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Program Transformation:
Theoretical Foundations and Basic Techniques. Part 2

This issue is the second Special Issue dedicated to the Theoretical Foundations and Basic Techniques
for Program Transformation. The first Special Issue has beenpublished in Volume 66, Number 4, April-
May 2005.

The Call for Papers included the following topics:

(i) transformation approaches and formalisms: rule-based, calculation-based, and schema-based trans-
formation;

(ii) program transformation in different programming languages: imperative, functional, logic, constraint-
based, object-oriented, concurrent, and distributed languages;

(iii) formal properties of transformations: correctness,completeness, and complexity of transformations;

(iv) transformation strategies and techniques for programoptimization: composition, accumulation, tu-
pling, specialization, generalization, and parallelization;

(v) interaction of program transformation with related methodologies for assisting software development,
such as: program analysis, synthesis, refinement, verification, component-based software construction,
software reuse, theorem proving, and meta-programming;

(vi) languages and systems for specifying and applying program transformations; and

(vii) case studies, that is, derivation of non-trivial algorithms from specifications and automated genera-
tion of software systems.

Among all papers we have received, twelve papers were selected for publication. Five papers were
published in the first Special Issue and the remaining seven papers are published in this second Special
Issue.

The paper “Redundant Call Elimination via Tupling” by Wei-Ngan Chin, Siau-Cheng Khoo, and Neil
Jones, describes several extensions of the tupling transformation technique, which has been proposed as
a means for the elimination of redundant calls in functionalprograms. The authors consider a first-order
functional language and provide a polynomial time program analysis which ensures the termination of
the tupling transformation. In the class of programs where the analysis succeeds, the elimination of
redundant calls can be performed at compile-time in a fully automatic way.

Preface 
 



vi

In the paper “Higher Order Deforestation”, Geoff W. Hamilton proposes an extension of deforesta-
tion, a well known transformation algorithm which can eliminate intermediate data structures from func-
tional programs. The proposed algorithm handles higher order programs and is shown to terminate for
the class of programs where all function definitions are given in a particular syntactical form, called
higher order treeless form. One advantage of the extended deforestation algorithm is that, since it uses a
syntactically recognisable form, it is often quite simple for the programmer to identify the improvements
which will be made.

The paper by Patricia Johann and Janis Voigtländer, entitled “The Impact of��� on Free Theorems-
Based Program Transformations”, investigates the validity of parametricity theorems and, among them,
the so-called free theorems in the case of nonstrict languages which have a polymorphic strict evaluation
primitive such as the��� primitive of Haskell. These parametricity theorems, including, for instance,
the short cut fusion theorem, are the basis for various program transformation rules. These theorems are
shown to hold for a subset of Haskell corresponding to a calculus à la Girard-Reynolds with fixpoints and
algebraic datatypes even when��� is present, provided that the relations which occur in the derivations
of the theorems are left-closed, total, and admissible.

The paper “Implementing Typeful Program Transformations”by Chiyan Chen, Rui Shi, and Hongwei
Xi addresses the problem of a good representation of typed programs so that their transformations can be
performed in a safer way. The authors present some programming techniques which allow us to derive
program representations in which the type of the object programs as well as the types of the free variables
occurring in them, can be reflected in the type of their representations.

The paper by Martin Bravenboer, Arthur van Dam, Karina Olmos, and Eelco Visser, entitled “Pro-
gram Transformation with Scoped Dynamic Rewrite Rules”, proposes the use of dynamic transforma-
tion rules and user-definable strategies for improving the power of the program transformation system
Stratego. In this system, as in many other transformation systems, a set of rules is used for deriving
new, more efficient programs from old, possibly less efficient ones. Dynamic rules can specify transfor-
mations which are context-sensitive in the sense that they depend on some variables whose values are
determined by the context in which the rules are applied. These rules and the user-definable strategies
are illustrated by several examples of program improvement, transformation, and specialization.

In logic programming the logic component of an algorithm is conceptually separated from the control
component. The objective of control generation is to derivein an automatic way a computation rule for a
logic program which is efficient and yet preserves program correctness. The paper “Control Generation
by Program Transformation” by Andy King and Jonathan C. Martin shows how the control generation
problem can be tackled by program transformation. The transformation relies on information about the
depths of derivations to derive delay declarations which orchestrate the control. In contrast to previous
work, the technique proposed in this paper does not require an atom to be completely resolved before
another is selected for reduction. This enhancement permits the transformation to introduce control
which is flexible and relatively efficient.

Many transformation techniques for logic programs are based on the unfolding and folding trans-
formation rules. Folding can be regarded as a partial inverse of unfolding, in the sense that if a given
program is transformed into a new one by unfolding, then the inverse transformation can be realized by
folding in a restricted number of cases only. In the paper “A multiple-clause folding rule”, David A.
Rosenblueth extends the folding rule so as to be able to fold the clauses resulting from any unfolding of a
positive literal, thereby making folding a full inverse of unfolding. The extended folding rule is shown to
be correct, in the sense that it preserves Dung and Kanchanasut’s semantic kernel. The author indicates
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some possible applications of the extended folding rule to decompilation, reengineering, and inductive
logic programming.
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