
RELATIVE PERFORMANCE OF THE ALPHA-BETA ALGORITHM

T.A. MarslanO
University of Alberta .

The alpha-beta algorithm Implements a minimax search .

Its high effl~ency may be attributed to the use of two

bounds which form an Initial window . If this wlnOow covers

the full range of numbers that the terminal noOe evaluation

function can produce, then a full ~ search Is being

done. A call to the alpha-beta function could be:

v = AB(p, alpha, beta, Oepth);

where p Is a pointer to a position state vector, alpha anO

beta are the lower and upper bounds on the window, and

Oepth Is the specified length of search . The number re-

turned by the function Is called the value of the tree, and

measures the potential success of the player to move. A

skele~n for thiS function, expressed in the C language

with Pascnl style declarations and loops, appears in

Figure 1. The algorithm Is expressed in a negamax framework

(K~VT75J, and so avoids the need for alternate min/max

operations by always returning the negative of the subtree

value from node to node. Undefined are functions

evaluate(), to assess the value of the terminal nodes,

generate(), to list the moves for the current pOSition,

make(), to actually play the move under consideration, and

undo(), to retract the current move .

function AB(p : position; alpha, beta, depth
(

Int) Int;

VAR width, score, i, value Int;

If (depth S 0)
return(evaluate(p»;

/­
width = generate(p); /,

/­
it (width == 0)

return(evaluate(p»;
score = -INF;
for I c I to width do (

make(p. i);

/. a terminal node? Of

determine successor positions -/
p . 1 ... p.w and return number */
of moves as function valua -/

/* no legal moves? */

value = -AB(p . I, -beta, -max{score,alpha) , depth-I):
undo(p. I);

If (value> score)
score· value;

If (score ~ beta)
return(score) ;

return(score);

/* an Improvement? */

fo a cutoff? */

Figure 1: Depth-limited alpha-beta function .

A major extension to the alpha-beta algorithm involves

iterative deepening, in which a sequence of successively

deeper and deeper searches Is carried out until some (time)

limit is exceeded . Thus a search of depth 0 elY (moves) Is

used to dynamically reorder (sort) the choices and so pre-

pare the way for a faster 0+1 ply search than would be pos-

sible directly. Two f1urther refinements are :

(a). Asplratlon~, In which the width of the window IS

typically equal to two times the value of the smallest

piece (a Pawn) . It is possible for such a search to

fal I, i . e . , to return a value which Is outSide the

window . Two fal1ure modes occur : 'low' , in which all

the moves are tried but no value reaches the lower

limit of the window, and 'high', which stops the

search as soon as a move Is found which exceeds the

upper expectation. A sample implementation of an as-

plration search is shown In Figure 2. Note that func­

tion AB() iN never called more than twice for each

iteration.

/* Assume V estimated value of position p, and
e = expected error limit.

0/
V = 0;
for 0 = to depth do (

alpha = V - e;
beta = V + e;
V = AB(p, alpha. beta, 0);

If (V 2: beta)
V = AB(p, V, +INF, 0);

else
If (V :!: alpha)

V = AB(p, -INF, V, 0);

/* failing high */

/* falling low */

sor t (pI: /* best move so far is tried first
on next iteration. */

Figure 2: Iterative deepening with aspiration search.

(b). Minimal window search, in which It Is assumed that the

first move to be tried Is the start of the principal

variation. This line Is then searched with a full

width window, while all the alternate variations are

searched with a ~ ~ window, under the assump-

tion that they will fall-low In any case. Should one

of the moves not fall this way then It becomes the

start of a new principal variation and the search Is

repeated for this move with a window which covers the

new range of possible values". The nature of principal

variation search (PVS) Is shown In Figure 3.

': Ken Thompson employs an interesting variation of this In
Belle [MARS83).

function PVS(P : position; depth: Int) Int;
(

VAR width, score, I, value: Int;
If (depth:!: 0)

return(evaluate(p»;
width = generate(p);
If (width u 0)

return(evaluate(p»;
make(p.I);
score = -PVS(p. I, depth-I);
undo(p. I);
for I = 2 to width do (

make(p. I);
value = -AB(p.I, -score-I, -score, depth-I);
if (value> score)

score = -AB(p.i, -INF, -value, depth-I);
undo(p.i);

return (score) ;

Figure 3: Minimal window search.

Both aspiration and minimal window searches can ben~-

fit further from the use of refutation and transposition

tables. Installation of a refutation table Is stralghtfor-

ward and has low space overhead. After a search of dept h [)

on a tree of constant width W the table contains WoO en-

tries. Thus for each variation the table contains thE" s .. -

quence of 0 moves which determined a sufficient value for

that variation. Prior to the next Iteration the table Is

sorted so that upon an Iiteration to depth 0+1 there exists

a O-ply sequence for each variation that Is tried first

[This Is basically the scheme described by W. Fink, ICCA

Newsletter, Vol 5, Nl). The candidate principal variation

Is fully searched, but for the alternate variations the

moves In the refutation table may be sufficient to again

cut off the search and thus save the move generation that

would normally occur at each node. If the maximum length of

the refutation path is 5 and the maximum tree width is 100,

then, If each entry needs 2 bytes, Just 1000 bytes are re-

qulred to hold all the refutation lines for the current

position . ~

A transposition table may also be used to hold refuta­

tions but, because It has the capacity for including more

Information, It has other capabilities too . If the Informa-

tlon stored In the entries contains at least the best move

In the position and the value and length of the subtree

emanating from that point, then the transposition table may

be used to extend the effective search depth . This Is espe-

cially valuable In endgames when the number of possible

alternatives Is small. As In the other cases, a sorting

operation between each Iteration ensures that the moves at

the first level will be tried In the best possible order. A

typical . transposltlon table might contain 10,000 entries,

each of 10 bytes (MARS83], for a 100,000 byte total storage

overhead .

In comparing algorithms which search game trees, one

may either measure the amount of computer time used to

search a tree, or count the number of nodes visited In the

tree. If the cost of a node Is nearly constant, these two

measures are effectively the same . However, our test pro-

gram, and chess programs In general, perform significantly

more calculation at a terminal node than at interior nodes

in the tree. One reason for this Is that a check or capture

analYSis In the form of an extended tree search Is done .

Therefore the following comparison Is based on the number

of terminal nodes examined, especially since it has the

additional advantage of being a machine Independent mea-

sure .

The algorithms were tested on a data set which was

used to assess the performance of computer chess programs

and human chess players [BRATB2J. That data set contained

24 chess positions [see ICCA Newsletter, Vol 4, 62) . The

first position Involves a forcing sequence of checks and so

was deleted from this study. All the remaining positions

were searched with 3 , 4 and 5-ply trees, using a combina-

tlon of alpha-beta refinements . The results are normalized

to the cost of a direct (no Iteration) alpha-beta search

and are summarized In Figure 4 . The following cases were

considered: (1) . Simple Iteration, retain first move nf

principal variation only . (2). Narrow window aspiration

search. (3). Full window search with refutation table. (~J

Principal variation search with transpOSition table. A

lower bound, In the form of the size of the expected minl-

mal tree that alpha-beta must search, Is also Included.

The results show that use of a refutation or transpo-

sltlon table is a mora Important enhancement to iterative

deepening than Is a,plratlon searching . ~owever , some form

of aspiration searching always provides extra benefit. For

trees of less than 6-ply In depth a refutation table Is

almost as effective as a transpOSition table, yet Incurs a

much lower storage overhead . While minimal window searching

(PVS) Is marginally better than narrow window searching, It

Involves a more complex Implementation . A more complete

comparison Is to be found In a recent report [MARSB2).

Page 24

tl20

.r::.' 110
C)

BRAT82

I<NUT75

MARS82

MARS83

ICCA NEWSLETTER

1. Bratko and D. Kopec. "A test for comparIson of
human and computer performance In chess" In
Advances In Computer ~ ~. M.R.B. Clark.
(.dltor). P.rgamon Pr •••• 1982.

D. I<nuth and R. Moore. "An analy.I. of alpha-beta
prunIng". ArtIfIcIal IntellIgence 6 (1975). 293-
326.

T.A. Marsland . "A quantItatIve .tudy of alpha­
beta r.fln.ments". TR82-6. Computing Science
Dept .• Unlv. or Alberta. EDMONTON. Canada.

T.A. Marsland and M. Campbell. ·Parallel .earch
of strongly ordered game trees·. Computing
Surveys (to appear) 1983 .

! , ~~ . : . i .
! I : i . i
I I ;,

full . I
! 1-1'

ItS
<U
Uli
+I;

100 \

:/! i~1 i
I ~ I I

0;
<U
1-1

.,..j .

'0
I

0;
+I

90

80

70

60

50

40

30

20

10

: i I

I ! . : I

' . I IP
............. \ I ' . : ~
~ I I

I ~tp I • , cf)

! I /! ! i

"'~i~;li I " I i , I I

. i *' ! : f Yi ! I.

/' i i

r; i Ix. t
I ! i , !
I · ·· · oJ . ·1 · :

!! f i I
I :! I
I I I

: I
I .

!

I 1 : ~ I
siarc~ldePt~ in . ~lY ~--.E~.. :

I I ' I . , I

~e~form~nce Co~parison ot Qlpha-geta
. I i,l . ;

I ..

Figure t:
I

~ L.

November 1982

I
,--I

i
I

ii i
I I I
. , . '" ~

I .. 11 . 1

enhan ements
, . I
I _ _ _ ;

