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The alpha-beta algorithm Implements a minimax search . 

Its high effl~ency may be attributed to the use of two 

bounds which form an Initial window . If this wlnOow covers 

the full range of numbers that the terminal noOe evaluation 

function can produce, then a full ~ search Is being 

done. A call to the alpha-beta function could be: 

v = AB(p, alpha, beta, Oepth); 

where p Is a pointer to a position state vector, alpha anO 

beta are the lower and upper bounds on the window, and 

Oepth Is the specified length of search . The number re-

turned by the function Is called the value of the tree, and 

measures the potential success of the player to move. A 

skele~n for thiS function, expressed in the C language 

with Pascnl style declarations and loops, appears in 

Figure 1. The algorithm Is expressed in a negamax framework 

(K~VT75J, and so avoids the need for alternate min/max 

operations by always returning the negative of the subtree 

value from node to node. Undefined are functions 

evaluate(), to assess the value of the terminal nodes, 

generate(), to list the moves for the current pOSition, 

make(), to actually play the move under consideration, and 

undo(), to retract the current move . 

function AB(p : position; alpha, beta, depth 
( 

Int) Int; 

VAR width, score, i, value Int; 

If (depth S 0) 
return(evaluate(p»; 

/­
width = generate(p); /, 

/­
it (width == 0) 

return(evaluate(p»; 
score = -INF; 
for I c I to width do ( 

make(p. i); 

/. a terminal node? Of 

determine successor positions -/ 
p . 1 ... p.w and return number */ 
of moves as function valua -/ 

/* no legal moves? */ 

value = -AB(p . I, -beta, -max{score,alpha) , depth-I): 
undo(p. I); 

If (value> score) 
score· value; 

If (score ~ beta) 
return(score) ; 

return(score); 

/* an Improvement? */ 

fo a cutoff? */ 

Figure 1: Depth-limited alpha-beta function . 

A major extension to the alpha-beta algorithm involves 

iterative deepening, in which a sequence of successively 

deeper and deeper searches Is carried out until some (time) 

limit is exceeded . Thus a search of depth 0 elY (moves) Is 

used to dynamically reorder (sort) the choices and so pre-

pare the way for a faster 0+1 ply search than would be pos-

sible directly. Two f1urther refinements are : 

(a). Asplratlon~, In which the width of the window IS 

typically equal to two times the value of the smallest 

piece (a Pawn) . It is possible for such a search to 

fal I, i . e . , to return a value which Is outSide the 

window . Two fal1ure modes occur : 'low' , in which all 

the moves are tried but no value reaches the lower 

limit of the window, and 'high', which stops the 



search as soon as a move Is found which exceeds the 

upper expectation. A sample implementation of an as-

plration search is shown In Figure 2. Note that func­

tion AB() iN never called more than twice for each 

iteration. 

/* Assume V estimated value of position p, and 
e = expected error limit. 

0/ 
V = 0; 
for 0 = to depth do ( 

alpha = V - e; 
beta = V + e; 
V = AB(p, alpha. beta, 0); 

If (V 2: beta) 
V = AB(p, V, +INF, 0); 

else 
If (V :!: alpha) 

V = AB(p, -INF, V, 0); 

/* failing high */ 

/* falling low */ 

sor t (pI: /* best move so far is tried first 
on next iteration. */ 

Figure 2: Iterative deepening with aspiration search. 

(b). Minimal window search, in which It Is assumed that the 

first move to be tried Is the start of the principal 

variation. This line Is then searched with a full 

width window, while all the alternate variations are 

searched with a ~ ~ window, under the assump-

tion that they will fall-low In any case. Should one 

of the moves not fall this way then It becomes the 

start of a new principal variation and the search Is 

repeated for this move with a window which covers the 

new range of possible values". The nature of principal 

variation search (PVS) Is shown In Figure 3. 

': Ken Thompson employs an interesting variation of this In 
Belle [MARS83). 

function PVS( P : position; depth: Int) Int; 
( 

VAR width, score, I, value: Int; 
If (depth:!: 0) 

return(evaluate(p»; 
width = generate(p); 
If (width u 0) 

return(evaluate(p»; 
make(p.I); 
score = -PVS(p. I, depth-I); 
undo(p. I); 
for I = 2 to width do ( 

make(p. I); 
value = -AB(p.I, -score-I, -score, depth-I); 
if (value> score) 

score = -AB(p.i, -INF, -value, depth-I); 
undo(p.i); 

return (score) ; 

Figure 3: Minimal window search. 

Both aspiration and minimal window searches can ben~-

fit further from the use of refutation and transposition 

tables. Installation of a refutation table Is stralghtfor-

ward and has low space overhead. After a search of dept h [) 

on a tree of constant width W the table contains WoO en-

tries. Thus for each variation the table contains thE" s .. -

quence of 0 moves which determined a sufficient value for 

that variation. Prior to the next Iteration the table Is 

sorted so that upon an Iiteration to depth 0+1 there exists 

a O-ply sequence for each variation that Is tried first 

[This Is basically the scheme described by W. Fink, ICCA 

Newsletter, Vol 5, Nl). The candidate principal variation 

Is fully searched, but for the alternate variations the 

moves In the refutation table may be sufficient to again 

cut off the search and thus save the move generation that 

would normally occur at each node. If the maximum length of 



the refutation path is 5 and the maximum tree width is 100, 

then, If each entry needs 2 bytes, Just 1000 bytes are re-

qulred to hold all the refutation lines for the current 

position . ~ 

A transposition table may also be used to hold refuta­

tions but, because It has the capacity for including more 

Information, It has other capabilities too . If the Informa-

tlon stored In the entries contains at least the best move 

In the position and the value and length of the subtree 

emanating from that point, then the transposition table may 

be used to extend the effective search depth . This Is espe-

cially valuable In endgames when the number of possible 

alternatives Is small. As In the other cases, a sorting 

operation between each Iteration ensures that the moves at 

the first level will be tried In the best possible order. A 

typical . transposltlon table might contain 10,000 entries, 

each of 10 bytes (MARS83], for a 100,000 byte total storage 

overhead . 

In comparing algorithms which search game trees, one 

may either measure the amount of computer time used to 

search a tree, or count the number of nodes visited In the 

tree. If the cost of a node Is nearly constant, these two 

measures are effectively the same . However, our test pro-

gram, and chess programs In general, perform significantly 

more calculation at a terminal node than at interior nodes 

in the tree. One reason for this Is that a check or capture 

analYSis In the form of an extended tree search Is done . 

Therefore the following comparison Is based on the number 

of terminal nodes examined, especially since it has the 

additional advantage of being a machine Independent mea-

sure . 

The algorithms were tested on a data set which was 

used to assess the performance of computer chess programs 

and human chess players [BRATB2J. That data set contained 

24 chess positions [see ICCA Newsletter, Vol 4, 62) . The 

first position Involves a forcing sequence of checks and so 

was deleted from this study. All the remaining positions 

were searched with 3 , 4 and 5-ply trees, using a combina-

tlon of alpha-beta refinements . The results are normalized 

to the cost of a direct (no Iteration) alpha-beta search 

and are summarized In Figure 4 . The following cases were 

considered: (1) . Simple Iteration, retain first move nf 

principal variation only . (2). Narrow window aspiration 

search. (3). Full window search with refutation table. (~J 

Principal variation search with transpOSition table. A 

lower bound, In the form of the size of the expected minl-

mal tree that alpha-beta must search, Is also Included. 

The results show that use of a refutation or transpo-

sltlon table is a mora Important enhancement to iterative 

deepening than Is a,plratlon searching . ~owever , some form 

of aspiration searching always provides extra benefit. For 

trees of less than 6-ply In depth a refutation table Is 

almost as effective as a transpOSition table, yet Incurs a 

much lower storage overhead . While minimal window searching 

(PVS) Is marginally better than narrow window searching, It 

Involves a more complex Implementation . A more complete 

comparison Is to be found In a recent report [MARSB2). 
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