
Editorial 

Rethinking optimality: eight concepts 

Traditional concepts of optimality in economics, 
operations research and management sciences are 
characterized by maximizing (or minimizing) a single 
objective function, i.e., Max f(x) or Max U(J(x)) sub­
ject to constraints X. This usually explicates a unique 
solution x* subject to all x E X, i.e., considering 
only the decision alternatives Of options belonging to 
a fixed, constrained set. 

As a concept, the traditional optimization model (of 
Max f (x) subject to x E X) is quite simple, unam­
biguous and 'crisp'. Although economists and engi­
neers often use this as a well-structured reduction of 
the ill-structured reality, human beings, in their roles 
as decision makers and problem solvers, are striving 
to cope with reality in its fuller complexity and only 
rarely resort to such extreme reductionism. 

People do not just minimize cost, maximize profits 
or maximize expected utility. Humans are always try­

ing to balance and harmonize the competing claims 
of quality, quantity, time and space - all at the same 
time. 

Human systems management, being a system­
oriented approach devoted to searching for the best 
and the 'optimal', cannot be rooted in a simplis­
tic single-criterion maximization with respect to con­
straints. Similarly, maximization, minimization and 
optimization processes are rarely unconstrained, un­
limited or occuring out of context, striving for some 
absolute maxima or minima. Constraints and limita­
tions are ever present and reflect the prevailing con­
ditions of scarcity. 

Absolute extremes, if they occur at all, are more 
appropriate for Utopia or certain mathematical exer­
cises. In reality, however, (as Milton Friedman was 
one of the very few to argue) an economic problem 
exists only when scarce means are used to satisfy al­
ternative ends. If the means are not scarce, there is 
no problem, but Nirvana. If the means are scarce, but 
there is only a single end, then the problem of how to 
use the means is a technological problem: no value 
judgments enter into its solution; only knowledge of 
physical and technical relationships. 

Human Systems Management 15 (1996) 1--4 
ISSN 0167-2533/ $8.00 © 1996, lOS Press 

So, we must learn to understand decision making 
as not merely a computation of the given, already 
constructed world (a technological problem), but as a 
way of the very construction of local worlds, a way 
of ordering of both individual and collective experi­
ence, making sense of the otherwise unordered 'chaos' 
of reality. Making decisions does not mean finding 
our ways through a fixed maze (or problemscape), 
but refers to the very process of constructing and re­
constructing such a maze, i.e., our 'local' world of 
reality. 

How can we do that optimally? How do we do 
that at all? What is optimization? Every well­
structured problem has an equally well-structured 
single-dimensional solution: the shortest, the safest, 
the cheapest or the most profitable 'path through the 
maze'. Finding such a path (solution) can be sim­
ple or difficult, but it is always derived or derivable 
from the given and fixed structure (of the maze). It is 
already 'there' and remains only to be uncovered or 
explicated (find the solution). Is this optimization? 

Of course, not. Computation, calculation and ori­
entation through a given, fixed structure is not opti­
mization: what is given cannot be optimized; it can 
only be calculated. 

What is the optimal path between A and B? Is it 
simply the best route from those already constructed 
(which can all be quite bad, even the best one), or does 
it also refer to constructing or uncovering a new route? 
Who is the optimizer? Is it a person who chooses 
the best among the given? Or is it also a person 
who constructs or creates the new best, de novo? If 
both such different and incommensurable efforts can 
be labeled optimization, what is then optimization? 
How many such 'optimizations' are there? 

Here we propose that there are at least eight distinct 
and mutually irreducible basic concepts of optimal­
ity. They all require different modeling devices and 
spawn quite different problem-solving approaches. It 
is as if there would exist eight different operations re­
search and management science worlds, but we have 
voluntarily limited ourselves to exploring and using 
only one of them. 
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Table I 
Eight concept of optimality 

N umber of criteria 

Given Single Multiple 

Criteria & Traditional MCDM 
alternatives 'optimality' 

Criteria only Optimal design Optimal design 
(De novo programming) (De novo programming) 

Alternatives only Optimal valuation Optimal valuation 
(limited equilibrium) (limited equilibrium) 

'Value complex' Cognitive equilibrium Cognitive equilibrium 
only (matching) 

What is given or determined a priori cannot be sub­
ject to optimization and thus, obviously, cannot and 
does not have to be optimized - it is given. What is 
not yet given must still be selected, chosen or identi­
fied and it is therefore, by definition, still subject to 
optimization. Consequently, quite different optimality 
concepts can be derived (see Table 1) from different 
distinctions between what is given and what is still to 
be determined. 

Any criterion (measure, yardstick) or attribute is 
characterized by its most preferred score (or range of 
scores) by a given decision agent in a given context. 
Such contextually most preferred score is, if feasible, 
clearly optimal. 

There is no difficulty with this concept and no need 
for its further elaboration. We can usually recognize 
the optimal amount of sugar in our coffee, optimal 
temperature of our body, optimal amount of water we 
drink daily, or optimal amount of cash we carry - as 
long as such preferred 'scores' are feasible. 

The difficulty arises when such most preferred 
scores are or become infeasible, i.e., if there are ex­
plicit or implicit constraints on our criteria which pre­
vent the achievement of the 'most preferred'. 

When the optimum is infeasible, it can be ap­
proached only through maximization or minimization 
subject to constraints. This is virtually always the 
case in economics, business and management. When 
the constraints are fixed and there is only a single 
criterion, these situations become trivial. 

If We relax at least some of the constraints or con­
sider multiple criteria then the situation turns multi­
dimensional: tradeoffs have emerged, criteria scores 
have to be balanced and mechanistic maximization or 
minimization does not suffice. 

When there is only a single criterion (no matter 
how comprehensive, aggregate or complex) selected 

(matching) 

to describe reality, its maximization or minimization 
with respect to constraints is sufficient. When there 
are multiple criteria, much richer forms of optimality 
and optimization need to be explored. 

Eight concepts of optimality 

We have chosen to present each of the eight opti­
mality concepts through a small example and a simple 
description. For a more formal treatment of model­
ing and computational properties consult any of the 
references listed. 

1. Single-objective 'optimality' 

This refers to conventional maximization (some­
times 'optimization'). Although not strictly a 'trade­
off balancing' problem, it should be included here for 
the sake of completeness, as a special case of bona 
fide optimization. 

To maximize a single criterion, it is entirely suf­
ficient to perform only technical measurement and 
search processes. Once X and f were formulated or 
specified, the 'optimum' (e.g., maximum) is found by 
computation, not via any decision or conflict dissolu­
tion processes. Search for optimality is simulated by 
scalarization, i.e., through assigning each alternative 
a number (scalar) and then identifying the highest­
numbered alternative. 

Example. From a list of five places (X), find the one 
that is the cheapest (Min f) for vacations. 
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2. Multiobjective optimality 

Optimization is not a simple maximizing and must 
involve balancing and harmonizing multiple crite­
ria. In reality, humans continually resolve con­
flicts among multiple criteria that are competing for 
their attention and assignations of importance. This 
corresponds to the vector optimization problem of 
Maxfl(x), Maxh(x), ... and Maxfk(x) simultane­
ously and subject to x E X. 

Such parallel maximization of individual functions 
should remain non-scalarized, separate and indepen­
dent, i.e., not subject to aggregation, like forming 
and maximizing a superfunction U (II (x), h (x), ... , 
fk(X)). Such aggregate U effectively reduces multi­
objective optimization to a single-objective maximiza­
tion. Multiple criteria, if they are to remain meaning­
ful and functional, should be optimized (or balanced) 
in the vector sense, i.e., non-scalarized and in mutual 
competition with each other. 

Example. From a list of five places (X), select the 
one that is the cheapest (Min fl) and safest (Max h) 
for vacations. 

Remark. It is quite often argued that the difference 
between objectives and constraints lies only in their 
technical positioning: are their levels to be determined 
(maximized), as for the objectives, or are they given 
a priori, as for the constraints. In that sense costs 
are constraints if their a priori values are not to be 
exceeded and objectives if they are to be minimized. 

Yet, nobody has ever argued for aggregating (or 
scalarizing) mUltiple constraints into a single, overall 
superconstraint. However, aggregating mUltiple ob­
jective functions, even if representing the same vari­
ables (like costs) is being carried out daily and goes 
virtually unnoticed and professionally unchallenged. 

3. Optimal system design: single criterion 

Instead of optimizing a given system X with re­
spect to selected criteria, humans often seek to form 
or construct an optimal system X of decision alterna­
tives, designed with respect to given criteria. Single­
criterion design is analogous to single-criterion 'opti­
mization', but producing the best (optimal) set of al­
ternatives X at which a given, single objective func­
tion f(x) is maximized subject only to the cost of 
design (affordability). 

Example. Design an affordable list of places (X) 
which would assure the cheapest (Min f) vacations. 

4. Optimal system design: multiple criteria 

This optimality form refers to the best system de­
sign with respect to blancing or harmonizing multiple 
criteria. 

Example. Design an affordable list of places (X), 
which assures the cheapest (Min h) and the safest 
(Max h) for vacations. 

Instead of the set of non-dominated solutions, we 
now have a set (or a family) of optimal system de­
signs, characterized by the equivalent affordability 
cost B and the differential importance of objective 
functions hand h. 

5. Optimal valuation: single criterion 

All four optimization forms considered so far as­
sume that decision criteria are given a priori. Yet, 
in human decision-making processes, different crite­
ria are continually tried and applied, some are dis­
carded, new ones added, until a proper (balanced) mix 
(or portfolio) of both quantitative and qualitative cri­
teria is achieved. There is nothing more wasteful than 
engaging a perfectly good means X towards unwor­
thy, ineffective or only arbitrarily determined criteria 
(goals and objectives). 

If the set of alternatives X is given and fixed a pri­
ori, we speak of a problem of valuation: how should 
we order the alternatives? According to fl or h or h? 
Which of the criteria best captures our values and 
purposes? 

Example. Select a single criterion (f), perhaps from 
a list (h, h, 13, .. . ), like entertainment, education, 
privacy, cost, etc., which would best evaluate a given, 
affordable list of places (X) in order to attain most 
satisfactory or fulfilling (through Max or Min f) va­
cations. 

6. Optimal valuation: multiple criteria 

If the set of alternatives X is given and fixed a pri­
ori, but a set of multiple criteria is still to be selected 
for the evaluation and ordering of X, we speak of a 
problem of multicriteria valuation: which set of crite­
ria best captures our complex of values and purposes? 
Is it (h and h)? Or (13 and f4)? Or perhaps (h and 
h and h)? Or even some other combination? 
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Example. Select a set of criteria, perhaps a combina­
tion from a list (ft, 12, 13, 14), like entertainment, 
education, privacy and cost, which would best evalu­
ate a given, affordable list of places (X) in order to 
attain most satisfactory or fulfilling (through Max ft 
and Max h) vacations. 

7. Optimal pattern matching: single criterion 

Here we optimize both X and 1 at the same time. 
There is a problem formulation representing an 'opti­
mal pattern' of interaction between both alternatives 
and criteria. It is this optimal, ideal or balanced prob­
lem formulation or pattern that is to be approximated 
or matched by decision makers. 

Example. Select a criterion (f), like entertainment, 
education, privacy, cost, etc., and design an afford­
able list of places (X), which would assure the most 
satisfactory or fulfilling (through Max or Min f) va­
cations. 

8. Optimal pattern matching: multiple criteria 

Pattern matching with multiple criteria is more in­
volved and the most complex optimality concept ex­
amined so far. In all 'matching' optimality concepts 
there is a need to evaluate the closeness (resemblance 
or match) of a proposed problem formulation (single­
or multi-criterion) to the optimal problem formulation 
(or pattern). 

Example. Choose the necessary criteria (ft, 12,···, 
ik), like entertainment, education, privacy, cost, etc., 
and design an affordable list of places (X), which 
assure the most satisfying or fulfilling (for example, 
through Max ft and Min h) vacations. 

In Table 1, we summarize all eight major optimal­
ity concepts according to a chosen dual classifica­
tion: single versus multiple criteria and the extent of 
the 'given', ranging from 'all-but' to 'none-except'. 
Traditional concept of optimality, characterized by so 
many 'givens' and a single criterion, appears prop­
erly to be the farthest removed from real optimal con­
ditions or circumstances for problem solving in the 
lower right corner of the table. 

There are also other ways of classifying various op­
timality concepts as there are many mixed and inter­
mediate situations of partially given and partially to 
be determined constraints and objectives. Only the 
upper left-hand corner represents a pure, non-mixed 
situation where all alternatives and a single criterion 
are all given a priori. That happens to be the only sit­
uation many analysts, economists and mathematicians 
have chosen to pursue. 

It is clear that the distance from the upper left-hand 
to the lower right-hand corner still remains as large 
as the gap between the reality and its model. 
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