

ICCA Newsletter

Vol. 2 No. 2
December 1979

EDITORIAL

The International Computer Chess Association (ICCA) presently has about 200 members. The current membership list is enclosed. Until now, the ICCA has functioned solely out of its headquarters at the Vogelback Computing Center of Northwestern University as a medium of communication among people interested in computer chess. The ICCA Newsletter serves this purpose. Beginning in 1980, however, the organization will attempt to assume other roles which its organizers had hoped it would take on. These include tournament rules and organization, a computer chess rating or ranking system, and needed liaison with other organizations like the International Chess Federation (FIDE), the U. S. Chess Federation (USCF), the Association for Computing Machinery (ACM), the International Federation for Information Processing (IFIP), and others.

A meeting of ICCA was held in Detroit on October 30 during the Tenth ACM North American Computer Chess Championship. At that meeting reports were presented by chairmen of four committees: Bylaws, Tournament Rules and Organization, External Liaison, and Computer Chess Rating System. A draft set of statutes for ICCA was distributed and discussed. It was decided that the Bylaws Committee would revise the statutes and publish a modified set of statutes in this News letter so that the membership could

Editor: B. Mittman
Editorial Asst.: J. Cesal
Northwestern University

react. A mail vote by the membership will be needed to ratify the statutes. Other committee reports and working papers are also published in this issue of the Newsletter. Written comments are solicited. We also urge members to send short articles, announcements and news for future issues to:

> ICCA Newsletter
> Vogelback Computing Center Northwestern University Evanston, Illinois 60201 USA

The Tenth ACM tournament was a great success. In addition to an exciting climax to the tournament in which CHESS 4.9 drew BELLE to win the title with $31 / 2$ points, there was an interesting exhibition of man and computer vs. man in a chess game. David Slate of Northwestern University, playing with the help of CHESS 4.9, was defeated by International Master David Levy. A report of the tournament and the exhibition game appears later in the Newsletter. In addition, as a supplement to this Newsletter, we are pleased to publish the games played and the cross tables of results of the ten ACM computer chess tournaments from the first one in New York in August of 1970 to Detroit in October of 1979. The game scores had been entered into a computer data base by Ken Thompson of Bell Telephone

EDITORIAL

Laboratories, and then photo typeset directly from this data base. This computer data base is expected to grow and to become an invaluable research tool in computer chess. We want to thank Ken for providing our members with this valuable collection of computer chess games from the ACM tournaments.

This issue of the ICCA Newsletter is the largest one produced to date. I want to thank Ms. Joan Cesal of Vogelback Computing Center for her role in editing and publishing the Newsletter, as well as for handling membership business and correspondence. Without her help, the ICCA would not have reached its current position of importance to the computer chess world.

Note: In order to limit the total size of the Newsletter and to save on mailing costs, a number of items have been photo reduced. We hope that this does not cause hardship for any readers.

```
B. Mittman Editor
```


NEWS AND NOTICES

This section will report on general news of interest to the computer chess community.

Computer Chess Bibliography Available

Mr. Hartmut Tanke of West Berlin informs us that his computer chess bibliography, which currently contains references to 830 documents, is available at no charge to ICCA members by writing to:

Prof. Dr. H.-J. Schneider
Technische Universität Berlin
Fachbereich Informatik (20)
Institut für Angewandte Informatik
Computergestützte Informationssysteme KU-A1
Kurfürstendamm 202
1000 Berlin 15, West Germany

International Computer Go Association

Mr. David Lewis of Los Angeles informs us of the establishment of the International Computer Go Association. Anyone wishing further information should write to:

Mr. David S. Lewis
P.O. Box 48829

Los Angeles, California 90048
USA

Analysis of MACHACK Available in German

We have received information about the availability of a report, written in German by Mr. Gerd Friedrich, concerning the Richard Greenblatt chess program MACHACK. Copies are available from:

Mr. Gerd Friedrich
Erbacher Str. 32
D-6101 Rossdorf 1, Germany

Book on Nonnumerical Information Processing Available in German

We received the following announcement from Prof. H. Bruderer of the Institute of Computational Linguistics in Bern, Switzerland of a book which deals with a number of topics in nonnumerical information processing, including computer chess:

Herbert E. Bruderer
Nichtnumerische Informationsverarbeitung
Linguistische Datenverarbeitung, künstliche Intelligenz, Computerschach, Computerkunst, automatische Dokumentation, Bibliotheksautomatisierung, Rechtsinformatik. Verlag Linguistik, P. O. Box 149
CH-9400 Rorschach, Switzerland 194 pages, 1979
Price: surface-44 Swiss Francs air-50 Swiss Francs
For checks please add 6 Swiss Francs. (Foreign orders must be prepaid.)

NEWS AND NOTICES

ACM Forms a Computer Chess Committee

The Association for Computing Machinery (ACM) has formed a standing committee on computer chess with the following charter:

"The Computer Chess Committee

(CCC) has as its mandate to provide a framework for computer chess activities within the ACM. The CCC will organize chess tournaments, talks, panel discussions, technical sessions and other appropriate activities which have as their purpose advancing the state of computer chess and providing ACM members and the general public a perspective of these advances."

The initial membership of the Committee is Prof. Monroe Newborn, Mc Gill University, Chairman; Prof. Benjamin Mittman, Northwestern University, Vice Chairman; Prof. Anthony Marsland, University of Alberta, and Dr. Kenneth Thompson, Bell Telephone Laboratories, Committee Members.

Preserving Computer-Related Source Materials

Enclosed with this issue of the ICCA Newsletter is a brochure produced by the American Association of Information Processing Societies on preserving com-puter-related source materials. Someday a valuable archive will be established to collect the important materials which are connected with the development of computer chess. Save your source materials. If funds can be found and if a volunteer can be recruited, the ICCA should consider sponsoring such an archive. Member comments and ideas are solicited.

Third World Computer Chess Championship

Plans are being made to hold the Third World Computer Chess Championship in Melbourne, Australia during the week of October 13, 1980 at IFIP80, the world computer congress of the International Federation for Information Processing. An organizing committee, made up of Prof. Benjamin Mittman of Northwestern University, USA, Chairman, Prof. Monroe Newborn of Mc Gill University, Canada, Prof. Rodney Topor of Monash University, Australia, and International Master David Levy of England, has been trying to raise the necessary funds to hold the tournament in Australia. A considerable amount of money is needed to provide travel grants for sixteen team members and for the officials of the tournament, for communications charges, and for local expenses. If sufficient funds cannot be raised to hold the tournament in Australia, other sites and sponsors are being considered.

The tournament is open to computer chess programs from all over the world. Tournament participants will be required to make their own arrangements for computer time. The tournament committee will try to assist in this effort if possible, but is under no obligation to provide facilities for any participant. The committee will attempt to attract the strongest programs in the world to compete and also to provide the widest geographic representation possible, while maintaining the highest quality of competition.

Applications for the Third World Computer Chess Championship are available from:

Prof. Monroe Newborn
Mc Gill University
School of Computer Science
Montreal, PQ, Canada H3A 2K6
Telephone: (514) 392-8274

Completed applications must be received no later than June $20,1980$.

NEWS AND NOTICES

The Euwe Prize

We have received the following notice from Dr. Max Euwe, former World Chess Champion and past president of FIDE, concerning his challenge and prize offering:

1. The Dutch Software House VOLMAC offers a prize of US $\$ 50,000$ for the team which first develops a computer program and/or chess hardware which beats Prof. Dr. Max Euwe in a match of four games. This offer remains in force until January 1, 1984.
2. The director of the tournament is assigned by VOLMAC after having consulted the participating team. Games are played at a speed of 40 moves per player in the first two hours and then 10 moves every 30 minutes thereafter.

After six hours of play the game will be adjourned and continued at a time to be specified later. However, the director of the tournament has the power to adjudicate the adjourned game.
3. Unless otherwise specified, rules of play are identical to those of regular "human" tournament play. If a point is in question, the tournament director has the authority to make a decision from which appeal is only possible to the president of FIDE.
4. If a team encounters technical difficulties (machine failure, communication failure or error, or program failure) during the course of the game, the tournament director may allow them to stop their clock as long as necessary, but not to exceed 20 minutes, in order to restore their system. At the end of at most 20 minutes, their clock will be started again. The tournament director may grant a team permission to stop their clock at most two times during the course of a game, but the total time that a team's clock may be stopped cannot exceed 20 minutes.
5. There is no manual adjustment of program parameters during the course of the game. In the case of failures, the program parameters must be reset to their original settings if it is at all possible. Information regarding castling status, en passant status, etc. may be typed in after a failure. If at any time during the course of the game the computer asks for the time remaining on either his or his opponent's clock, this information may be provided. However, the computer must initiate the request for information.
6. It is intended that Dr. Euwe plays a match against the winner of the U.S.A. championship in the years 1979, 1980, 1981, 1982, and 1983 insofar as the winning team wishes. The same goes for the winners of the world championships of 1980 and 1983 and for the winners of European championships, possibly to be held in these years. If, apart from these winning teams, other teams should be interested, Dr. Euwe will make a choice. The expenses, however, resulting from these last-mentioned matches are for the account of the challenger. Teams interested are asked to direct their challenge to VOLMAC, 3500 GN Utrecht (Holland), PB2575.
7. During the matches VOLMAC will send an observer to the place of the computer. The observer has the right to inspect the logbook made during the match.
8. If Dr. Euwe should die within five years or if his chess-playing strength should clearly diminish, VOLMAC has the right to substitute him by another test partner, whose rating should remain below 2500 (Euwe's last official rating dates from 1972 and then was 2530).

NEWS AND NOTICES

The Levy/Omni Prize for Computer Chess and the Second Levy Bet

In August 1968 David Levy, the Scottish Chess Champion, made a bet that no computer program would win a chess match against him within ten years. Four university professors bet a total of \$1,250 against Mr. Levy, and lost. At the end of August 1978 David Levy played the final, deciding match against the world's strongest chess program, CHESS 4.7. Mr. Levy won the match by $31 / 2$ points to 1 1/2.

In order to stimulate interest and to encourage further research in the field, Mr. Levy has decided to offer a prize of $\$ 1,000 \mathrm{U}$. S. to the programmers of the first program that wins a match against him. OMNI magazine has agreed to augment this sum with $\$ 4,000$ of their own. The total value of the Levy/Omni prize is, therefore, $\$ 5,000$.

The rules of the challenge are as follows:

1. A match shall consist of 4 or 6 games at the choice of the challenger.
2. A challenge may be issued by any member of any programming group on behalf of their own program; or by anyone who has accepted the bet on behalf of any one, specific program. Arrangements for the match and the payment of Mr. Levy's traveling and hotel expenses for the match shall be the responsibility of those issuing the challenge, which must be paid in advance.
3. Mr. Levy is not obliged to play more than one match against the same program within any six-month period.
4. Havingaplayed three matches during any six-month period, Mr. Levy is not obliged to play again during that period against any program which does not have a current rating of 2300 or more on the U. S. Chess Federation scale (or equivalent).
5. Mr. Levy may not postpone acceptance of a challenge for more than two months
6. Mr. Levy is free to play extra matches, over and above those arising as the result of a challenge, but any such extra matches in no way affect the number of challenges that he is obliged to accept under rules 2, 3 and 4 .
7. There shall be no media coverage of the games during play, nor shall the moves of the games be relayed to an audience, without the written agreement of Mr. Levy and of a representative of OMNI magazine.
8. In the event of the death or permanent incapacity of Mr. Levy, all bets are void and the prize shall be cancelled.
9. The rules governing human international tournament play shall be followed where applicable but there shall be no adjournments.
10. The rate of play shall be 40 moves in the first two hours by each player, and 20 moves in each subsequent hour.
11. There are no restrictions on hardware facilities but no allowance will be made for technical difficulties (machine failure, program failure, communication failure or error).
12. An inspector nominated by Mr. Levy will remain at the computer site while play is in progress.
13. Games shall be played at the rate of one per day for the duration of each match, unless otherwise agreed by Mr. Levy.
14. If Mr. Levy plays in Europe, each game must start no earlier than 2 P.M. nor later than 5 P.M., unless otherwise agreed by Mr. Levy. If Mr. Levy plays in North America, (continued on page 7)

RESEARCH NOTES

In this issue of the ICCA Newsletter, we are beginning a new section containing short research reports from people working in the field of computer chess and related fields. We are pleased to begin this series with an article by Prof. Jacques Pitrat of the Centre National de la Recherche Scientifique in Paris.

A Program which Uses Plans for Finding Combinations in Chess, J. Pitrat, CNRS, Paris

Many chess programs develop a very large tree. This program tries to limit the width of the tree, so that it can increase its depth. The idea is to generate a node if and only if there is a reason to do so.

The program performs a very sophisticated analysis of the given position. This analysis will be made at no other node of the tree, so that the computer can devote quite a bit of time on it. The analysis generates a set of plans. Each plan is a sequence of moves and of modifications which must be made.

For instance, the program generates several plans for the position of Figure 1, among them:

Remove the white Knight from g4. Then consider the move: Qh5xe2.

When a plan has been found, the program executes it. For each kind of modification, there are some methods which may achieve it. For instance, for removing an enemy piece, E, we can threaten it, we can capture a piece protected by E, etc. In the preceding plan, we want to remove one of our pieces. One method is to threaten an enemy piece with it. The program

Figure 1. analyses the situation only for goals which are needed. So the analysis is faster than the initial one. It generates several subplans which are put ahead of the preceding plan. In this case, the program finds that it could threaten the King if it were on another square, for instance, d7.

It generates several plans, among them:

- Induce the enemy King to move to d 7
- Consider the move Ng4xf6
- Consider the move Qh5xe2

We have a new modification: induce the King to move to d7. One method is to move one of our pieces to this square, so that it gives check. So the plan which will produce the main variation is:

- Rd1-d7
- Check that the enemy King is on $d 7$
- Ng4xf6
- Qh5xe2.

RESEARCH NOTES

The program does not consider initially Rdl-d7: it is a move without a priori interest; the program does not want to lose a Rook for the pleasure of giving check. But later it considers this move because it has a serious reason for it; it induces the enemy King to move to a square, where a Knight could threaten it, and simultaneously create a discovered attack on the Queen.

If a plan succeeds, the program considers possible opponent's replies. First, the program looks for its moves owhich are necessary for the success of its combination. Then it creates opponent's plans for destroying this move: capturing the threatening piece, removing the threatened piece, etc.

So the tree is built gradually. Some moves, which were not considered initially, are added to the tree. Generally, the tree is not very wide, and the program has found in 30 seconds of IBM 370-168 time combinations in which it is necessary to develop a tree which has a depth of 19 ply .

Reference

"A chess combination program which uses plans"
Artificial Intelligence, 8, 1979, pp. 273-321.

NEWS AND NOTICES

(continued from page 5)
The Levy/Omni Prize........continued
each game must start no earlier than 11 A.M. nor later than 2 P.M. unless otherwise agreed by Mr.
Levy. Mr. Levy is not obliged to play on any other continent.
15. There shall be no time restriction on this prize.

Mr. Levy's New Bet
Mr. Levy is willing to wager up to $\$ 10,000$ that the Levy/Omni prize will not be won on or before January 1, 1984. He will only bet with personal acquaintances, in units of $\$ 1,000$, and reserves the right to refuse bets without giving any reason for so doing.

CORRECTION

We received the following correction from Prof. Allan Gottlieb to his letter on handicapping computer chess programs which appeared in the February 1979 ICCA Newsletter. Prof. Gottlieb informed us that the third paragraph of his letter should have read:

[^0]
By David J. Slate of Northwestern University

The Detroit plaza Hotel in Detrolt's Renaissance Center was the scene of the tenth annual North American Computer Chess Champlonship tournament sponsored by the Association for Computing Machinery on October 28-30, 1979. Eight programs from the U.S., three from Canada, and one from the Netherlands took part in the four round Swiss-style event. As usual, I.M. David Levy directed and also commented on the games for the audience.
Special guesta George Roltanowski and Max Euve observed the play. Northwestern University's chess program has doninated most
of these annual tournaments since they began in 1970, but other strong programs nip at its heels, and occasionally it is dislodged from 1 ts top position. Last year Ken Thompson of Be 11
Telephone Laborstories in New Jersey introduced a new version of his Belle program. Featuring super-fast special chess playing his Belle program. Featuring super-fast special chess playing
circuitry, Belle beat $N . U .{ }^{\circ}$ B Chess 4.7 in an exciting game which featured sharp play and mistakes by both sides. So this year N.U.'s Chess 4.9, entered by the team of David J. Slate of N.U., Larry R. Atkin (formerly of N.U.), and David A. ahlander of Data Cyber 176 computer, beat Ostrich, Blitz 6.9, and Duchess before facing Belle in the last round. This time Chess 4.9 needed only draw, since Belle had ooly 2.5 points, having

Belle opened with the queen's pawn, and Chess 4.9 defended ith the Modern Benoni. Both prograns were in their "opening books" for 14 moves or so, and a sharp double edged position resulted. Chess 4.9 played aggressively, advancing its queen side pawns. Occasionally it repeated moves with its king's knight, as if imviting Belle to accept a draw by repetition. In fact, prior to the game, we had set a parameter called the
"contenpt factor" so that Chess 4.9 would be willing to take a draw even if as much as a pawn ahead. Against weaker opposition we usually get the "contempt factor" the other way, so that the program vould still play for a win from a slightly inferior position.

Belle turned down the draw offers and Chess 4.9 prased
 underestimating Belle's counter-chances. Belle counter-attacke was losing a plece by force, and it looked certain that belle would retain tit title. But Chens 4.9 made a last desparate attenpt at counter-play on the king side. Relle mis-defended to fight for the draw, and Chess 4.9 hid

Chess 4.9% third round game againat Duchess shows how computers, wh their somewhat anti-positional style, tend to ander into peculiar positions in which one program suddenty gets a tactical idea that decides the issue

Dan and Kathe Spracklen's Sargon III plays very well for icro-processor program. It nearly drew with Belle in round three, but its own "contempt factor" proved to be fts undoing. The Sargon program was in memory cartridge that fit into a pontrols on the board for adjusting the "contempt factor", which as fixed at plus one-half pam. This conto become a victim of a typical Belle mating attack.

ditor's Note: Folioning this report is the score, annotated by prof. llans Berliner of Carnegie Mellon Universiry, for the belie vs. CHESS 4.7 pame played during last year's ACM tournament.

second annual europenn microcomputer chess championships

November 1-3, 1979
Personal Computer World Show - London, England

Round 1 Round 2 Round 3 Round 4 Round 5 Potal

1. SARGON
2. VEGA
3. mychess
4. TINYCHESS
5. MIKE II
6. VoIce Chess Challenger
7. MAX
8. delta
9. WIZARD

Authors

1. SARGON - Dail \& Kathe Spracklen (USA)
2. VEGA - David Broughton (UK)
3. MYCHESS - David Kittinger \& John Urwin (USA)
4. TINYCHESS - Jan Kuipers (Belgium)
5. MIKE II - Mike Johnson (UK)
6. VOICE Chess Challenaer - Fidelity flectronics (USA)
7. iU.X - Guy Eurlhill (UK)
8. DELTA - D. R. Wilson (UK)
9. WIZARD - Jeffrey \& Clare Cooper (UK)

ACM-79 Ninth North American Computer Chess Champlonship Game Annotations by Prof. Hans Berliner Carnegie-Mellon University, Pittsburgh, Pennsylvania

White - BELLE	Black - CHESS 4.7
1. P-K4	N-083
2. P-04	P-04
3. $\mathrm{N}-0 \mathrm{OB} 3(\mathrm{~A})$	P-K3
4. $\mathrm{N}-\mathrm{B3}$	B-N5
5. P-K5	N/1-K2
6. $\mathrm{B}-\mathrm{Q} 2$	N-84
7. N-K2	B-K2
8. P-B3	0-8
9. $\mathrm{N}-\mathrm{B4}$	P-83 (8)
10. B-03	Prif
11. Pix (C)	P-KN41 (D)
12. P-KN4) (E)	N-N2!
13. N-N2	P-N3? (F)
14. Q-K2	B-N2
15. R-KN1 (G)	P-0R4 (H)
16. P-QR4	K-R1
17. P-R3	K-N1
18. R-R1	P-R3
19. P-R4	P-05 (1)
20. PirP/5?	N-N511 (J)
21. Pipl6?? (k)	Nof ch?? (L)
22. $\mathrm{O}_{i} \mathrm{~N}$	Pip
23. O-N6! (M)	P\&A ch
24. NipP	R-82
25. PirN	Rap/2
26. $\mathrm{O} i \mathrm{iP}$ ch	R-82
27. 0-R61	R-N2
28. O-R8 ch	K-82
29. P-K6 ch (N)	Kıf
30. aifR	Bin
31. R-R6 ch	K-02
32. 8-8-8 (0)	B-04
33. N-K4	K-81
34. R-R8	Bra
35. R/1\%0 ch	Brif
36. 0-K7	K-N2
37. $0 \times 8 / 4 \mathrm{ch}$	K-R2
38. R-N8	R-N1
39. P-N5	B-K2
40. RisiR	Brip ch
41. P-B4	Bup ch
42. $\mathrm{O}_{10 \mathrm{~B}}$	KıR
43. K-02	K-N2
44. K-03	K-B1
45. P-N4	Pip
46. $0 \times P / 4$	K-02
47. Q-NS ch	K-01
48. K-K4	K-K2
	Resigns

A) This is undoubtedly the best move against this frequently essayed opening of CHESS 4.7. Black is forced to play 3.-- P-K3 after which he gets a cramped French Defense becauge he will not be able to play

P-QB4 soon: the alternative 3. -- PxP, 4. P-05 gives White too much.
B). White has achleved a slight space superiority and Black must now break here in order to alleviate the pressure, since the usual P-084 requires too much preparation.
C) After 11. N/3xP Black can play B-B3 with a satlofactory game.
D) A fine, though anti-positional idea. Black must create some room for himself on the K-side before White gets too strong there. The weakening of the K-side is two sided as White must also weaken himself or submit to the loss of a paun.
E) Best. After 12. N-RS, P-NS, followed by NxKP Black will gain enough space and time to be able to overcome any adverse effects due to his open king's position.
 settling upon white a very inferior pawn position and Inactive minor pleces against Black's fine center and active minor pieces; certainly worth half a paun. In vieu of what transpires, Black g play must be
judged inferior. In any case, White is not Interested in preventing judged inf
this line.
G) Probably White does not play the beckoning 15. P-KR4 because of $\mathrm{BxN}, 16 . \mathrm{O} \times \mathrm{A}, \mathrm{N} \times \mathrm{P}, 17$. $\mathrm{O}-\mathrm{K} 2, \mathrm{~N} \times \mathrm{Bch}, 18$. $\mathrm{O} \times \mathrm{N}$. PxP which gives Black two pawns for the exchange: however, it would be eppropriate to prepare this thrust by 15. 0-0-0. If above, 17. BxPch. then $K \times B, 18$. PxPch, K-N1, 19. O-R3 with a wild position that White need not let himself in for. The text is weak.
H) Both sides are hard put for a good idea. On thls and the next moves $R_{x} N$ is stronger than ever before, and White should castle queen's-side.

1) Why has Black not tried this obvious move before? the answer is that it leads to a ferocious attack for White. White should now play 28. O-K4!, R×N!, 21, O-R7ch! (not $0 \times R$. N×P with a good game for Blackl, K-B1, 22. B-N6!, B-B3!, 23. PxB, OxP, 24. PxP, PxP. 25. B-K4, but not being able to see to the end of all this, considers this hls best chance. He would have been better advised to have played 19.-$\mathrm{R} \times \mathrm{N}$ (better late than never), 28. $\mathrm{O} \times \mathrm{R}$, $\mathrm{N} \times \mathrm{P}, 21$. $\mathrm{a}-\mathrm{K} 2$. N×Bch, 22. $\mathrm{O} \times \mathrm{N}$,

J) A tremendous move which nou makes White play correctly to save
himself. After the correct 21. PxN!, BxN, 22. B-R7ch!, K-R1! (not $K \times B, 23$. $R \times P \mathrm{Ch}, \mathrm{K}-\mathrm{N} 1,24 . \mathrm{a}-03, \mathrm{~B} \times \mathrm{N}, 25$. $\mathrm{a}-\mathrm{R7} \mathrm{ch}, \mathrm{K}-\mathrm{B2}, 26$. $\mathrm{a}-\mathrm{N} 5 \mathrm{ch}$, K-N1, 27. R-R7!, R-B2, 28. Q -R6 and mate next). 23. R×P! (not 23.
 $\mathrm{K}-\mathrm{N1}, ~ 28$. BxB, QR-al after which Black certalnly has nothing to
feari, Bxa. White draus with 24 . B-N1 ch, K-B2, 25 . B-NGch, K-N1, 26 . B-R7ch, etc. Less exact would be 21. $\mathrm{A}_{\times P}$ P! $\mathrm{A}_{\times N!}$! 22. P×N, 26. B-R7ch, etc. Less exact uould be 21. R×P?!. R×N!. 22. P×N.
OXKNP 23. R-R2, P×P with a uild position uhich appears to favor

Black.
K) A blunder that should lose because now the attack on the rook flie is gone.
L) Black returns the compliment and lands in an Irrevocable loss. From the theoretical point of vieu thls must be the worst move ever made by any version of the Northwestern U. program; it turns a sure Lin into a sure loss.f From a practical polnt of vieu the situation pleces en prise and cannot begin to same them all. If 22. B-R7ch, pleces en prise and cannot begin to same them all. If 22. B-R7ch,
$K \times B, 23$. P×Nch. $K \times P, 24$. B-RGch, $K-N 1,25$. R-O1 (B×R, $\mathrm{Q} \times \mathrm{B}$ leaves Black in complete controll, BxN!!, 26. Rxa, ORxQ, 27. BxR. Bxa and wins. Less precise is 21..- $B \times N$, when 22. $P \times N!$, BxQ, 23. PxR-Qch, Bxa, 24. B-R7ch!, K-B2, 25. K×B gives White many chances. After the text. Black is hopelessly lost.
M) This must have been what was not appreclated by 4.7. White's attack is now overuhelming and Black dare not capture any more material.
N) Winning the exchange and more: in effect, ending the game. O) After all these hours of indecision about where to take up a royal
residence! The rest is silence. It is interesting that two such search oriented programs, uhose strong sult ls obviously tactics should make so many tactical errors. The ansuar is In the fact that the outcomes of the various tactical forays uere far from easy to abounded even after a quiet move would end the quiescence search. Thus even 4.7. with its excellent judgement of positions, was fooled.

White - Blitz	Black - Belle
1. P-K4 (P)	P-K4
2. N-KB3	$\mathrm{N}-083$
3. $\mathrm{N}-83$	N-83
4. B-NS	N-05
5. B-B4 (a)	8-84
6. $\mathrm{N} \times$ P? (R)	Q-K2
7. Bxp ch? ${ }^{\text {(}}$ (K-B1
8. N-N6 ch? (T)	PxN
9. B-B4	NxKP
10. 0-0	RxP!! (U)
11. $\mathrm{K} \times \mathrm{R}$ (V)	O-RS ch
12. $\mathrm{K}-\mathrm{Nl}$	N-KNS! ! (W)
13. O-R5	PXO
14. $\mathrm{P} \times \mathrm{N}$ ch	N -86! 1 mate

P) This is undoubtedly the most brilliant game of chess yet played by a computer. If Mikhail Tahi or Bobby Fischer had played it. the game record would undoubtedly be making the rounds of the chess journals
light now. Houever, one must say that the compotition from White in the early stages is very weak, to say the least.
a) White is best advised to head for the draw with 5. N×N, $\mathrm{P}_{\times N}$. 6. P-K5. P×N, 7. P×N, O×P (PxPch. 8. BxP is superior for White). 8. B-N5. As the game shous, Black is prepared for this varlation 4 . on opening book and white is not prepared for this variation with cedes Black the initiative for a paun.
R) Not advisable. This pawn cannot be held and only furthers Black's development, but White is under the illusion that he is ulnning some thing.
S) This is already ruinous: the "attack" and "uin" of pauns only loses pleces. However, after any knight retreat Black rapldly gains the upper hand with P-Q4 la move that would not be possible if 5.
T) White probbly thiks that after B., PxN $\mathrm{g}^{\text {BxP }}$

White probably thinks that after 8.-- FxN , 9. BxP ulll leave him Hith 3 pauns for the piece. But if he had looked a little further. change of heart on the next move.
U) A "stock" sacrifice which in this case has some beautiful points. Black must have been able to see 7 ply ahead (Including detecting mate on the last ply) in order to make this move. Not bad for a machine!
 more beautiful.
W) The coup de gras! Nou White can capture a piece giving check and threatening the queen, only to be mated on the next move. Very White delays the eyes, but just good old search for Belle. Now, Indeed very appealing.

Dennis E. Ranileon Sysceal Design Coazultant
 1932 Banrd Rood Peafield wT 14526

1979 october 19
 Rather than handicap playare based on hardvare charactorinitics, it ie urged that computer playors bo silowed to change just as haman players progress in their
performanca (although by differant masena). to

 prior version from competition. If there has ben a natertiol (1....
non-avtoatic) change to the player, involviag substantive harduare or prograi change, it any be necesgary to contiaue the prior rating as a provisional one
until experience deterainey the new level. Ao further protectioa of
 inisuar perceatage of

Pinally, to avold coapariaon diffleulties, it is recomended that
it
 the entrants posfess non-provisional
satings in different jurisdictions

 ent conditions

2.0 Discussion

How should ve rate cooputer prograns yuad to play coapetitive cheser
 more truly reflect the quanitis of the aligorithes rather than the apeod of the wachinet Do we know hou to do that, or does atteepring such : thing pro-juad
what wo think an ideal coaputer player is like woll before wo ve found one?

The philosophy of this proposal is that the ultimate and final measure of

 durable system ie ideal for comparison of coaputer player success agalast the
arge pool of human chess compatitors. Attemptiag to noraliza coaputer

 casily masked by implementation approach. That large - seale, expenaive syitena
 housh the latter occurs in rather differene ways. So long as human tournaeent
re not handicapped (although rating points offectively are), there is no re not handicapped (although rating pointe offectively are), there is an
uatification for doling otheruise in coaputer play. The losi of perforance
 onduct of class tournaments can provide for broidar conpetition in the sibe way
ow avallable fot rated human coapetitions. This clags syaten is urged as eteer neans of handicapplng tournamentas because it paraliels the humen syoten.
In the sane vorld beyond couputing, handicapplag io based ou observed,

 that we preacrye the statiotical validity
anything that can'e happen with rated huanas.
3.0 MiY ROR RTIMCS ARE EMOUGB

At the eosent, the 1deal chese compatitors are the Morld Chasploaship clas arformance sloos, that reflects how wail ona is playing vith respect co playere othat (and any other) class. The Elo rating aratee to now used to rate compotitive performacher in North Nmerica and in internacional competition.

If our goal te to genutaaly learn hou vell our chess prograne are doing at anpetitive tournanent chess, then there is nothing better than usiog the eame ratiag systen,
huana players.

In short: The appeallag aeazure of coaputer chess perforanace is one that peratis coaparision with husan perforrance under the same conperitive, tournament oploylag the game porformance ratiog aystean is therefore natural oud to the ar. The tlo systee fo woll thousht out and, more laportant1y, supported by
 amparability with human experience. If improvements are really necensary, they should be prosulgated in the humea ratinn
chess performace on a separate footing.

The principle sugsested here is actually quite staple:

 ctactistics, so thuetuations will also occur due to the variance encountered 1

2. When a mutation occurs, the autated syzten is tratted as a different
 to allow the earliter ratiag as the provisional laitial ratiog of
except that the mutation enters compatition as otherviso umrated.
3. When prograssion oceurs by norasl adjuseaent of the coeputer player tho occurence of a clone or mutant provided that the previous veration 1s withdrau rron coapetition. If both are to reasia in cospetition, the second aust be
registered as a separate individual, clona, but carries foruard the retion

 ndividual. (Kote that cloaing cannot oceur in the course of a Angle event,
ince tournamat resulta muat be those of the sane individual. Hutation is sincelarty barred.)
sither
4. Nou all we have to do 19 agree on the distinction betwen gutazion
 rovided that the appearance of progreasive verations in coapetition ia also in rogressive sequence. If aose version is kept in coopectitive play, then it noverthelens, tahertits the racting of its precursor at the net ind A mutaction 1

 orious identity provided that the eutation is announced and, as before, then revious verelon 18 Mithdrem efroe conpectition

 on experience (includ ing co

The Elo/osct ratiog syotes provides sone actractive characteristice.

 In the Vnited states from time to time), ratinge do not inflate but tend to
hover ovar the sane baso. This soems to reflect the entry of new players as inttially unitated performers, along vith the exte of playere vioh no longer

 valdation. Because of the angitude and variety of the Elo sample.
presentiy ao bettor diseriminator among the chess - playing population.

Al though the rating systen aceouodates change in playar perforuance over
predicting the standing of players anong the pool of rated coapetitors,
 has to do with the fact that chess prograss undergo epliodic changee that can
cause previoualy - earned ratiags to be too unreliable az fadicators of current playing level. The probiea, then, is that the rating of computar opposents vill be erroneousily deterained based on at els-Judged rating for the coaputer player. This problois can be alleviated if we treat the computer player that resulte from
auch change as oniy provisionality ratad or unrated, since opponent ratings are

Fearing that conputer prozrans are subject to too wuch variability, the yitea 1 st to be vieved as a different player requiring soparate rate a computer estrictions are in fact too severe, not allowning prograas to show as much
 recorpended here that deteralnation of coaputer player ind individuality" b
nodified to perait reasonable changes in the plajer but that a major change be modifled to permit reasonable changes 1 n ,
treated so a mutated. separate offepring.

5.0 SOME EXMYPLES

If is worthuhile to see hov soas of these principles are applited in
Chess Challenger is a well-known compercialiy-avallable chess player. Fo participation 10 chers coapetition, benide the usual rules, it is necespary-to
dietinguith betwea versiona of Chalienger, not only from the standpoiat of dietinguith between versiona of Challenger, not only from the standpofat of
serices model production but whth regard to parameters used 1n the course of pley. Each Individuel nodel of Giess challeoger has an externally-controiled act level for each nodel coantifutes at different Individual. anct hevel for each adel coastitutas a different Individual. In
 utation are inappropriate 1n thease circumatances. If a furcure of cioaniog and odel provided inppropriate 1 n the ese circumatances. If a future Chess Chellengo oo do so. Note that these observations do not change the fact that only the
originators of the Cheas Challenger may resistar the player and participate in orginators of the

Consider a fietitious neu product, "Chess Conquerer," that oparatee euch 1ike Chess Cosilisager except that, Inatead of "difficulty," the Initia

 originators.

Now consider "Chess overlord," a systea 11 ke "Chess Conquerer" that 1180 erembers waterial from played gaces, revising laternal paraseters in accordanc with algorithass for that purpoge. here, each copy of the iystea is in fact
clone and a differenc individual. eince the geme experiences will be different
 surnament play slaply co obteain good statistical experience uth provialiona for
 voolving different prograas, realded on different harduare confligurzitions. It
would be interesting to see hou many different individuals have been entered in oapectition according to thit view.

RULES FOR PLAY INVOLVING COMPUTERS
Proposal Submitted to the USCF by Ken Thompson of Bell relephone Labs

The following riles are for USCF-:ated ournaments when one of the players (or both) is a computer. In matters not oovered by these rules, play is governed by applicable human rules. as interpreted by the artbiter. In hese rules, the :erm "computer" refers :o a hess program running on a computer. The apporin refers to the compurer ppronent, human or computer. The term computer.

The follouing rules shall govern play:

1. Before play begins, the operator shall do all initial setting up of the compuler. A his time, the operator may freely specify, eny perational paramelers, such as rate of play, sugested openings, value of a draw, etc. After play begins, the role of the operator is passive. As such, the operator is not allowed oalter any parameter settings during play tha might alter the course of the game.
2. During play, the operator is to com municate the moves of the opponent to the computer
3. The operator is to execute the computer's specificd move on the playin chessboard. "Touch" ruies io not strictly apply to the operator, although blatant cases may be violations of other rules.
4. After the compater's move is exe lock.
5. If. during play, different positions should arise on the playing chesstoard and the computer's representation thereof, due to operator error, such differences shall be corrected with the assistance of the arbiter The opponent may chose cither to accept the playing chesshoard as official or to retrace the moves to the point of departurc. If the ppponent choses to back up the game. Une
he arbiter shall readjust the clock accordingly.
6. If, during play. the computer is unable to accept a legal move because of discrepancies, communication trouble, or com puter trouble. then the merator may se: up ithrent bcard position and status, alon be the same as thine in effect at the start of the gamc. The clucks are not stoppert during the recaltine of the mmontre
7. The operator may communicate the lowk times to the amputer only if the mm puter initiates tine request
8. The operator may offer a draw accept a draw, or resign on behalf of the com puter. This may be done with or without computer consultation.
9. The operator may claim tint game in cases wher
ime limit.
10. The operator shall carry out the necessary adjoumment formalities.
11. The operator and/or the computer must keep a score of the game. If the opera or keeps the score on bey and or ite compurer. hen the apponen! may ecord his game score.

The following rules are for blike (s minute) chess when one of the piayers (or both) is a computer. In matters not covered human and computer rules, as intippeted by the arbiter

1. The computer's clock is not official The computer keeps its own time.
2. The computer is allowed 5 minutes for the game. This time is measured, by the computer, from the icceipt of the opponents is is the rexpmnitining of the operator to resign, on hehalf of the compu
3. The time taken by the operator in communicating moves to and from the computer is charged to neither player
4. The somputer is allowed no more than 60 moves to complete the game. It is the responsibility of the operator to resign, on behalf of the computer, when the move limit has been excceded. A special dispensation is allowed if the computer annoisces demenstrable triaie on or before move 60 .
5. The compuler must keep a some of the game.
6. The opponent may inquire as to the time and numiter of moves used by the com puter. The operator must supply this informa tion to the onerator

PROPOSAL ON COMPUTER CHESS GAME ANNOTATIONS*
 Prof. John McCarthy

It has always bothered me that the scores of computer chess games are annotated just as hough they were games bewen humans, and here were no way or deermining what the program was thinking about. This is particularly bothersome when the sponsor of the contest is the ACM, which should be alert 10 opportunities 10 advance computer sclence.

Therefore, I would like to propose that it be a condition of entry to the ACM tournamen In 1980 that programs have some minimal facillties for printing what they were thinking about. don't have recent experience with chess programs, but I would like to suggest some facilities that we used in an ancient program for the game of Kalah. The program ran on a PDP-I computer that had only 409618 bit words, so cossly analysis features could not be used. I think thes proposed facilities are well within the capability of any of the recent programmers of chess.

> After each move the program printed the following:

1. The first two plies of the move tree examined.

2. From each end point of the first two plies, the subsequent principal variation to the maximum depth of search. (This was sometimes distorted by alpha-beta cutoffs)
3. At the end of each such variation, the value of the endpoint, also sometime distorted by cutoffs, and the amount of effort that went into the subtree. The effort was the number of posituons examined, but only relative values are wanted, so any such measure, e.g. computer time would also be acceptable.
4. It would also be worthwhile to print the values of alpha and beta with which each of the variations was entered.
5. It would be further worthwhile if the programs stored the values of the parameters used to make each move, so that the move could be re-evaluated for the benefit of a commentator, who could, for example, ask whether a particular variation was considered.

The ACM might not require that this information be printed with the move although there would probably be time to print it while the opposing program was thinking about its next move.

In my opinion, imposing some such requirements on entries to the ACM tournament would raise the scientific level of the whole enterprise, would educate the pubici to the fact that we reali do know something aboun how inese work and to the dikitism to existing programs.

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY Blacksbure. Virginia 24061

79.07.24

An Open Letter to the Tournament Rules Chess Tournaments: national Computer Chess Association.

As you may know, I have long been an advocate of a change in the rules of chess in order that the "learning of innumerable lines" should be eradicated. This would be of even greater value in computer chess tournaments Chess Openman tournaments because the storage of "the book" (such as Modern vantage to the machine Encyclopedia of Chess Openings gives the larger storage facilititis. The basic obvantage to the machine with the larger storage facilities. The basic ob-
jection to the storage of opening variations is that it has hardly any rele-
vance to the logic of artificial intelligence.

Two methods of "eliminating the book" have been suggested, "Randomized Chess" and "Prechess". There is very little difference between them since. in both forms, the pleces on the first and eighth ranks are permuted 1 n random or partly random manner

In randomized chess the white pleces are permuted randomly (except that if the bishops land on squares of the same color, the bishop on the right is interchanged with the piece on its left) and then the black pieces are placed by "mirror reflection". There are 1440 essentially distinct opening
positions.

In prechess the two players place their own pieces alternately so that they play an eight-move game before the ordinary game starts. A Atsadvantage of prechess over randomized chess is that it takes an additional eight moves and so tends to last longer. Also there is a danger of a "book" evolving on how to play the "pre" part of the game.

I appeal to the Tournament Rules \& Organization Committee of the International Computer Chess Association to consider seriously the merit of "kilifng" the book.

$$
\begin{aligned}
& \text { Aflyord } \\
& \text { OG. . } \mathrm{oood}
\end{aligned}
$$

A personal opinion by David J. Slate.

Background:
Computer programs that play chess are becoming stronger and more numerous. The best of them play tournament chess at a 2000 rating level and speed chess (5 -minute) at at least 2300 . Since 1970, computers have competed against each other in special tournaments resembling those of USCF or FIDE. Time controls are similar. A human representative actually moves the pieces and punches the clock, but he obeys the decisions made by his computer and communicated typically through a tele-typewriter or the like.

Developing chess-programs can be part of serious research into the problems of making computers "behave" intelligently. It can also be a challenging and creative recreation. So the computer tournaments are both competitive sporting events and research evaluation tools. Since the best chess players are huran, chess programmers are also eager to test their creations course but the rating resulting from USCF tournament play 1 considered a more accurate perforance mesare

Since the late $1960^{\circ} s$, several computers have been allowed to participate in USCF tournaments. The most successful of these has been Northwestern University's program, which has to Control Data Corporation's large Cyber 176 computer in 1976.

The Issue:
The computer has had a mixed reception by tournament players. To some, it 18 an exciting phenomenon that spices up the game. They welcome this new challenge to their abilities Others view it as an alien interference with their source of enjoyment of tournament play - the struggle against flesh-and-blood adversaries. The opposing viewpoints have generated debate within USCF about the desirablility of allowing computers into tournaments. The controversy is likely to deepen as playing strength increases due to improved programs and faster computers.

I have a stake in this issue in three separate roles:

1. As co-author (with Larry Atkin) of the Northwestern 1. As co-author (with Larry Atkin)
University chess program (now Chess 4.7).

University chess program (now Chess 4.7).
2. As a USCF member and sometimes tournament player (rating = 2013).
3. As a member of the external liaison committee of the International Computer Chess Association (ICCA), whose function includes generating discussion with USCF on this matter.

Since the function of the USCF is to serve the interests of the (human) chess playing community (particularly USCF members), then it needs to decide whether or not computer participation in rated events is of benefit to the human participants. I will summarize some of the pros and cons.

Pros:

1. The computer attracts spectators and publicity and tends to generate interest in the events it participates in.
2. The computer's sharp "style" of ten produces aesthetically pleasing games and so contributes positively to the quality of chess played at a tournament.
3. Many chess players would enjoy playing the computer, and tournaments offer a chance they wouldn't otherwise get.

Cons:

1. Computers are not legitimate tournament participants, because they violate the Laws of, Chess. This point is advocated by Harold B. Dondis in the September 1979 Chess Life and Review.
2. Many chess players reasonably expect live opponents. The human nature of their adversaries is essential to their enjoyment of the game, and computers cannot substitute.
3. The proliferation and increasing strength of computers threatens to crowd out hum by competing for the prizes, distorting pairings, etc.
4. The computer worsens playing conditions by increasing noise and other distractions.

A Proposed Compromise Solution:
I propose that USCF adopt rules that permit limited participation of computers in tournaments while at the same time safeguarding

1. To play in tournaments, computers would have to be registered as USCF "members" by their sponsors (authors, owners, or whatever), so that each has an identity known to the national acceptability could establish whatip. Note that the problem of identity is non-trivial and involves the distinction between the chess playing program and the particular computer it is run on. For example, Chess 4.7 has a published rating based on its performance on CDC Cyber 176 computers. It has not always run on the same Cyber 176, but we have considered that fact unimportant, since the machines were nearly identical in their capabilities. However, if we were to transfer the same program to a slower computer, we would have to consider the new program/computer combination a separate entity, since it would not play as well. In addition, if Chess 4.7 were substantially
entity, even if run on the same computer as before
2. A tournament organizer could decide which, if any, computers would be invited to play in his tournament and also certain conditions of their entry, such as whether or not humans would be able to decline to be paired against them, and whether or not computers could win prizes.
3. A tournament organizer would have to warn prospective human entrants, in the ads for the event, of the possibility of computer participation. If computers were not explicitly mentioned, then they would be presumed not to be allowed in. 4. A tournament organizer who invites one or or more computers assumes the responsibility of arranging facilities and procedures so that each computer obeys the rules and doesn't cause excess noise or otherwise interferes with its opponents ${ }^{\circ}$ play or with other games of the tournament.

I think that these guidelines effectively answer cons 2 , 3, and 4 listed above. The most important point is that it ould be in the power of each organizer co control the extent of hand" and the interests of humen players could alvays be put first. Those organizers who didn't like computers, or didn't think they could handle the additional organizational details, think they could handle the additional organizational details, or wished to cater only to players who didn the computers,
could just ignore the whole question. For those organizers willing to accomodate computers, a little advance planning can make computer participation work very smoothly. It would be mostly a matter of taste whether computers participated in a given tournament. Just as chess players now choose tournaments based on their formats: smoking va no smoking, large prizes or small, class vs open, fast time control vs slow, etc., they will also be able to choose or reject tournaments which include computers.

Con 1 requires a separate answer. It is important to the issue and is debated in the Sept. 1979 Chess Life and Review. The computer, which is a collection of electrically interconnected devices including its central processor, main memory, and auxiliary memory (such as disk), plays chess withoutaccess to advice from any external person, machine, written materials, or boards. Thus it conforms to the essential rules of tournament play that we hold humans to. The truth of this epends on our understanding of what is external and what is internal to the computer, and that is partiy a matter of derinition (we dont have the same problea with humana, hold the board representations to which Mr. Dondis (in Cl+R) objects ere commonly considered part of the computer itself, and they are connected to it automaticaliy and function together th the central processor as a single entity. Mr. Dondis believes that the computer, as so constituted, does not play
"fairly". He cites various advantages that the computer's "brain" and memories have over their human counterparts. He is perhaps correct in this matter. However, our motivation for allowing computers in human tournaments is not contingent on the ootion of "fairness". Computers and humans are too different or the idea of fairness to have much meaning when applied to contest between them. The real reason for permitting computer o participate is that they may contribute to the enjoyment of the tournament by the human players (and perhaps spectators). The ability of a computer to play competent, interesting, and perhaps instructive chess is remarkable, and a chance to play against it in a tournament would be welcomed by many players. As an aside I would like to comment on Mr. Dondis's assertion that computers would be seriously handicapped if deprived of their "encoded book of openings and endings". I think he overemphasizes the importance of this matter. Chess 4.7, for example, has no endings book, and plays well enough without it. Its openings book is of some use, but, ironically, the two game nevy h the ones wich least utilized its book. In game Levy were the ones in which it and had to trprovise its oum response to Levy's Latvian Counter Gambit.

A comment about the future of computers in USCF tournaments:
Presently there are only a few computers that have played in rated tournaments. Except for the commercially available acroprocessor programs, this situation will probably not change very much in the next several years, so individual programs entered in tournaments by their authors will increase in numbe but still remain a novelty. They will still constitute a very small percentage of rated players. As the better programs increase their strength to the master level and beyond, presumably they will be banned from all but perhaps very special tournaments and matches. The microprocessors pose another problem. Tournament organizers may have to guard against the phenomenom of thousands of Boris s or Chess Challengers entered in tournaments by their curious owners. Perhaps specia tournaments might be set up to accommodate them.

In conclusion, I think that intelligent decisions by the USCF and tournament organizers can enable computers to make an interesting contribution to tournament play and still cate

ICCA COMMITTEE REPORTS

The ICCA formed four committees with the following members:
Bylaws - Monroe Newborn, Kathe Spracklen
Tournament Rules and Organization - Tom Truscott, Fred Swarz, Michail Donskoy
External Liaison - David Levy, Barend Swets, Tony Marsland, David Slate
Computer Chess Rating System - Allan Gottlieb, David Cahlander

The reports of these committees follow. Written comments on these reports are solicited.

Bylaws Comittee Report

The following is the formal draft of the Constitution and Bylaws for the CCA. Items which were raised as questions at the ICCA meeting in Detrol are included in parentheses. Article VI, Section 2 and Article VIII, section 1 are required in the bylaws to obtain tax-exempt status for our organization.
Written coments are solicited. After a reasonable period of time, a revised Constitution and Bylaws will be sent to all members for approval by mall ballot.

CONSTITUTION

Article I - Name
The name of this organization shall be the International Computer Chess Association

Article II - Object
The organization is a non-profit group devoted to providing an nternational framework for activit

Article III - Qualification of Member

Members in the ICCA are individuals. Membership is open to anyone interested in pursuing the objectives of the organization anyone interested in pursuing the objectives of the pays current dues.

Article IV - Officers and their Election
The elective officers, their terms, and their duties shall be as The elective the By-Laws.

Article I - Membership
Section 1. General Membership. General Membership shall be a set forth in the Constitution.
section 2. Honorary Membership. Honorary Membership may be warded by vote at general meetings to any person who has especially aided the organization.

Article II - Meetings

Section 1. The World Championship and the Triennial Meeting The ICCA will hold a World Computer Chess Championship every three (3) years. The first championship to be held under
ICCA auspices will be in 1980 . The Triennial Meeting will take place during and at the site of the World Championship.

Section 2. Other Meetings. Other mettings of the ICCA may be called from time to time to be held concurrent with and at the site of major international computer chess tournaments.

Section 3. Quorum. A quorum at the Triennial Meeting will consist of at least twenty (20) members.

```
Article III - Officers
```

Section 1. Elective Officers. The elective officers of the rganization shall consist of a Frasident, Vice-Presijent an Secretary-Treasurer. They shall constitute the Executive Committee of the organization and s.
ection 2. Elections. Elections for the members of the Executive Committee will be held at each Triennial Meeting, with elected officers taking on their duties at the end of that meeting. Nominations are to be made by petition no later than three (3) the candidates at least two (2) months be fore the election. At least five (5) member signatures are required on each nominating petition. (Discussion suggested a lower number than five.) Nll andidates for election must have been members of the ICCA for no less then two (2) years. (Requirements of one year membership were discussed.) Officers are elected by a majority of those present and voting, via secret, written ballot. Runoffs will be ith the no cast votes will be alimple from the ballet for each runoff, until one candidate receives the simple majority.

Section 3. Terms of Office. All members of the Executive Committee serve for a three year term
ection 4. Executive Committee. The Executive Committee shall be presided over by the President.

Article IV - Standing Committees

Section 1. Chairmen. Cómmittee Chairmen are appointed for a three year term by the Executive Committee.
section 2. Standing Comittees. Standing Committees shall be the Publications Boart, the Ranking Committee, the Tournament organizing Committee, the Sanctioning Committee, the Program Rights Committee, the Standards Committee, and the Liaison Committee. (Discussion suggested a separate Rules Committee, combination of the Programmights and the inclusion of a Publicity Committee.)

Section 3. Publications Board. The Publications Board will encourage the publication of technical and non-technical works on the subject of computer chess. The official publication of the ICCA shall be the ICCA Newsletter.

Section 4. Ranking Committee. The Ranking Committee will establish a rating or ranking system for programs and will rank and rate active prograns.
Section 5. 'rournament Organizing Comnittee. The Tournanent Organizing Committee will assist local organizers to the degree necessary with ICCA-sanctioned events. This committee will
organize the World Championship (see Article II, Section 1 of the By-Laws).

Section 6. Sanctioning Committee. The Sanctioning Committee will give formal ICCA recognition to appropriate events. It subject to Article II. Section 1 of the By-Laws.
Section 7. Program Rights Committee. The Program Rights Committee will decide on matters related to the rights of an individual to use a given program in ICCA-sanctioned events.

Section 8. Standards Committee. The Standards Committee will look into the problem of developing program input/output to facilitate the automation of computer chess match play.
Section 9. Liaison Committee. The Liaison Committee will seek to establish appropriate ties with other organizations. Any Article II, Section 1 of the By-Laws).

Article V - Council Section 1 . Council Membership. The governing body of the ICCA
shall be the Council. The Council shall consist of the President vice-president, Secretary-Treasurer and the Chairmen of the Standing Committees.
Section 2. Council Organization. The Council shall be presided over by the President.

Article VI - Dues and Finances

Section 1. Annual Dues. Dues will be ten dollars (\$10.00) in United States currency per year payable in advance. Dues are collected during the month of July.
Section 2. Disposition of Funds. No part of the net earnings of the ICCA shall ever inure to or for the benefit of or be distributed to its members, officers or private persons, except that the ICCN shall be empowered to pay reasonable compensation for services rendered, and to make payments and distributions in furtherance of the exempt purposes for which it was fourded.

Article VII - Amendment of the By-Laws
Section 1. Presentation. A request for changes to the By-Laws must be made by written petition of at least five (5) members the elections. The ICCA Newsletter will announce the proposed amendments at least two (2) months before the elections.
Section 2. Voting on Proposed Λ mendments. Proposed amendments to the By-Laws will become a part of the ballot which includes those running for elected offices. All procedures for voting such two-thirds of the members voting and present must support the change.

Article VIII - Dissolution
Section 1. Dissolution of the ICCA. Upon winding up and dissolution of the ICCA, after paying or adequately providing for the debts and obligations of this organization, the remaining assets shall be distributed to a non-profit fund foundation, or corporation whose purposes are consistent with the Object of this organization

Duke University
Durham, N.C. 2770
(919) $884-3048$
November 28, 1979

Prof. Ben Mittman
Director, Voqelback Computing Center
Northwestern University
2129 Sheridan Road
Evanston, Illinols 6020
Dear Ben.
Enclosed is the long lost Rules Committee Report. hope it arrives in time to be sent out in the next icca newsletter. It was prepared primarily by myself. with inpu from Fred Swartz. Unfortunhtely, Michail Donskoy was no specific sugaestions.

It falls short of my original expectations in several ways. It makes no profound statement on the function of even discussion of why these particular rules were chosen. on the other hand, it is less complex as a result. Hope fully, the ICCA community will provide additions, clarifica-
tions, total rewrites, and so forth.

$$
\frac{\text { sincerely Yours. }}{\lim / \text { Thuscet/ }} \begin{gathered}
\text { Tom Truscott }
\end{gathered}
$$

TRT/unix

cct Fred Swartz Michall Donskoy

Rules Committee Report

$$
\begin{gathered}
\text { members } \\
\text { Tom Truscott } \\
\text { Fred Swartz } \\
\text { Michall Donskny }
\end{gathered}
$$

The "Hules and Guidelines" which follow attempt to define appropriate procedures for ICCA-sponsored events. Such events will in most cases be "conventional computer chess tournainents", by which is meant computer chess tourna-
ments with rules similar to those for the North American Computer Chess Championships. Such events attempt to follow the human rules for chess competition as closely as possible. The rules formulated for these tournaments hy Monroe Newborn. Ben Mittman, and David Levy are followed closely in this offering. A more detalled set of rules proposed by Ken
thompson has also been used extensively.

There will probably be unconventional computer chess tournaments sanctioned by the ICCAB however, it is difficult. to formulate rules for such events in advance. it is hoper the following rules and auidelines will provide a framework
for rules for other events. Specific proposals for unconfor rules for other events. Specific proposals for uncon-
ventional computer chess tournaments have not heen consideren nere. The ICCA community should debate the merits of the several proposals, and help determine whether such tournaments should be held. The Rules Comittee will nota a tate position on these proposals, but will instead concentrate on their implementation.

Bules Committee

Purpose: The Rules Committee of the .ICCA has as its purpose the formulation of rules and guidelines for ICCA anctioned events. The puposal of the rules a

Rules and Guidelines

All aspects of an event are the responsibility of the event organizers and are suhject to approval by the Tourna ment Oramizino Committee. The ICCA Tournament Oramizinc overn ICCA-sanctloned events.

Rules cannot cover all s
Rules cannot cover all situations, and in some situations the anplicanie rilles may he inapproprlate. In such situations, a decision should be made which attempts to fol low the intent of the rules, and a report of the situation should be subinitted to the Rules Committee

1. Eyent Organization

A requests for ICCA-sanctioning of an event must be made to the Tournament organization comaittee.

2. Selection of Eyent Rarticipsots

Criteria for the selection of event participants should he avaliable on or hefore the date applications for the event are accepted.

For conventional computer chess tournaments. the following rules are in effects
I. The computer may not employ any living component for the purpose of selecting a move. The operator(s) at the computar. If the computer does contain a living component (such as for unusual communications procedures), the arranaement must be approved by the tournament organizers
priar to the first round of the tournament.
2. The computer may employ any non-living components. 3. The application for a computer entry must be sub-
mitted hy an implementer of the computer (chess program.). No implementer may submit an application for the computer.
An objection by any implementer of the computer voids the an objection
4. A program listing or other detailed description of
computer (possibly verbal) should be avallable on the computer (possibly verbal) should be available on demand.
3. Eyent Rrocedures

Event procedures (e.g; rate of play, adjudication procedure, tie break rules) should be avallable on or before the date applications for the event are accepted.

For conventional computer chess tournamentss Unless otherwise specified, the rules are identical to those for "regular" human tournaments. If a point is in question, the fínal decision.

For tournament games, the following rules are in effect:
. Before play heqins, the operator shall do all initial setting up of the computer. At this time, the operator may freely specify any operational parameters, such as rate
of play. sugqested openings, value of a draw, etc. After
play beains, the role of the operator is passive, As such, the operator is not allowed to alter any parameter settinas during play that might aiter the course of the game. The by the operator. During play, the operator is to communicate the moves the moves can be directly sensed by the computer
3. The operator is to execute the computer's specifled move on the playing chesshoard. This may not he necessary if special apparatus is available which allows the computer to move the chessmen. "Touch's rules do not strictiy apply to the operator.
4. After the computer's move is executed, the operator is to start the opponent's clock. Again, this may not be
5. A well-defined procedure must be used for communication of moves between the computer and the operator. The arbiter must give permission to change the communication procedure (see rule 7)
6. If during play, different positions should arise on the playing chessboard and the computer's representation thereof, due to operator error, such differences shall he corrected with the assistance of the arbiter. The opnonent may chose either to accept the playino chessboard as offi-
cial or to retrace the moves to the point of departure. If the opponent choses to back up the aame, then the arbiter shall readjust the clocks accordinaly.
7. If, during play, the computer is unable to accept a lemal move because of discrepancles, comnunication trouble, the operator may set up the current board position and status, along with clock tines. Other parameters set must be the same as those in effect at the start of the gaine.
8. If the operator encounters technical difficulties (e.g. input-output device fallure) which are local to the tournament site and for which the event organizers are stopped until the problem is solved. Other difficulties. such as computer fallure or non-local communication fallure, are not covered by this rule.
9. If an operator encounters technical difficulties not covered by rule 8 , prior to the first move by the computer, then the arbiter may permit the clock to be
stopped until the problem is solved, but not to exceed 20 minutes.

External Liaison Committee Report

10. If an operator encounters technical difficulties not covered by rule 8 , Nuring the course of the game, the the arbiter may permit them to stop their clock until the problem is solved, but not to exceed 20 minutes. The two times during the course of a game.
II. The operator may communicate the clock times to
11. The operator may offer a draw, accept a draw, or esign on behalf of the computer. This may be done with or without computer consultation.
12. The operator may claim the game in cases where the nent has exceeded his time limit.
shall carry out the necessary djournment formalities
13. The operator and/or the computer must keep a scor of the game.

Informal discussions have been held with FIDE, the International Chess Federation, concerning possible affiliations with this world chess body. In the past FIDE has sanctioned both of the World Computer Chess Championships but this was before the existence of ICCA. One type of affiliation with international Correspondence Chess Federation. ICCF-run championshipa are sanctioned by FIDE, but the organization and running of the tournaments, as well as rating, are the responsibility of ICCF
Before the ICCA can apply for any type of affiliation with Fide, it must have a set of approved statutes. Therefore, the next step is to formalize ICCA's structure before addicional contacts are made with FIDE.

Elsewhere in this Newsletter is a report on the establishment of the ACM computer Chess commitree. No official connection currently exists between ICCA and ACM (although all the members of the ACM Comnittee are also ICCA
everal members of the ICCA have participated in the past in advising the U. S. Chess Federation about computer participation in USCF-sanctioned tournaments. However, no formal ICCA contacts have been made there either. uture issues of the Newsletter will report on these and other externa ontacts.

Computer Chess Rating Comnittee Repoxt

After speaking to several ICCA members at our meeting during ACM' 79, I have After speaking to several ICCA members at our

1. Adopt the ELO system as used by the USCF.
2. Any program with a current USCF rating is initialiy given an identical iCCA rating. The initial ICCA rating for other programs is calculated the same way the USCF calculates initial ratings.
3. If an ICCA rated program participates in a USCF tournament, those results are counted toward the ICCA rating. If an opponent has Just a USCF rating are counted that rating is used. If an opponent has both USCF and ICCA ratings, the latter is used.
Since the USCF will probably not have an analogue to my third rule, ICCA and USCF ratings will not be identical. Apparently this is not terribly serious since currently USCF ratings do not exactly agree with international ratings USCF

ICCA APPLICATION FORM

Dues for $9 / 1 / 79$ to $8 / 31 / 80: \$ 10.00$ (U.S.)

Enclosed is a
or \square check (U.S. only) made out to ICCA
international money order

Name: \qquad
Address: \qquad
City: \qquad
State or Province: \qquad Zip Code: \qquad
Country: \qquad
I would like to receive the previous issues of the Newsletter - $\$ 2.00$ for a set of :
Please mail to:
\qquad No \qquad
ICCA
Vogelback Computing Center
Northwestern University Evanston, Illinois 60201
USA

[^0]: "Since there would be no inducement to go to the expense and bother of obtaining a fast machine, all the FORTRAN-based programs may as well run on a micro to eliminate any phone line problems. Any IBM/ Amdahl programs will migrate down the product line since 138's are cheaper and more available than 470's and 3033 's."

