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1. INTRODUCTION 

Eminent researchers including John McCarthy, Allen Newell, Claude Shannon, Herbert Simon, Ken Thompson 
and Alan Turing put significant effort into computer-chess research. Now that computers have reached the 
grandmaster level, and are beginning to vie for the World Championship, the AI community should pause to 
evaluate the significance of chess in the evolving objectives of AI, evaluate the contributions made to date, and 
assess what can be expected in the future. Despite the general interest in chess amongst computer scientists and 
the significant progress in the last twenty years, there seems to be a lack of appreciation for the field in the AI 
community. On one hand this is the fruit of success (brute force works, why study anything else?), but also the 
result of a focus on performance above all else in the chess community. Also, chess has proved to be too chal­
lenging for many of the AI techniques that have been thrown at it. We wish to promote chess as the fundamental 
test bed recognized by the founding researchers and increase awareness of its contribution to date. * 

2. SUMMARY 

The factors that make chess an excellent domain for AI research include: 

* 

Richness of the problem-solving domain. 

Ability to monitor and record progress accurately through well-defined competitions and ratings. 

Chess has been around for centuries - the basics are well-understood internationally, expertise is readily 
available and is (generally!) beyond proprietary or nationalistic interests. It has been considered a "game of 
intelligence". Many players of the game feel mentally stretched. 

Detailed psychological studies of chess playing exist. These studies suggest that human players use differ­
ent reasoning modes from those in current chess programs. Furthermore, these reasoning modes are also 
used in many other problem-solving domains. 

From "Panel: The Role of Chess in Artificial Intelligence Research", Levinson, R., Hsu, F., Marsland, T.A., Schaeffer, J., Wilkins, 
D.E. in Proc. 12th Int'l Joint Conference on Artificial Intelligence, pp. 547-552, 1991, published by Morgan Kaufmann Publishers, 
Inc., PO Box 50490, Palo Alto, CA 94303, USA. 
The Editors of the [GGA Journal express their gratefulness to the International Joint Conference on Artificial Intelligence, Inc., and 
have taken the libeny of slightly recasting the text so as to bring it into line with the style of the IGGAJournai. 
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Chess makes an excellent test bed for schemes of managing uncertainty - the basis of most expert prob­
lem-solving. The well-definedness and discreteness of the game have led many to ignore the uncertain 
element. 

The above factors make chess a useful tool regardless of the strength of the current programs. Because of the 
success of the current methods, there remains a vast array of other methods that have not been explored. The 
most obvious lack is in the application and development of machine-learning techniques to chess. Other tech­
niques, including the representation and compilation of knowledge and managing, planning and control, also 
seem to be applicable. AI researchers should be encouraged to use chess as a test bed for their techniques, with 
the understanding that chess is not the end in itself. Chess may provide the avenue by which bridges may be 
built between cognitive science, AI and connectionist modeling. 

With the current and future battle for the World Human-Computer Championship, the AI community should be 
made more sensitive to the issues involved and their bearing on intelligence research: is search sufficient? How 
much detailed chess knowledge is required? How is this knowledge implemented and integrated with search? 
We are fortunate to have a human World Champion who promotes creativity over the chess board and is willing 
to face the challenge from computers head-on. 

The members of the panel and the presentations have been designed to address these topics in a way that we 
think will support our objectives to help make chess an important and respected AI tool in this new decade. 

Jonathan Schaeffer addresses the contributions of the current chess research to AI, especially in the area of 
search algorithms. He emphasizes those areas of computer-chess research that have been ignored because the 
approach has been a competitive/engineering one rather than scientific. 

Feng-hsiung Hsu of the Deep Thought team discusses the role of knowledge in current chess programming and 
argues that more responsibility for the knowledge should be put on the machines themselves. 

Tony Marsland treats specific open research issues in computer chess that will require AI solutions. 

Robert Levinson describes an alternative model of chess computation. Morph is a self-learning pattern-oriented 
chess program. In Morph's "cognitively-inspired" learning framework knowledge must be learned incremental­
ly from experience, without many examples being stored (and with little guidance about relevant features). 

David Wilkins provides balance to the discussion by pointing out the limitations of chess and claiming that Go 
is a better domain. He also describes a new type of games tournament that prevents the human tailoring of 
evaluation functions and encourages the use of learning and more robust approaches. 

The timing for this panel was particularly fortunate with the current World Championship having been com­
pleted, a more powerful Deep Thought on the scene, a recent article in Scientific American (Hsu et at., 1990) 
and new books by Marsland and Schaeffer (1990) and by Levy and Newborn (1991). 

3. PRESENT A TIONS 

3.1. Computer Chess: Science or Engineering? 

Jonathan Schaeffer 

Research into artificial intelligence using chess as the application domain has produced several important con­
tributions to AI: 

The effectiveness of brute-force search. Chess has clearly demonstrated that simple, brute-force ap­
proaches should not be quickly discarded. 
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Iterative search. Some of the ideas developed for alpha-beta search, iterative deepening in particular, are 
applicable to other search domains. 

The inadequacy of conventional AI techniques for real-time computation. No competitive computer-chess 
program uses AI languages or its knowledge-representation methods. Why? The reason is that they are too 
slow for a real-time, high-performance application. 

Although these (and other,lesser, contributions) have enhanced our knowledge, it is not clear whether the effort 
expended justifies the results obtained. 

It is easy to question the usefulness of computer-chess research. It is important to distinguish between com­
puter-chess research and research using chess as a test bed. Unfortunately, the latter has evolved into the former. 
An entirely new field of "computer chess" has evolved, with the emphasis on chess performance and chess 
research - not generally of much interest to the AI community. There is a much deserved credibility problem 
here. The unfortunate correlation between program speed and performance encourages short-term projects 
(speeding up a move generator) at the cost of long-term research projects (such as chess programs that learn). 

After over 30 years of work on chess programs, where are the scientific advances in: 

knowledge-based search algorithms? There has been some good work in this area, but none has progressed 
enough to be used in competitive chess programs; alpha-beta simplifies the programming task, but the 
exponential search limits what can be achieved; 

knowledge representation and acquisition? These areas are of considerable importance to chess programs, 
yet the computer-chess community has done embarrassingly little research in this area; 

error analysis? While extensive error analysis has been done on search algorithms, little has been done to 
quantify errors in evaluation functions and how they interact with the search; 

tool development? With the right tool, work that might take days could be done in minutes. No tools are 
being developed to help building chess programs. For example, why is nobody working on tools for defin­
ing chess knowledge? 

If the community were committed to research, many of these problems would have been addressed by now. 
Sadly, much of the work currently being done on computer-chess programs is engineering, not science. For 
example, the engineering of special-purpose VLSI chips to increase the speed of a chess program only under­
lines the importance chess programmers attach to speed. 

In my opinion, conventional computer-chess methods will yield little of further interest to the AI community. I 
believe they will be inadequate to defeat the human World Champion in a match for a long time to come. It is 
still very easy to set up a position for which the computer has no idea what is going on - even if you speed up 
the machine lOOO-fold. The current computer-chess work will only underscore the need for better ways of 
adding and manipulating knowledge reliably. 

The defeat of the human World Chess Champion sooner rather than later will help artificial intelligence. This 
will help to re-establish chess as an ideal problem domain for experimenting with the fundamental problems of 
artificial intelligence, as elaborated more fully by Donskoy and Schaeffer (1989). 

3.2. "Expert Inputs" are Sometimes Harmful 

Feng-hsiung Hsu 

There are two places in a computer-chess program where specific chess knowledge may be most usefully ex­
ploited: in the evaluation function and in selective-search heuristics. Experience from the chess machine Deep 
Thought suggests that inputs from chess experts, while generally useful, cannot be trusted completely. A good 
example of this is Deep Thought's evaluation function. Several changes by capable human chess experts failed 
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to produce significant improvements and occasionally even affected the machine's performance negatively. 
Here, human experts, along with their expertise, introduced their own prejudices into the program. One way of 
solving this problem is to limit the type and the amount of expert inputs allowed into the program; in other 
words, having an almost "knowledge-free" machine. The availability of on-line high-quality chess-game data­
bases makes this an attractive approach. Instead of having the value of, say, an isolated Pawn set by human 
experts either explicitly or in functional form, one can simply tell the program that isolated Pawns are important 
features and statistical procedures, with some additional expert inputs, can then be used to decide the functional 
form and the proper weighting of the features in question. 

The problem of selecting amongst possible search heuristics has also been shown to be beset by problems 
(Anantharaman, 1991), which manifest themselves in a vast amount of computations required to get standard 
deviations down to a reasonable level. Recent results suggest that what human Masters or Grand Masters do is 
not, or is no longer a good yardstick for the evaluation of a computer's move. Simple metrics based on com­
paring the move chosen by the program with that from the human Master or GM are surprisingly poor when 
used at search depths of 8 million nodes per position or deeper. On the other hand, metrics based on rating the 
move chosen by the "test" program with a deeper searching reference program correlate very well with UCSF 
ratings - a valid indicator of playing strength. That more responsibility for knowledge should be placed on 
machines is consistent with recent efforts to handle the knowledge-acquisition problem in expert systems and 
also in memory-based reasoning schemes where knowledge is generated statistically rather than relying on 
symbolic learning, abstraction or domain modeling. 

3.3. Open Problems and Lessons for AI 

T. Anthony Marsland 

Based on predicted advances in computer technology, particularly the faster speeds and increasing memory of 
low-cost systems, it is reasonable to assume that within the next decade the World Chess Champion will lose an 
informal game to a computer, and within twenty-five years lose a 12-game match. The early losses will reflect 
more breaks in concentration at fIrst and later a recognition of the inevitable, as arose when trains started to out­
pace runners. Although the defeat of humans by machines will be significant, it will mean neither the destruc­
tion of chess as a pastime and learning medium, nor the end of interest in computer chess per se. Instead it will 
focus attention even more sharply on precisely how and why humans can become so expert at selecting sound 
(often optimal) variations in seemingly complex situations, without resorting to the exhaustive techniques used 
by computer programs. 

Some fundamental AI questions that will remain are: 

Given a patient and seemingly perfect teacher (that is a superior chess-playing machine), how should one 
use it to "teach" an AI-based learning program about strategies for playing chess (given that the rules of 
chess themselves are already perfectly known)? 

A related but perhaps simpler problem comes from the realm of endgame play. Given a perfect N-piece 
database holding an optimal move for each position (or perhaps only the length of the optimal sequence 
from that position, or even less, whether the position was won), develop a program that can deduce a sound 
set of rules or strategies for playing the endgame perfectly (or at least better than any other expert). 

Given endgame positions which cannot be solved by search or databases alone, deduce a plan or playing 
strategy that will transform the position into a known (win/draw) state. In one class of positions the remain­
ing pieces are held to few squares. Progress can only be made by a freeing move that converts a short-term 
loss of material (or perhaps position) to the achievement of a later, more significant goal. Consider the 
Duchess-Chaos game (Frey, 1979, pp. 269-274), which is still thought to be beyond brute-force search. 
Related examples abound, for instance giving up a passed Pawn on one side of the board to win a pawn 
race on the other. 

Given a well-defined threat (for example mate) deep in the tree, identify unexamined moves at an earlier 
level along the current path that have the potential to deny the threat explicitly_ This is a form of dynamic 
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re-ordering of moves, but is also (if no potential denials exist) a good forward-pruning criterion - provid­
ing evidence to abandon this line of play. 

The first two projects rely on perfect domain knowledge and the availability of an untiring teacher to whom 
questions can be posed. The need for convergence to a solution within some arbitrary or unreasonably short 
time-frame will thus be eliminated. The learning mechanisms used will have the benefit of drawing on results 
obtained by exhaustive means. For example, even simple rote learning has its place in Artificial Intelligence. 
Scherzer et ai. (1990) have shown how to use the moves made during a series of chess games to ensure that a 
poor move sequence will eventually not be replayed. By holding the computer's memory of played games in a 
hash table the information can be used to extend the depth of search during later play. In related work, the ex­
pert knowledge from an encyclopedia of games has been optically read into a computer which also corrected the 
typographical errors. It was reported that Ken Thompson developed tools for reading chess books, so that now it 
is possible for a computer to play through all known games, identify "losing moves" and by backtracking de­
velop "innovations" that correct the flaws. The approach of recording, correcting and innovating appears to be 
fundamental to Artificial Intelligence. 

The remaining problems are linked closely to formal or probabilistic pruning methods. Computer chess is com­
putationally expensive enough that one can afford to spend considerable time eliminating parts of the search 
space by deduction. Over the years humans have developed techniques that allow them to reduce the search 
space through judicious use of forward pruning (that is, by temporarily abandoning certain variations) and either 
deducing by analogy that further consideration would be irrelevant, or (upon questioning the validity of the 
pruning) force reconsideration of the omitted lines. Pruning by analogy is a powerful general-purpose tool and if 
developed satisfactorily for a perfect-information game like chess would almost certainly be applicable to re­
lated decision-tree searches. The intent is to be more selective about variations that are to be expanded fully. 
Methods like the null-move heuristic (Beal, 1989), conspiracy-number search and singular extensions (Anantha­
raman et aI., 1988) all do this by expanding non-quiescent lines of play. On the other hand, the more formal 
probabilistic methods (palay, 1985) attempt to limit the width of search at any node by estimating the prob­
ability that a better move exists in the moves that remain to be searched (Kozdrowicki and Cooper's (1973) so 
called "Fischer Set"). In effect this problem requires looking again at the method of analogies (Adelson-Velsky 
et ai., 1975). It is remarkable that no significant improvement has been made to that method despite the passage 
of 15 years, not even attempts to implement simple forms of the idea in serious chess programs. The fundamen­
tal work here is to determine how best to make the method of analogies pay for itself. In this era of faster pro­
cessors and parallel computation this must be a topic that is ripe for exploitation. 

3.4. M orph: An Adaptive, Pattern-Oriented Chess System 

Robert Levinson 

Although chess computers now are competitive at master and grandmaster levels, this is where their resem­
blance to human players ends. Psychological evidence indicates that human chess-players search very few pos­
itions, and base their positional assessments on structural/perceptual patterns learned through experience. 
Morph* is a computer-chess program that has been developed to be more consistent with the cognitive models. 

The main objectives of the project are to demonstrate the capacity of the system to learn, to deepen our under­
standing of the interaction of knowledge and search, and to build bridges in this area between AI and cognitive 
science. 

The current model of chess programming came into its own in the 1970s and early 1980s and has been refmed 
ever since (Slate and Atkin, 1977). The main characteristic of the model is the use of brute-force alpha-beta 
minimax search with selective extensions for special situations such as forcing variations. This has been further 
enhanced by special-purpose hardware. This model has been so successful that little else has been tried. 

* The name Morph comes from the Greek morphe meaning 'fonn' and also points to the chess hero, Paul Morphy. 
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The alternative AI approaches have not fared well, perhaps because of the expense in applying the "knowledge" 
that had been supplied to the system. When chess has been used as a test bed (F1ann and Dietterich, 1989; 
Minton, 1984; Pitrat, 1977; Quinlan, 1983; Wilkins, 1982) only a small sub-domain of the game was used, so 
that fundamental efficiency issues that AI must grapple with have been largely unaddressed. However, we feel 
that there is a third approach that relies neither on search nor on the symbolic computation approach of know­
ledge-oriented AI. In what we shall call the "pattern-oriented approach", configurations of interaction between 
squares and pieces are stored along with their significance. A uniform (and hence efficient method) is used to 
combine the significance in a given position to reach a final evaluation for that position. That such an approach 
is possible is evidenced by psychological models of human chess play (De Groot, 1965; Pfleger and Treppner, 
1987). 

Morph is a system developed over the past 3 years that implements the pattern-oriented approach (Levinson, 
1989; Levinson and Snyder, 1991). It is not conceivable that the detailed knowledge required to evaluate posi­
tions in this way could be supplied directly to the system, thus learning is required. 

To strengthen the connections with the cognitive literature, the system's knowledge is to come from its own 
playing experience; no sets of pre-classified examples are given and beyond its chess-pattern representation 
scheme, little chess knowledge such as the fact that having pieces is valuable (leave alone their values) has been 
provided to the system. Further, the system is limited to using only I-ply of search*. 

System Design 

Morph makes a move by generating all legal successors of the current position, evaluating each position using 
the current pattern database and choosing the position that is considered least favorable to the opponent. Mter 
each game, patterns are created, deleted and generalized and weights are changed to make its evaluations more 
accurate, based on the outcome of the game. A more detailed summary of the design has recently appeared 
(Levinson and Snyder, 1991). 

Morph stores two types of pattern: graph patterns which represent attack-and-defense relationships between 
pieces and squares and material patterns, vectors giving the relative material difference between the sides, e.g., 
"up 2 Pawns and down 1 Rook", "even material", and so on. Along with each pattern is stored a weight that re­
flects the significance of the pattern. The weight is a real number in (0,1) that is an estimate of the expected true 
minmax evaluation of states that satisfy the pattern. 

Results with Morph 

There have been many encouraging signs in the three months since Morph was fully implemented, and some 
preliminary results have been published (Levinson and Snyder, 1991). 

Relationship of M orph to other approaches 

The chess system combines threads of a variety of machine-learning techniques that have been successful in 
other settings. It is this combination, and exactly what is done to achieve it, that is the basis for Morph's contri­
butions. The learning-method areas and their involvement in Morph include genetic algorithms (Goldberg, 
1989), neural nets (weight updating), temporal-difference learning, explanation-based generalization (EBG), 
and similarity-based learning. To combine these methods some design constraints usually associated with these 
methods are relaxed. 

In summary, in addition to a unique combination of methods, what distinguishes Morph is: 

* Though nothing in the method, except perhaps efficiency, prevents deeper search. 
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A uniform representation of search knowledge. 

A syntactic approach to playing and learning. 

An attempt to playa complete game of chess rather than a small subdomain. 

Rejection of a learning-by-examples framework in favor of a more cognitively-inspired experiental frame­
work. 

Responsibility for feature discovery is given to the system. 

Non-reliance on search (though at some point limited guided search may be incorporated, bringing us even 
closer to the cognitive model). 

3.5. Chess Was Good for AI Research 

David E. Wilkins 

Over the years, chess has proven to be a fertile ground for ideas and techniques that have spread to other areas 
of AI. These include pattern-based representation techniques (Bratko et al., 1978), chunking (Campbell, 1988), 
search techniques (minimax, alpha-beta, iterative deepening), and the utility of information (Good, 1977). Con­
sidering the lack of funding for chess, it is significant that it has produced so many results. 

Chess has been fertile because it provides a complex reasoning problem from a simple domain with a built-in 
performance criterion. The simple domain permits research to progress with little initial overhead. Having a 
hostile adversary adds complexity to the reasoning. In many domains (natural language understanding comes to 
mind), progress can be hindered by lack of performance criteria - it can be hard to tell whether the latest thesis 
is an improvement on the current state of the art. Chess, by contrast, provides precise answers to performance 
questions. 

However, hardware advances have made chess a less fertile ground for addressing the basic issues of AI. The 
game is small enough that brute-force search techniques have dominated competitive computer chess, and I see 
little AI interest by squeezing the last few hundred points out of the chess ratings, except for the psychological 
impact of having a computer beat the human world champion. 

Obviously, many basic issues in AI are not naturally addressed in a game-playing environment and should be 
explored in other domains. These include communication, forming models of one's environment, sensor ana­
lysis and integration, and (perhaps) reasoning under uncertainty. In addition, real-world domains force AI 
researchers to address issues such as economy of scale, noise, real-time response, failed actions, novel phenom­
ena, and multiple agents - issues that can be ignored in chess. 

Of the AI areas well-suited to a game-playing domain, there are better domains than chess. In particular, Go has 
all the advantages of chess but provides more complex reasoning and an even simpler domain. A successful 
symbolic Go program would have to plan, would have to use goal-directed search, would encourage machine 
learning, and would promote visual reasoning - all basic AI research issues that are now ignored in competitive 
computer chess. 

As even better than Go, Barney Pell (1991) has proposed an event where programs compete against each other, 
but are only given a description of the game to be played at the beginning of the match. Chess is particularly 
well suited to this adaptation. One could, for example, have a competition using a chess board and pieces, where 
the match begins by giving the programs a declarative statement of how the pieces move, how they capture, the 
initial position, and what the objective of the game is. The programs would have to play this newly defined 
game under time constraints. A longish series of games could be required. This would require machine learning 
and a robust symbolic problem-solving capability that is not tailored to a specific game. For each new game, the 
programs would have to learn evaluation functions (if needed), learn what goals are advantageous to attempt, 
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and learn heuristics or features for selecting moves. Brute-force techniques would be disadvantaged by the lack 
of opportunity to fme-tune both an evaluation function and a quiescence search for the game at hand. 
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Christian Posthoff (1) and Dap Hartmann at the 3rd Computer Olympiad in Maastricht. 


