Fundamenta Informaticae 28 (1996) 197-209 197
108 Press

Positive Recursive Type Assignment*

Pawel Urzyczyn

Institute of Informatics, Warsaw Universily
ul. Banacha 2, 02-097 Warsaw, Poland
urzy@mimuw.edu.pl

Abstract. We consider several different definitions of type assignment with positive
recursive types, from the point of view of their typing ability. We discuss the rela-
tionships between these systems. In particular, we show that the class of typable pure
lambda terms remains the same for different type disciplines involving positive type
fixpoints, and that type reconstruction is decidable.

Keywords: Lambda calculus, positive recursive types, type constraints.

1. Introduction

This paper’s objective is to study “Curry style” type assignment with recursive types. By
“Curry style”, as opposed to fully typed “Church style”, we mean the approach where
types are assigned, as predicates, to pure lambda terms. A type assignment system proves
judgements of the form F F M : v, where M is a term of untyped lambda calculus, 7 is a
type, and F is a set of type assumptions about free variables (a type environment).

By recursive types we mean “type fixpoints” represented by expressions of the form upar,
where 7 is a type and « is a type variable. Such a fixpoint type is identified with its unfolding
r[par/a]. For instance, if 7 is (& —) — § then par is equivalent to ((par) — B8) — B,
and this equivalence allows to derive e.g., E F z(zy)(yz) : B, where the environment E
consists of the type assumptions: (z : par), (y : (par) = f) and (z2: 8 — f — B).

A type containing occurrences of the constructor 4 is often represented as an infinite regu-
lar tree obtained by unwinding all its fixpoints. But the notion of equivalence between types
induced by such presentation is stronger than the above “syntactic” equivalence: different
types may unwind to the same tree (see [4]).

Type assignment with arbitrary fixpoints was studied, for instance, in the papers [2], [3]
and [4]. See also [1], for a survey of major properties. However, arbitrary recursive types
are in a sense too strong. Let o be pa(a — a). One can easily show that all terms can be
assigned the type o. This means that all terms are typable.

In order to keep the class of typable terms within the bounds of strong normalization
property, one imposes the positivity condition: gar is a legal type only if a does not occur
in 7 to the left of an odd number of arrows. Mendler ([7]) proves (essentially) that the

*Partly supported by NSF Grant CCR-9113196, KBN Grant 2 P301 031 06 and by ESPRIT BRA7232
“Gentzen”. A preliminary version of this paper has been presented at the Symposium “Mathematical
Foundations of Computer Science” Prague, Czech Republic, 1995.

198 P. Urzyczyn [Positive Recursive Type Assignment

positivity condition is sufficient for strong normalization, and that it is the weakest possible:
adding an arbitrary negative fixpoint always allows to type a non-normalizable term.

In the present paper we concentrate on the positive recursive types. The goal is to compare
the existing approaches to positive recursive type assignment, with respect to their typing
ability. We first consider the approach based on the fixpoint constructor p as described
above. But there are two ways of understanding the equivalence between a fixpoint and its
unfolding. One possibility is to provide rules to replace a typing M : pot with M : r[par/a],
and conversely (folding and unfolding at the top level). The other way is to identify these
types entirely, which generates a congruence on the set of all types, and then to replace freely
all congruent types with each other.

An entirely different approach is to use “type constraints”, i.e., to introduce type con-
stants, and postulate equations of the form e.g. “c = (¢ —) — B”. Such ¢ then behaves
in a similar way to pa((a — B) — B). This is the approach of [2] and [7].

As we mentioned before, recursive types are conveniently presented by regular trees. We
would like to do the same with positive recursive types, but as noted in [3] and [4], the tree
model is not adequate here. The difficulty is that a positive fixpoint may unwind to the same
tree as a negative one, which means introducing “bad behaviour” in an implicit way. To
avoid this we propose in Section 4. to use labelled trees to preserve the polarity information.

Our main result is that all the four type assignment systems are of equal typing power,
in the following sense: a pure lambda term is typable in one of these systems iff it is
typable in any other (but not necessarily into the same type). We also show how to use
our tree representation to prove that self-application is not typable (Example 4.1.), and that
typability is decidable (Corollary 5.1.).

Section 2. introduces the type assignment systems based on the constructor x. Section 3.
contains some technical results needed for the next Section 4., which introduces our trees.
The last Section 5. deals with type constraints and contains our main result, Theorem 5.1.

2. The Basic Type Assignment Systems

The positive recursive types are defined by mutual induction, together with the notion of
positive and negative free variables. For a type 7, we use the notation F'V,(7) and FV_(7)
to denote the sets of variables occurring positively (resp. negatively) in 7.
e Type variables are types, and we have FV,(a) = {a} and FV_(a) = §;
e If o and 7 are types then (0 — 7) is a type, satisfying F'V, (0 — 7) = FV, (r)UFV_(0o)
and FV_(oc — 7)= FV_(1)U FV,(0);
o If o is a type and a is a type variable, such that o ¢ FV_(o), then (pao) is a type,
and we define F'V,(pao) = FVi(o) — {a}, and FV_(pac) = FV_(o).
The notational conventions are as follows: the operator p is of higher priority than arrow,
and arrows associate to the right. Unnecessary parentheses are omitted. That is, e.g., the
notation “pac — T — p” is equivalent to “((pao) — (7 — p))”. Since p binds variables, we
allow for alpha conversion, i.e., we identify types that are the same except for a renaming of
their bound variables. Also the notion of substitution, denoted 7[c/a], is as usual, with a
possible alpha conversion of 7. A type environment is a set E of pairs of the form (2 : o),
where z is an object variable and o is a type, such that if (z : ¢),(z : ¢') € E then
o = ¢'. Thus, an environment is a finite partial function from variables into types. If E is
an environment then E(z : o) is an environment such that

E(y), ifz#vy.

The terms of the pure A-calculus are defined as usual by the grammar

M:=z|(MM)|(AzM)

Be:o)) = {5y, HoZY

P. Urzyczyn [Positive Recursive Type Assignment 199

A judgement is an expression of the form £ + M : 7 where E is a type environment. We
consider two basic systems to derive judgements involving positive recursive types. Both
these systems contain the ordinary simple type assignment rules:

(Var) Ebz:o if (r:0)isin E
(App) ErM:r—-0, EFN:T
PP EF (MN):o
Ez:7)FM:o

(Abs) EFM2M):T—>0

The simplest way to introduce positive recursive types is to extend this core system by the
following two rules:

EFM:1{(par)/a]
E+FM:par

(Fold)

E+FM:uar
E+FM:r[(par)/a]

(Unfold)

We use the notation Fry to denote derivability in the above system. Our second system,
which will be referred to by the notation k., has only one new rule in addition to (Var),
(App) and (Abs):

(~) EF-M:o o~T
E+-M:r

Here, the relation ~ is the smallest congruence on types satisfying

par ~ r[(par)/a].

Clearly, rules (Fold) and (Unfold) are then seen as special cases of rule (~), and we have the
obvious implication:

If Etpgy M :7 then EFL M : 7.

The converse implication does not hold, for the simple reason that

(: pa(B — a) = B) Ve :(8— pa(B — a)) — B,

while the two types are obviously ~-related. Note that the above example shows also that
typing under Fpy is not closed under eta reduction. Indeed, a correct Fpy-judgement is
obtained from the above if z is replaced by Ay.zy at the right hand side. On the other
hand, it is not difficult to prove that E +. M : 7 implies E F., M’ : 7, for all M’ such that
M —, M’

However there is more between . and Fpy than just eta reductlon For instance, we
can derive

(z: pa(pfla— B) — a)) Fu z:pa((a — pf(a— B)) — q),
while, for all eta expansions X of z, .
(o paluBla —) —) Yru X : pa((a — pla — B)) — a).

The latter claim follows from the following Lemma.

200 P. Urzyczyn [Positive Recursive Type Assignment

Lemma 2.1. Let the arity of a fixpoint expression pap be the number of free occurrences
of o in p. If X is an eta expansion of a variable z, and if 2 : 7 Fpy X : o then 7 and ¢ have
fixpoint subtypes of the same arities.

An easy proof by induction on the length of X is left to the reader. (Note that a proper
expansion X of z must be of the form Ay;...y,.X'Y;...Y,, where X' is an eta expansion

of z and each Y; is an eta expansion of y;.)
Two important properties of the positive recursive type assignment are as follows:

Theorem 2.1. Let E + M : 7, where I is either . or Fpy. Then;

1. The term M is strongly normalizable;
2. If M —45 N then also EF N : 7.

Proof:

Part (1) follows from Mendler’s paper [7], because of the equivalence between type constraints
and recursive type assignment (see Theorem 5.1.). For part (2), we need to prove the
following claim:

If E(z:7)FM:0 and EF N:7 then EF M[N/z] : 0.
This goes by an easy induction on M. Details are left to the reader. o

We conclude this section with a remark on the power of recursive types. Let 7 = pa(f —).
We have 7 ~ (f — 7) and one can easily derive (z : 7) F Ay.z : 7. This means that
the combinator K = Azy.z has type 7 — 7. If 2 = Afz. f(fz) then of course we have
2:(r—=71)—>7—>r7andalso2 :((r—>7)>7—-71)=(r = 71) > 71— 7. It follows
that 22K : 7 — 7. On the other hand we have: ‘

Lemma 2.2. The term 22K is untypable in the second order polymorphic lambda calculus
(System F).

Sketch of proof: It is easy to see that the type o assigned to K must have the form:
o = VYa(r — Yi(p — 7)),

where 7' is an instance of 7. Using the ordinary tree representation of polymorphic types,
we can say, in particular, that t_'he rightmost path of 7/ must be at least as long as the
rightmost path in 7. The vector § of quantified variables may be empty, but & cannot. This
is because 22K reduces to 2(Az.K(Kz)), and types of the two copies of K must be different.
In addition, one of the variables &, say «, must occur at the end of the rightmost path in
7 — otherwise the composition of the two K’s is ill-typed. The same o must remain at the
‘end of the rightmost path in the instance 7/, at the same depth.

Now let us consider the type of the second 2 in 22K. It must have the form \7’7(00 — 0),
where o can be obtained from oo by instantiating 4. After excluding the impossible case
that o¢ is just a variable, one concludes that it begins with V& and has occurrences of « at
the same places as o does. In particular there is an occurrence of a at some depth n at the

‘rightmost path of the left subtree of o and at depth n+1 at the rightmost path of the right
subtree of 5. Now, 09 is the type of f in f(fz) and p is the type of Az. f(fz). No matter
what is the type of z, we can note that the asymetry of oy is doubled in p, and thus the
rightmost path in g must be of length at least n + 3. Although V¥(0o — ¢) may still be a
good type for 2, a term of this type cannot be composed with itself, as the positions of «
cannot be changed by just instantiating 4. O

It follows that recursive types cannot be replaced by polymorphic types as long as typability
is concerned: the class of terms typable with positive type fixpoints is not a subset of
polymorphically typable terms. In Section 4. we show that the converse inclusion is also not
true.

P. Urzyczyn [Positive Recursive Type Assignment 201

3. Paths in Types

This section is devoted to some technical preparation that will be used later. We begin with
a simple observation: we can get rid of the “degenerate” fixpoint pac, because it unfolds
only to itself: a[paa/a] is just paa again. More formally:

Lemma 3.1. Let £+ M : 7, and let 4 be a fresh type variable (not occurring in E and 7).
Let E' and 7' be obtained from E and 7 by replacing each occurrence of paa with an
occurrence of . Then E'F M : 7/, and this judgement can be derived without using any

occurrence of paa.

Proof: :
Easy. O
The above lemma allows us from now on to exclude paa from the set of types occurring
in our consideration. This does not affect our results as long as we only ask about typabil-
ity /nontypability.

Let us now remark that the relation ~ on types can be seen as equality generated by a
reduction relation —,, given by the following rule:

par -, [(par)/al.

A useful observation is that such a reduction relation makes a regular combinatory reduction
system in the terminology of Klop [5], and thus we have:

Lemma 3.2. The relation —, has the Church-Rosser property.

Proof:
See Theorem 3.11 in [5]. 0

The next lemma states a basic technical fact about the relation ~:

Lemma 3.3. If 7 ~ o then 7[p/a] ~ o[p/c].

Proof:
Induction w.r.t. the definition of ~. ‘0

A path is an arbitrary, finite or infinite, word over the alphabet {L, R} (understood as “left”
and “right”). The empty path is denoted by . A finite path w is positive iff the number of
L’s in w is even, otherwise we say that w is negative. We write w C v when w is a prefix
of v. If 7 is a type, and w is a finite path then 7[w] will denote the subtype of T rooled at w,
defined as follows:

o n

Tle] =7
(1 — o) [Lu] T[w]
(1= o)[Bw] =0

(pat)[w] = T[w] for w # e.

Note that the definition of 7{w] depends on the choice of bound variables of 7 — it is not
invariant under alpha conversion. That’s why we have to be careful in the choice of bound
variables. In what follows we assume that all types under consideration have their bound
variables chosen so that there is no confusion between bound and free variables.

The following are basic properties of subtypes:

Lemma 3.4.
1. Assume that neither o nor any free variable of o is bound in 7, and that Tlo/e][w]
is defined. Then either 7[w] is defined and 7[o/a] [w] = T[w] [o/a], or w = wowl, ‘
where 7[wo] = @, and 7[o/a] [w] = o[w1]. '

202 P. Urzyczyn | Positive Recursive Type Assignment

2. For each 7, w, v, it holds that 7 [wv] = 7[w] [v], provided either side is defined.

Proof:
Part (1) follows by induction w.r.t. 7, part (2) by induction w.r.t. the length of w. (For (1),
note that it may happen that 7[o/ a] [w] is defined, while 7 [w] is not.) 0

If 7[w] is defined then we say that w is a node of 7. The trace of a path w in 7, denoted
trace(w,) is the sequence of nodes visited by traversing 7 down from the root towards leaves
along path w, with the additional rule that whenever a y-bound variable is encountered,
one returns to the appropriate y-binding. For instance, trace(RRL, — pa(f — «)) is the
sequence (¢, R, RR, R, RL). Formally, trace(w,) is defined as follows. First, trace(e,7) = €.
Now assume that trace(w,r) has already been defined, and let v be the last node of it. In
order for trace(wL,) to be defined, we require that vL is a node of 7. There are two cases:
Case 1: Let 7[vL] be a variable a which is p-bound. That is, assume v is a leaf of 7
and there is v’ C v with 7[v'] = pap. Take the longest such ', and define trace(wL,) =
trace(w, 7);vL;v’, where the semicolon denotes concatenation for sequences of nodes.
Case 2: Otherwise take trace(wL,7) = trace(w, 7);vL.
Of course, trace(wR, 1) is defined analogously. For an infinite path w, we define trace(w,)
as the appropriate limit of trace(w’, 7), for finite v’ C w.

Lemma 3.5.

1. If o ~ 7 then trace(w, o) is defined iff trace(w, 7) is defined.
2. Let o[w] be defined. Then the sequence trace(wv,o) is defined iff trace(v, a[w])

defined.

Proof:
(1) An easy induction w.r.t. the definition of ~.
(2) It is easy to see that trace(v,o[w]) is always a suffix of trace(wv, o). |

If we think of a recursive type as of an infinite tree then the above lemma states that
equivalent types correspond to the same (unlabelled) tree. The main lemma of this section
is as follows:

Lemma 3.6. If w is a negative path then 7 ¢ T[w].

Proof: ~

Assume the contrary, and first observe that frace(w®,), and also trace(w®™,7[w]), must be
defined because of Lemma 3.5. For convenience, we will identify each node z of 7 [w] with the
node wz of 7. We claim that, under this convention, the infinite sequence trace(w*, 7 [w])
equals to the final segment of trace(w™,) obtained by cutting off trace(w, 7).

Indeed, one can prove by induction w.r.t. the length of u, that for each finite prefix u -
of w*, the sequences trace(u, 7 [w]) and trace(wu,7) are the same. The only nontrivial case
is when the last node z on trace(wu,) is a result of a return from some leaf y of 7. Then
r{y] = B, for some B which is p-bound in 7. The induction step now follows from the
fact that the binding place x must lie within 7[w], as otherwise 8 would be free in 7[w]
and trace(w™,r{w]) would break here — a contradiction with Lemma 3.5. Note that this .
argument 1mphes a general observation that all returns on our path occur below w.

Let us now analyze the shape of trace(w®,7) in some detail. There is only finitely many
nodes of 7, thus there are ky, k3, such that trace(wkl ,7) and trace(w*?,7) end with the same
node v. Take the least such pair (ki, k;) (lexicographically).

The construction of a trace is determined at each step only by the path and the current
node. Thus, each trace can be seen as a computation history of a finite automaton. It follows
that the sequence of nodes on trace(w®™,). after w* must be the same as after w*, i.e.,
that trace(w™,t) is periodic after the last node of trace(w*,r). The period is determined

P. Urzyczyn / Positive Recursive Type Assignment 203

by w*~F. A cycle is possible only if there are returns. Thus there must be nodes vy,
vy, such that vo C v C v; and we have 7[vg] = pap and 7[v1] = a, with vy following
vy on trace(w*®, T) somewhere between the last node of trace(w*,r) and the last node of
trace(w*, 7). (In other words we have trace(w™,) = trace(w*, 7);...;v1;v0;...; v;...; 3
vo; ..+ V;...). We choose the highest (shortest) such vy (there can be more than one to
choose from), and we now look at the trace of w*™ as a periodic sequence starting with the
first occurrence of vy after trace(w*, 7). Note that, except returns to v, there may be also
other returns on each period. All of them are caused by g-bindings occurring below vy. We
shall show now how to eliminate such returns.

Suppose T[ug] = pBo, T[u] = B, with vo C ug C wuy, and suppose that a return

..;Up;Ug; ... occurs on trace(w*™,r) during each period. Let 7' be obtained from 7 by
unfolding this occurrence of pfo to o[ufa/p].

Let u; = uou’. The sequence trace(w™,7’) can be obtained from trace(w*,7) in the
following way. Initial segments are the same, until in 7 we reach the return from u; to ug
(callit an “upper phase”). Then a “lower phase” begins, when each node uoz on trace(w™,)
is replaced by uyx on trace(w™,7’). The lower phase continues until a return is reached to
a node which is above ug. Then we have again an “upper phase”: identical nodes on the
corresponding parts of trace(w*,7') and trace(w*,r). This goes on until another return
to ug is reached, and we begin another “lower phase”.

The useful thing is that trace(w®,7’) has less returns on each period than trace(w®,7),
and still we have 7' ~ 7 and 7'[w] ~ 7T[w], since both equivalences result from a single
unfolding. (Recall that w C vg, and thus our unfolding is done within 7[w].) The node vy
is still the top return node as described before. Repeating the above, we can eliminate all
returns below vg, and thus we can assume from now on that our cycle has only returns to vg
(not necessarily always from vy, but always from nodes labelled &). In a similar way, we can
also assume that there are no returns before the first period begins. Indeed, call a return
unimportant iff it occurs only finitely many times on the trace. By unfolding an appropriate
p-subtype, one decreases the number of unimportant returns, eventually obtaining some 7’/
with 7/ ~ 7/[w] and no unimportant returns on trace(w®,7’).

Assume now that vg is positive. Take any type o, and let = be the longest prefix of w™
which is a node of o. We claim that if 7 —, ¢ then o[z] = a and z is positive. The proof is
by induction. For the induction step, consider an arbitrary reduction ¢ —, ¢'. The leaf z is
left unchanged in o', unless the appropriate y-binding of o was unfolded (because no other
returns are possible). In the latter case the path w* chooses a new a-leaf which extends z
by a positive path y. '

In exactly the same way we prove that z must be negative if 7 [w] —», 0. Thus, it should
be impossible to have a type o satisfying both 7 —, ¢ and 7[w] —», 0. However such a
type must exist by the Church-Rosser property — a contradiction. - 0O

4. Labelled Trees

Arbitrary recursive types are often represented as their unfoldings to infinite regular trees,
see e.g. [3] and [4]. This representation can be useful, although it is not fully adequate, as
two different types can sometimes be unfolded to the same tree. However, when one restricts
attention to positive fixpoints only, the ordinary tree model becomes just inconsistent.” Con-
sider the type 7 = pa((a — B) —). There is nothing really wrong if it is represented by
the same tree as pa((((a —) —) — B) — B), but the serious problem is different. Let
o = (1 — B). Then we have 7 ~ (¢ —) and both 7 and ¢ unfold to exactly the same
tree. Now, T is a “negative” subtype of ¢ and equating these two types results in a calculus
which is no longer strongly normalizable (see [7])

A tree-like representatlon of positive recursive types is useful because it allows sometimes
for graph-theoretical reasoning about type inference (especially when one wants to prove non-

204 P. Urzyczyn [Positive Recursive T'ype Assignment

typability). Since the polarity information is lost after unfolding, we must keep it visible by
adding extra informations to our trees. That’s why we propose to use labelled trees instead.
In what follows a tree is defined as a function 7 : Dom(T) — TVar U L, such that

e TVar denotes the set of all type variables;

e the symbol £ stands for a set of labels;

e Dom(T') is a nonempty downward closed subset of {L, R}*, i.e., wv € Dom(T) implies
w € Dom(T); '

e for each w € Dom(T), either T(w) € £ and wR,wL € Dom(T), or T(w) is a variable

and w is a leaf.

By T'|., we denote the subtree of T' rooted at w, i.e., a tree with domain {v : wv € Dom(T)},
defined by T'),,(v) = T'(wv). A tree is called regular iff it has only a finite number of different
subtrees. (In particular there is only a finite number of labels.)

Let T and T” be regular trees such that Dom(7T") = Dom(7"). We identify T' with T if
the equality T'(w) = T"(w) holds for almost every w € Dom(T'), including necessarily all the
leaves. That is, from now on, we write T' = T" even if there is a finite number of differences
in the labelling of T' and 7", but only at the internal nodes. In particular, this means that
internal labelling of finite trees can be ignored altogether, so our finite trees are equivalent
to ordinary finite types.

A node w is positive iff it has an even number of L’s, otherwise it is called negative. Now
we would like to define a positive tree as one that satlsﬁes T(w) # T(wv), for each w and
each negative v. This would lead to difficulties because of our convention to identify trees
with labels equal almost everywhere, so we must relax this condition as follows: a tree T is
called positive iff T(w) # T (wv) holds for almost every pair (w, v), with negative v (provided
both sides are defined).

If 71 and T3 are trees then Ty — T3 denotes the only tree T satisfying T'|, = T; and
T|r = T2. Note that, due to our convention, the label T'(¢) does not matter.

For our tree assignment system, we define a tree environment as a finite partial function
from variables to positive regular trees, and we use the notation £(z : T) as for ordinary
environments. The rules are as follows:

(Var) Erz:S if (z:5)isin &
(App) EFM:T—-S,EFN:T

PP £F (MN): S
(Abs) Ex:T)FM:S

EF(AzM):T— S

We use the symbol ; to denote derivability in the tree assignment systems. Clearly, if
€y M : T then T must be positive and regular The above system behaves very much
like the ordinary simple assignment system; in particular it is easy to show that EF M : T
implies £ F; M’ : T, for all M’ such that M —»g, M'.

In order to find a translation from recursive type assignment to tree assignment, we need
the following definition. Let 7 be a type and w be a path. We define a type 7(w) as follows: -

(e
(1 — o)(Lw

)
)
(1 = o)(Rw)
)
)

\‘

\‘
g

-

ﬂ
S

~—
-~

arfa], if w# e and 7(w) is defined;

v), if T[w] = a.

(nar)(w
(nar)(uwv

1 U | I [
?/\iﬂu-
gv\g_/v

P. Urzyczyn /[Positive Recursive Type Assignment 205

The only possibility when two cases of the above definition can overlap is when 7[w] = «
and we want to define (pa7)(w). Thus, to see that the above definition is correct, it suffices

to prove by induction w.r.t. 7 that:
if 7[w] = @ and « is free in 7 then also 7(w) = o,

(with no ambiguity possible). Then we obtain (part)(w) = par, either way.
The next lemma shows the properties of 7(w) which are most important for our needs.
Note that in part (1) there is no problem with capturing names of bound variables (cf.

Lemma 3.4.).

Lemma 4.1. : :
1. If 7(w) is defined then 7[o/a](w) = 7(w)[o/a];
2. If 7 [w] = a then 7[o/a](wv) = o(v);
3. If 7(wv) is defined then so is 7(w) and 7(wv) = 7(w)(v);
4. If ~ 0 and 7(w) is defined then so is o(w) and 7(w) ~ o(w);
5. For each 7, w, there is a type 7/, such that 7" ~ 7 and 7(w) = 7'[w];
6. If w is negative then 7 £ 7(w).

Proof:

The proof of (1) is by induction with respect to 7. In case of fixpoint, there is an inner
induction w.r.t. the length of w. For (2), we proceed in a similar way, using part (1)
of Lemma 3.4. Also part (3) is proved by the same induction pattern, and in the case of
fixpoint we use parts (1) and (2) plus the following easy observation: if o [w] is defined then
so is o(w).

Part (4) follows by induction w.r.t. the definition of ~. For the base step (par ~
7[(pat)/a]), we exploit parts (1) and (2). Induction steps are easy, but for the case of
fixpoint, we need to show (again by induction) that if 7[w] = @ and o ~ 7 then o[w] = ¢,
provided «a is free in 7.

To show part (5), we again proceed by induction w.r.t. the definition of 7(w), but the
induction hypothesis must require in addition that no variable free in 7 or 7’ is bound
in 7/. For the proof we use Lemma 3.3. and Lemma 3.4. Finally, part (6) is an immediate
consequence of (5) and Lemma 3.6.]

Now, for an arbitrary type 7, we define its tree representation T, by T (w) = [r(w)]_. If
we identify the equivalence class of a variable with the variable itself, then we can say that
this definition is correct: '

Lemma 4.2.

1. T, is a positive regular tree, for each type 7. (The set £ of labels is the set of equivalence
classes of non-variable types.)
2. If r ~ o then T, = T,, and conversely.

Proof:
(1) The domain of T is downward closed because of part (3) of Lemma 4.1. Then we can
show by an easy induction on 7 that T, is a binary tree (for each node there is either
two sons or none) and that variables occur as labels of all leaves and only leaves. (Recall
that we assumed no type ~-equivalent to paa is allowed.) This tree is positive, because
7(w) ~ 7(wv) contradicts parts (3) and (6) of Lemma 4.1. To see that T is also regular,
one proves by induction that for each type 7 the set Z, = {[7(w)]. : w € {L, R}*} is finite.
Indeed, we have Z,_,, C Z, U Z, U {[T — o] _}, and Z,., C {[p[uar/a]].: [p]. € Z,}.
(2) The “if” part is immediate from Lemma 4.1.(4). The converse follows from the fact-
that almost all corresponding labels in T, and 7, are ~-related, and from the following
observation: 7 ~ (7(L) — 7(R)), provided the rhs is defined. a

206 P. Urzyczyn [Positive Recursive Type Assignment

Note that the equality of trees T, = T, is quite different than the relation = of [4] (identical
tree unfoldings), because the latter identifies more types than ~.

If E is a type environment then by 7z we denote the corresponding tree environment,
given by Tg(z) = Tg(z), for all . The main result of this section is:

Proposition 4.1. f E+. M : 7 then Tg -, M : T;.

Proof:
Induction w.r.t. the length of derivation, by cases depending on the last rule used. The base

step (rule (Var)) is obvious. Case (App) and (Abs) follow because T,_,, = T, — T; (recall
that the labels need only be equal almost everywhere). Finally, case (~) is a consequence of

Lemma 4.2.(2). ‘ O

The converse of Lemma 4.1. will follow from Theorem 5.1. An advantage of the tree assign-
ment is demonstrated by the following example:

Example 4.1. There is no type 7 such that b Az.zz : 7.

Proof:

Suppose the contrary. By Proposition 4.1., there is a positive regular tree T', such that our
tree assignment derives - Az.zz : T'. Let S be the left subtree of T'. One can easily see that
we must have § = 5 — §’, for some S’, and thus all labels on the leftmost path in S are the
same. This contradicts the positivity condition. a

Together with Lemma 2.2., the above proves that recursive types and quantificational poly-
morphism are orthogonal with respect to their typing power. Indeed, Az. zz is easily typable
in System F.

5. Type Constraints

In this section we consider positive type constraints, in the spirit of [7]. If TConst is a fixed
set of type constants then we define simple types with constants with help of the grammar:

Ti=alc|ToT,

where the metavariables a'and ¢ range over type variables and type constants, respectively.
The subtype notation 7[w] is used also for types with constants and has the obvious meaning.
A type constraint is an equation of the form “c = 7”7, where ¢ € TConst and 7 is a simple
type with constants. A system of constraints is a ﬁmte set of constraints such that all the
left-hand sides are different constants.

A system of constraints C determines an equivalence relation ~¢ as the smallest congru-
ence satisfying ¢ ~¢ 7, whenever “c = 7”7 is in C. Such a system C is positive iff, for all
constants c; the equivalence ¢ ~¢ 7 implies that 7[w] = ¢ may only hold for positive w
(Mendleér’s condition P). This positivity condition can be also presented in a more “syntac-
tic” way. For this, consider the quasi-order <, generated on the set of constants in C by
the condition that d <¢ ¢ must hold whenever there is a constraint “c = 7” in C, such that
T [w] = d, for some w. The following is Proposition 10 of Mendler’s paper [7]. '

Lemma 5.1. (Mendler) A system C of constraints is positive iff, for every ¢ € TConst,
the equivalence class [c] of the equivalence relation generated by the quasi-order <¢ can

be partitioned into two subsets, denoted [c]* and [c]~, in such a way that ¢ € [c]*, and
whenever “c = 77 is a constraint in C and 7[w] = d then: =
— if d € [c]* then w is positive, and
— if d € [¢]” then w is negative.

P. Urzyczyn | Positive Recursive Type Assignment 207

Type inference for simple types with constants is defined relative to a given positive set of
constraints C. The rules are the ordinary (Var), (App), (Abs) and in addition:
EFM:o, or~er
(~e)
EFM:r

We use the symbol ¢ to denote type assignment with help of the system of constraints
C. It was shown by Mendler that typable terms have strong normalization property iff C
is positive. An analogous result can be obtained (as shown by Marz, [6]) for generalized
constraints, i.e., arbitrary equations of the form “r = ¢”, with an appropriate generalized
notion of positivity.

We are particularly interested in derivations of a specific simple shape. We write £ §
M :7if EtFe M : 7 can be derived so that rule (~¢) is used only at the “top level”, i.e., in
one of the two restricted forms:

EFM:c Er-rM:r
EFM:r EFM:c

where “c = 7” is a constraint in C.
Our aim is now to translate the tree assignment system of Section 4. into type inference
with constraints. More precisely, we show the following result.

Proposition 5.1. If £ F; M : T then there exists a system C of constraints such that
Etrg M : 7, for some E and 7.

Proof:
For each positive regular tree T, let c¢r be a new constant. Our system C of constraints
consists of all equations of the form:

CT—s = CT — Cg5;
er =a, ifT(e)=

Since there is only a finite number of trees used in any derivation, we actually have only a
finite number of constants and thus C is finite. To show that C is positive, we first prove the
following claim: if 7 ~¢ o with 7[w] = ¢r and o[wv] = ¢ then T|, = S. The proof of this
claim is by induction w.r.t. the definition of ~¢. To avoid difficulties created by transitivity
we note that if (1, — 72) ~¢ (61 — 03) then 71 ~¢ 01 and 7, ~¢ o2 (in a smaller number of
steps). Now, if ¢ ~¢ 7, and 7[w] = ¢y then T = T'|,,, and thus w must be positive, because
almost all labels T'(w™) must be equal.

Now assume that £ by M : T, and define E so that E(z) = cg, whenever £(z) = 5. We
prove E 2 M : ¢p by induction w.r.t. the number of steps needed to derive £ -, M : T.
Note that rule (~¢) is only used to replace cr—s by cr — ¢s and conversely, and thus we
have a g derivation indeed. a

Our last step is from constraints back to recursive types. For this it is convenient to extend
our language so that both constants and fixpoints may occur in types. Thus, we allow for
all types constructed according to the following grammar:

Tu= alc|T— 71| par,

with only positive y-bindings. We generalize appropriately the notion of a constraint and
for a given system of constraints C, we redefine the relation ~¢ as the smallest congruence
satisfying both conditions:

par ~c 7[(pat)/al;
cr~e T, for “c = 7"

208 P. Urzyczyn | Positive Recursive Type Assignment

Of course, C is always assumed to be positive. The meaning of “E F¢ M : 7”7 for the
extended language should now be clear. We also use the notation ' +z M : 7 if the
judgement E F M : 7 is derivable with help of rules (Var), (App), (Abs), (Fold), (Unfold),
and the two restricted forms of (~¢), as above. Note that g is just k., and that F§ is
equivalent to Fry. We are going to eliminate one constant at a time. The main technical
lemma is as follows:

Lemma 5.2. Let C be a positive system of n constraints (n > 0), and assume that E k¢
M : 0. There exists a positive system D of n — 1 constraints, such that E' Fp M : ¢/, for
some E' and ¢’. In addition, if EF2 M : o then E'+3 M : o’.

Proof: '
Choose a constraint “c = 7” from C. Now, for every type p, let p[(par[e/c])/c] be denoted
by p’. This is correct, because C is positive, and thus ¢ cannot occur negatively in 7.
The new system D is obtained from C by removing “c = 7”7, and replacing every other
equation “d = p” by “d = p’”. To see that D is positive, one proves that the equivalence
relation determined by <p is contained in that determined by <, and that the partition of
equivalence classes given by Lemma 5.1. remains correct after removing c.
On the other hand we can prove by induction that oy ~¢ o, implies o] ~p 5. In partic-
ular, ¢’ is par[afc] and 7' is T[(par[a/c])/c], the latter equal to 7[a/c] [(rar[a/c])/].)
The hypothesis of the lemma is now shown by induction w.r.t. the number of steps to
derive E k¢ M : 0. In case of E 2 M : o, we have just to note that a “top level” application
of the constraint “c = 7” becomes replaced by an application of either (Fold) or (Unfold).O

The above lemma applied repeatedly allows one to get rid of all constants and constraints
at the cost of introducing p’s. Let us note here that the result of this process is not unique
and depends on the order in which the constants are eliminated. (Take the constrains
“c=d— " and “d = ¢ — d” as an example.)

We have completed the loop connecting our systems, and we can now state our main
result: each of them is of the same power w.r.t. typability of pure lambda terms.

Theorem 5.1. For every pure lambda term M, the following conditions are equivalent:

1. Etlpy M : 7, for some F and 7;
2. Ex-o M : 7, for some E and 7;
3. EF4: T, for some € and T

4. E Fe: 1, for some positive system C, and some E and 7.

Proof: -

That (1) implies (2) is an obvious inclusion. The implication from (2) to (3) follows from
Proposition 4.1., and the implication from (3) to (4) is given by Proposition 5.1. Condi-
tion (4) implies (2) because by Lemma 5.2., we can eliminate step by step all occurrences of
constants, resulting in a derivation of the form E’ 4 M : 7. Finally, (3) implies (1) because
Proposition 5.1. guarantees a derivation in the special form £ 2 M : 7, and the elimination
process of Lemma 5.2. will result in E' F§ M : 7. O

Corollary 5.1. It is decidable whether a given term M is typable with respect to F..
Proof:

Due to the equivalence of conditions (1) and (3) of Theorem 5.1., we ask whether M is
typable in the tree assignment system. (Compare this to the use of arbitrary regular trees
in [4] to prove properties of type assignment with unrestricted recursive types.) First we
follow essentially a standard algorithm for ordinary finite types. We assign an unknown tp
to each subterm P of M (with different occurrences of non-variable subterm counted as
different subterms). Then we set equations of the form: tp = tg — tpg and ty,.p = t, — tp.
It remains to solve these equations over positive regular trees. It is not difficult to show that
a solution exists iff our equations form a positive system of constraints, and this is decidable
in polynomial time. O

P. Urzyczyn | Positive Recursive Type Assignment 209

6. Conclusion

We have shown the equivalence of typability under different type disciplines involving the
combination of simple types (arrow types) and recursion. We have also constructed an
equivalent tree model of positive recursive types. We would like to extend these results to
systems involving quantificational polymorphism. However, the generalization will not be
immediate. An example difficulty is as follows: a type of the form Va7, with a occurring free
within a p-binding, must be represented by a tree with an infinite number of occurrences
of . If equality of trees is taken almost everywhere, then the tree corresponding to 7[p/a]
is not well-defined. :

References

[1] Barendregt, H.P.: “Lambda calculi with types”, Chapter 1 in: S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum (eds.), Handbook of Logic in Computer Science, vol 2,
Oxford: Clarendon Press, 1992, 118-310.

[2] Breazu-Tannen, V. and Meyer, A.R.: “Lambda calculus with constrained types”, R.
Parikh (ed.), Proc. Logics of Programs, LNCS 193, Berlin, Springer-Verlag, 1985, 23-
40. '

[3] Cardone, F. and Coppo, M.: “Two extensions of Curry’s type inference system”, P.
Oddifreddi (ed.), Logic and Computer Science, London: Academic Press, 1990, pp.
19-75.

[4] Cardone, F. and Coppo, M.: “Type inference with recursive types: syntax and seman-
tics”, Information and Computation, 92(1),1991, 48-80.

(5] Klop, J.W.: Combinatory Reduction Systems, Amsterdam: Mathematisch Centrum,
1980.

[6] Marz, M.: “An algebraic view on recursive types”, manuscript, Technische Hochschule
Darmstadt, 1995.

[7] Mendler, N.P.: “Inductive types and type constraints in the second-order lambda
calculus”, Annals of Pure and Applied Logic, 51, 1991, 159-172.

[8] Urzyczyn, P.: “Positive recursive type assignment”, J.Wiedermann and P. Hajek (eds.),
Proc. MFCS 1995, LNCS 969, Berlin, Springer-Verlag, 1995, 382-391.

ot M
'\Ox ate m
<8 g,

.
S

LRHTLICTTICA S
- 3

