used 100
different initial guesses for the first estimation step and 500 initial guesses for the second one for all of
our models.
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Figure S1: Influence of the initial guess sample size on the estimation. A: Sorted distance to the optimal
likelihood over 200 runs of the estimation of ρS and b1 (SCB model with proportional error). B: Sorted
distance to the optimal likelihood over 1000 runs of the estimation of ρC , δCB , ρB and b2 (SCB model
with proportional error).

3 Parameter values

The estimated parameter values for the 9 pairs of dynamic and error models are displayed in table S1

Dynamic Error ρ1 δ1 a1 b1 ρ2 δ2 ρB a2 b2

SB Constant 0.59 5.7 2.8× 104 - - - 0.62 5.4× 104 -
SB Proportional 0.53 5.6 - 0.34 - - 0.56 - 0.45
SB Combined 0.53 5.6 0 0.34 - - 0.56 0 0.45
S2B Constant 0.59 5.7 2.8× 104 - 0.48 0.033 1.4 1× 104 -
S2B Proportional 0.53 5.6 - 0.34 0.47 0.15 0.96 - 0.14
S2B Combined 0.53 5.6 0 0.34 0.47 0.15 0.96 0x 0.14
SCB Constant 0.59 5.7 2.8× 104 - 0.47 0.038 1.4 1× 104 -
SCB Proportional 0.53 5.6 - 0.34 0.49 0.18 0.92 - 0.15
SCB Combined 0.53 5.6 0 0.34 0.49 0.18 0.92 0 0.15

Table S1: Best-fit estimates of the parameters for the 9 pairs of error model and dynamic model. ρ1 is
the net proliferation rate of the first compartment of the model (i.e. ρS for the SB and SCB models, and
ρLM1 for the S2B model). δ1 is the differentiation rate of this compartment (i.e. δSB for the SB model,
δSC for the SCB model, and it is not defined for the S2B model). ρ2 is the net proliferation rate of the
second compartment, when it is different from the B compartment (i.e. ρDM17 for the S2B model, ρC
for the SCB model, and it is not defined for the SB model). δ2 is its differentiation rate (i.e. δSB for
the S2B model, δCB for the SCB model, and it is not defined for the SB model). ρB is defined in every
model as in the SCB model.

4



6 7 8 9 10

SC

173.5

174.0

174.5

175.0

175.5

176.0

176.5

177.0

177.5

178.0

2
lo

g(
L 2

)

Figure S2: The choice of δSC does not impact the quality of the fit of the model. The straight line
represents the minimum -log likelihood optimized in the last step of our estimation procedure as a function
of the chosen value for δSC . The dashed line gives the χ2 significance threshold of a likelihood-ratio test.

4 Importance of δSC

In the estimation procedure described in the Methods section, every parameter of the dynamic model is
estimated according to the experimental data, except δSC , which is set to an arbitrary value between its
two bounds (determined from the commitment experiment pictured on figure 1C). Though these bounds
give precise limits to the values that δSC can take, setting it to different values might result in different
optimal parameter values for the second estimation step of the procedure.

Figure S2 displays the likelihood of the second estimation step for the range of values that δSC can
take. It does not vary significantly in this range, which means that the quality of the fit of the model is
not influenced by the choice of the value of δSC . This leaves two possible scenarios: either the value of
δSC has no influence on the estimated parameter values in the second estimation step, or it is possible to
keep the likelihood high while changing the value of δSC by adjusting the value of the other parameters
(which would be a case of non-identifiability if the value of δSC was optimized to fit the data).

Figure S3 displays the values of the parameters estimated in the step 3 of the procedure, for the
range of values that δSC can take. Since these value do not vary much, it seems reasonable to say that
the choice of the value of δSC does not impact the last estimation step of the procedure.

5 Identifiability of the treatment parameters

Figure S4 displays the profile likelihood curves for the parameters that are affected by the rapamycin
treatment. In the model of rapamycin treatment that we selected, b1 does not vary, so its value is not
estimated from the data. It is also the case for δSC , as in the control situation. It is thus impossible to
define a profile likelihood for these two parameters. Thus, ρS is now the only parameter that is estimated
with the LM1 data, so its identifiability threshold is χ2(0.95, 1) = 3.84. The other parameters (ρC , δCB ,
ρB and b2) are all estimated together, so their identifiability threshold is χ2(0.95, 4) = 9.49, as in the
control case.
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Figure S3: The choice of δSC does not impact the value of the other parameters of the model. Solid
lines represent the values of the parameters estimated in the last step of our procedure. Dashed lines
represent the confidence interval of each parameter computed from figure 3.
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Figure S4: The values of the parameters under rapamycin treatment are identifiable. For each of the
parameters which varied under the treatment, the solid line represents the profile likelihood with respect
to that parameter, and the dashed line gives the χ2 identifiability threshold (at α = 0.95).
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